
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

177
All Rights Reserved © 2016 IJARTET

Annealing On A Dynamically Injected

Test Pattern For Test Suite

M.Karthikeyan,

Assistant Professor, Bharathiyar Institute of Engineering

for Women, Deviyakurichi,Attur,Salem, TamilNadu,

India. mkarthikeyanme@gmail.com

ABSTRACT

Choosing the exact test cases for regression testing in pre- production environments not only needs prior knowledge of the system, but

also a right use of calculations to set the goals right. On systems that are just entering the production environment after getting promoted

from the staging phase, trade-offs are often needed to between time and the test coverage to ensure the maximum test cases are covered

within the stipulated time. Performing regression testing on a pre production environment is often viewed by software practitioners as a

daunting task since often the test execution shall by-pass the stipulated downtime or the test coverage would be non linear. There arises

a need to refine the test cases to accommodate the maximum test coverage it makes within the stipulated period of time since at most of

the times, the most important test cases are often not deemed to qualify under the sanity test suite and any bugs that creped in them

would go undetected until it is found out by the actual user at firsthand. Hence an attempt has been made in the paper to layout a testing

framework to address the process of improving the regression suite by applying a simulated Annealing Algorithm over and thus

dynamically injecting dependency over the best route encompassed by the method.

Keywords

Regression testing, Software Testing, Simulated Annealing, Dependency Injection

1. INTRODUCTION
Testing out the software delivery artifacts which is automated

in the latest cutting edge technologies,, say the hourly agile

builds in a real-time system and taking out the best build that

is deemed to get qualified as a stable build is a tedious and

time bound task, where the heuristics are to be applied at

tandem, which constitutes the most effective test cases that

could pave way to catch the high priority bugs.

On the other hand, dealing with high density of data

transmissions that span least in megabytes is nowadays

increasing due to the advent of more people connected on the

Go. With the advent of smart phones that produce real time

statistics like maps and weather that involves transmitting to

the near broadcasting point to avoid delay in response, the

applications that work beneath these phones are to be

intelligent and cloud enabled that provide the services

involving distributed spatial data. Testing these systems

without dealing effective way of dealing with the high

volumes of data is inevitable.

Each data transmission task consumes a finite bandwidth of

network resources and time, and empowering such a request

for testing would normally lead in failure of accomplishment

of test objectives, as they are time and resource bound.

Most end point services use the load balancer (Fig 1) which

decides on the appropriate cloud point (worker) to be called

on these situations. The database nodes are connected in

real- time with a snapshot replication for maintaining data

integrity.

Fig 1 A Typical Cloud Hosting Architectural Environment

On Most cases, the service end point listens on the

advertised point through the publicized protocol, which

usually vary based on the domain cross functional

requirements. There is also a possibility of multiple bindings

running at a specified service end point to cater to various

type of clients.

The end point request is finally tunneled to a single stream of

processing thread despite presence of multiple bindings where

the service is responded with the appropriate high density

bandwidth data information.

1.1 Choosing the right testing strategy

Testing an application that is seeded at multiple locations like

cloud service that carries high density of information across

involves testing the individual end points by contacting the load

balancers through seeding the cloud at every point of service

end point and then awaiting for the response and validating the

actual results against the expected results.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

178
All Rights Reserved © 2016 IJARTET

if an endpoint fails out the test strategy can be changed by

referring to the next available service end point without

sacrificing the intermediate test results arrived so far at. This

being the advantage of cloud environment over the

conventional distributed environment is that during testing a

business case.

The test environment need to take the alternate course of

action upon detecting the tip of failure and need not wait for

the complete failure to happen before declaring the test case

as failure. The test environment must also be continuously

learning from its mistakes and able to apply the learning

towards the reduction of the testing time. Also, in real world

situations the test service cannot take on the complete

production bandwidth for testing, and also testing the

production environment needs to be quick and resource

conscious.

2. CHOOSING THE BEST COVERAGE

PATH

All the test cases regression testing in the pre-production

environment boils down to a NP-Hard problem which

involves finding the least-cost cyclic route through all nodes

of a weighted graph.

The first step of the problem is to apply ACO across

computing the best order of traversal from the starting test

case so that the maximum coverage is obtained.

In this case, the test cases are not executed but are just

estimated for the best possible travel paths.

Dependency injection is defined as a design pattern evident in

object-oriented computer programming whose primary

purpose is to improve testability of the target system and thus

simplify the deployment of components in large software

systems.

Allowing the option to choose among multiple

implementations of a provided interface at runtime, or via

configuration files, which would be picked up at runtime is

the primary purpose of the dependency injection pattern. The

pattern is mostly useful in providing the fake or mock test

implementations of complex components when adopting the

process of testings. Unit testing of components in large

software systems is difficult, because components under test

often require the presence of a substantial amount of

infrastructure and set up in order to operate at all.

Dependency injection simplifies the process of bringing up a

working instance of an isolated component for testing.

Because components declare their dependencies, a test can

automatically bring up only those dependent components

required to perform testing.

More importantly, injectors can be configured to swap in

simplified "mock" implementations of dependent components

when testing -- the idea being that the component under test

can be tested in isolation as long as the substituted dependent

components implement the contract of the dependent interface

sufficiently to perform the unit test in question. Christo

Ananth et al. [12] proposed a secure hash message

authentication code. A secure hash message authentication

code to avoid certificate revocation list checking is proposed

for vehicular ad hoc networks (VANETs). The group

signature scheme is widely used in VANETs for secure

communication, the existing systems based on group signature

scheme provides verification delay in certificate revocation

list checking. In order to overcome this delay this paper uses a

Hash message authentication code (HMAC). It is used to

avoid time consuming CRL checking and it also ensures the

integrity of messages. The Hash message authentication code

and digital signature algorithm are used to make it more

secure . In this scheme the group private keys are distributed

by the roadside units (RSUs) and it also manages the vehicles

in a localized manner. Finally, cooperative message

authentication is used among entities, in which each vehicle

only needs to verify a small number of messages, thus greatly

alleviating the authentication burden.

The results clearly indicate the dependency injection having a

clear edge over the conventional testing method, with the

advantages of mocking out an endpoint operation with the

existing results of the service provided the service is stagnant

in maneuverability.

3. THE EXISTING SYSTEM

The current system is an ecommerce portal which sells all

sorts of digitized portfolio – like providing real time map

service, streaming out a live –in concert over the web upon

fulfillment of payment to selected users, selling other

ecommerce products like normal websites offer including

books, CD’s etc..,

We studied the existing system by laying out the

complete architecture of the system – The current system is

cloud enabled by providing various service endpoints at geo-

locations. All requests to the service reach the load balancer,

which actually decides the service point which is capable of

servicing the load based on the location of the request. The

subsequent requests are directly carried out directly by the

participating endpoint.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

179
All Rights Reserved © 2016 IJARTET

The endpoint intimates the load balancer about

success or failure of the operation on the

following occasions:

a. When the process is successfully completed,

releasing the DMA token it shared with the

client, granted by the load balancer.

b. When the process could not be completed,

encountering a catastrophic failure. The load

balancer senses the failure and takes the

alternate course of action by determining the

next service end point and contacting it from

the last point of failure. In this occasion, the

client is totally unaware of this switch made by

the load balancer and that is the advantage of

hosting over a cloud.

c. Over periodic intervals, the end point intimates

the load balancer about the progressing point

as a heart beat signal.

We simulated the behavior of the existing system after

concluding the architecture and documented the various

artifices that are needed to test the system. We choose the

streaming model to virtualizes, as it was unusually different

from the normal ecommerce business, which would pay way

for effective test case generation and corner case

identifications.

The Ecommerce cloud had 6 sources of generation across the

geographic locations, one hosted in North America, one in

Brazil, next 2 in France and Ireland. In APAC, it was hosted

in India and japan, featuring a complete geo-clustered cloud.

Each of these sources was supplied with fail-over support,

24/7 uninterrupted access and checking of vital information

over the dashboard which is accessible in various channels

like over web, smart phone light weight application and over

the access of remote desktop.

The load balancer was registered with the DNS (Domain

name server) over an IP address which would be known to

the callers

 The Testing Approach

Upon careful analysis of the system and analyzing the entire

serviceable endpoint and the environment, the testing

objectives were not to be myriad that the normal web testing

methods which could have been implemented using a load

tester software or the selenium.

The intention of the testing is below:

a. To cover the maximum coverage criteria

b. To attain (a) within the best available time

c. To use the limited set of resources as the

testing directly affects the enduser bandwidth

since we are testing on the production

environment.

4. EXISTING APPROACH

The story board technique was used in arriving at

the test cases and a complete suite contained of the

following test case:

a. A customer logs in to the system

b. Customer checks the various live-in concerts/ live

feed copyrighted movies available for the day

c. Customer chooses a concert and a sample of the

clipping is streamed to the customer from the site

for a stipulated duration.

d. Customer decides to go for the concert and

completes the payment processing formalities.

e. Customer is given a direct link to view the concert /

copyrighted movie for a particular duration for the

generated IP address.

The normal testing approach is not to test the QoS

parameters, but to effectively test this live scenario in the

production environment without stealing the devoted

bandwidth allocated to the real customers.

A total of 6 test cases was framed covering the

above mentioned scenario and was executed over 4 users

who were from India. The offset of the other users

wasn’t taken into account as we were measuring the test

execution times for Indian users only.

The user 2 was introduced to the system 10 seconds

after the other users have logged in to deal with dead-

lock starvation handling and the results to execute the

test cases are tabulated below:

Table: 1 Output Metrics of the Current System

(In Seconds)

 Tc1 Tc2 Tc3 Tc4 Tc

5

Tc6 Total

(mm:ss)

keerthi 11 34 14 443 3 8 08:55

Vivek* 12 21 23 1027** 3 9 20:04

Kn siva 17 22 8 385 2 9 07:38

User 4 14 28 44** 457 3 9 09:25

Total time: 20:04

* Started at 00:10

** Retip of the service end point to the LB

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 3, Special Issue 2, March 2016

A

Table 2: Code/ Statement Coverage

 Tc1 Tc2 Tc3 Tc4 Tc5

keerthi 100 90 - 100 -

Vivek 100 75 - 100 -

Kn siva 100 90 - 100 -

User 4 100 75 - 100 -

Tc3 and Tc5 were not put in for code coverage as

they had streaming and a direct link respectively, where there

was no code to cover.

While we ran the entire scenario 3 times, the results above are

for the iteration 2. The system retipped to the load balancer

twice – first time at 00:52, when all the four users were active

at executing Tc3 that the APAC cloud gave up when the user4

accessed the system, causing the delayed execution of Tc3 for

user 4, which is greater than average of 23+14+8 /3 = 15. The

retipping happened at 10th second after User4 had pipe

the machine at test case Tc3, causing another 30 seconds to

fetch from the next APAC server at Japan.

The second retipping happened at around 01:54

when the Tc4 was executing, which was to provide a sample

clip of the streaming, which collapsed the entire end point

from recovery and brought in the fail-over protection node

end point to action. Meanwhile , the load balancer detected

the heart beat was missing from the end point and it routed the

request to the next serviceable endpoint. When the

point was restored back by the failover node cluster, the heart

beat had resumed and the load balancer again started

streaming from the same end point which caused the failure.

The end user experience was the streaming was continuous

with good QoS, but with 3 times resuming the same clips as a

result of which the total execution time creped up above 20

minutes, featuring the segment highest.

5. PROBLEMS IN THE EXISTING

APPROACH

Though the current approach is versatile in terms of

completeness of the system, it would be skeptical to deal with

the current approach in terms of execution times when it

comes to deal with scalability. A few of the drawbacks are as

listed below:

A. The test case execution engine always relies on load

balancer to post the request and get the

 ISSN

 Available online at
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

March 2016

All Rights Reserved © 2016 IJARTET

Table 2: Code/ Statement Coverage

Tc6

100

100

100

100

Tc3 and Tc5 were not put in for code coverage as

had streaming and a direct link respectively, where there

While we ran the entire scenario 3 times, the results above are

for the iteration 2. The system retipped to the load balancer

users were active

at executing Tc3 that the APAC cloud gave up when the user4

accessed the system, causing the delayed execution of Tc3 for

user 4, which is greater than average of 23+14+8 /3 = 15. The

second after User4 had pipelined to

the machine at test case Tc3, causing another 30 seconds to

The second retipping happened at around 01:54

when the Tc4 was executing, which was to provide a sample

he entire end point

over protection node

end point to action. Meanwhile , the load balancer detected

the heart beat was missing from the end point and it routed the

request to the next serviceable endpoint. When the service end

point was restored back by the failover node cluster, the heart

beat had resumed and the load balancer again started

streaming from the same end point which caused the failure.

The end user experience was the streaming was continuous

QoS, but with 3 times resuming the same clips as a

result of which the total execution time creped up above 20

PROBLEMS IN THE EXISTING

Though the current approach is versatile in terms of

of the system, it would be skeptical to deal with

the current approach in terms of execution times when it

comes to deal with scalability. A few of the drawbacks are as

The test case execution engine always relies on load

t the request and get the response.

Those this may sound fairly simple, on occasions

when the retipping happens, the execution engine

gets no clue and had to wait on the load balancer to

complete the response.

B. On the systems where the test execution

to time, it is not possible to tune the system to

attribute to the complete coverage. For Example, the

tests cannot be flexed if a definite time interval is

given for execution.

C. There is no option to bye-pass the scenario and

continue the testing. For e..g.: if implementation for

Tc4 is kaput, the load balancer has no alternative

course of action than to return a failure to the caller,

thus not proceeding with the testing. Tc4 is a sample

renderer and most users may opt to bye

continue their purchase for the live

6. THE PROPOSED SOLUTION

The following metrics are derived and are used for

computations.

The idea is to analyze the records of the existing test runs and

compute the decision of introducing a dependency

container called “Mock”, if the scenario reaches any of the

below conditions:

a. The Bug Contribution Ratio is less than the Average

Contribution Ratio

b. The time for execution of the test

than the average time of execution.

c. The provided net test execution time is less than the

sum of individual test case execution

7. STEP 1: DETERMINE THE

OPTIMAL PATH BY SIMULATED

ANNEALING

The observation of a metal getting cooled down is the
inspiration of this original algorithm.

 ISSN 2394-3777 (Print)
ISSN 2394-3785 (Online)
online at www.ijartet.com
(IJARTET)

180

Those this may sound fairly simple, on occasions

when the retipping happens, the execution engine

gets no clue and had to wait on the load balancer to

On the systems where the test execution is limited

to time, it is not possible to tune the system to

attribute to the complete coverage. For Example, the

tests cannot be flexed if a definite time interval is

pass the scenario and

sting. For e..g.: if implementation for

Tc4 is kaput, the load balancer has no alternative

course of action than to return a failure to the caller,

thus not proceeding with the testing. Tc4 is a sample

renderer and most users may opt to bye-pass it and

tinue their purchase for the live-in concert.

SOLUTION

The following metrics are derived and are used for

The idea is to analyze the records of the existing test runs and

compute the decision of introducing a dependency injection

container called “Mock”, if the scenario reaches any of the

The Bug Contribution Ratio is less than the Average

The time for execution of the test-case is greater

execution.

provided net test execution time is less than the

sum of individual test case execution times.

STEP 1: DETERMINE THE

OPTIMAL PATH BY SIMULATED

The observation of a metal getting cooled down is the

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

181
All Rights Reserved © 2016 IJARTET

From Wikipedia, The name and inspiration

come from annealing in metallurgy, a technique

involving heating and controlled cooling of a material to

increase the size of its crystals and reduce their defects. The

heat causes the atoms to become unstuck from their initial

positions (a local minimum of the internal energy) and wander

randomly through states of higher energy; the slow cooling

gives them more chances of finding configurations with lower

internal energy than the initial one.

Further Quoted, “By analogy with this physical process, each

step of the SA algorithm attempts to replace the current

solution by a random solution (chosen according to a

candidate distribution, often constructed to sample from

solutions near the current solution). The new solution may

then be accepted with a probability that depends both on the

difference between the corresponding function values and also

on a global parameter T (called the temperature), that is

gradually decreased during the process. The dependency is

such that the choice between the previous and current solution

is almost random when T is large, but increasingly selects the

better or "downhill" solution (for a minimization problem) as

T goes to zero. The allowance for "uphill" moves potentially

saves the method from becoming stuck at local optima—

which are the bane of greedier methods.”

The method was independently described by Scott

Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi in

1983,[11] and by Vlado Černý in 1985.The method is an

adaptation of the Metropolis-Hastings algorithm, a Monte

Carlo method to generate sample states of a thermodynamic

system, invented by M.N. Rosenbluth in a paper by N.

Metropolis et al. in 1953.[13]

The original algorithm is as below:

Fig 2 Simulated Annealing – Pseudocode

The algorithm provides the best path coverage of testing for

which dependency injection is to be applied to meet the test

objectives

STEP 2 INJECT DYNAMICALLY THE

NEEDED DEPENDENCIES

The idea of Dependency Injection, originally coined

by Martin Fowler in 2004, states that: “Do not instantiate

the dependencies explicitly in your class. Instead,

declaratively express dependencies in your class

definition. Use the test engine to obtain valid instances of

your object's dependencies and pass them to your object

during the object's creation and/or

initialization”.

Fig 3 –Dependency Injection Architecture on Test Bed

In our case of distributed cloud, the test engine is

the actual Builder which creates the Class-A, which

involves a real object, i.e., testing the load balancer. The

test engine then creates a service-A which has the similar

properties of class-A but whose implementation is

mocked up as it has injected the dependency into it upon

reading the public interface of Class-A. The subsequent

requests to the test engine are decided based on the

available time whether to use the direct implementation

or proceed with the mock implementation.

The test engine also partially switches

from real object to mock object if it realizes the current

run time of a particular test case has gone above the

average run time and its BCR is less than ACR.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 3, Special Issue 2, March 2016

182
All Rights Reserved © 2016 IJARTET

Table:3 Proposed Algorithm Psedo-Code

The proposed implementation is made on the simulated results

of the existing system and the actual results are tabulated as

below:

Table: 3 Output Metrics of the Current System

(In Seconds)

The second user is not similarly started 00:10

seconds as in the existing system testing, but instead is started

at 09:05 minutes as the first user has finished testing, which

constitutes the “Dry-Run” phase of the system. When Tc4 is

evaluated, it constitutes above the average time and hence the

mock object is evaluated instead of the real object thereby

concurring only 45 seconds for the direct playback time to

elapse, improving the system.

For the second and subsequent iterations, all the

other users programmatically start at the same time. When the

TC4 is evaluated, due to the load, the server had a retip

causing the heart beat signal to fail, the test engine senses this

immediately and provides a mock response, which yields http

status code 200, and response same as the previous iteration

testing, which informs the client application to proceed further

with the tests.

If the test engine is configured for 100% coverage, then it

behaves like the existing system and no mock is switched over

in case of tipping.

9. CONCLUSION

The concept of Dynamic injection is so powerful that when

combined with Artificial intelligence techniques for

computing testing strategies with an option to include

Decision Sub system, it performs excellently to reduce the test

execution time and not compromising on test run quality.

The implementation is also subjective to catch the bugs till the

point mock instance takes over so that early bugs in the

system can be easily detected in the production environment

without consuming enough of bandwidth.

10. REFERENCES
[1] Armando Roggio Ecommerce Know-How: Cloud

Computing in the Ecommerce Forecast in Practical-

Ecommerce, April 2009

[2] Atul Jain Impact of Cloud Service Models on

eCommerce, HCL Blogs, 2010

[3]D.Chays,Y.Deng,P.Frankl,S.Dan,F.Vokolos,and

E.Weyuker. An agenda for testing relational database

applications.SoftwareTesting,Verification and Reliability,1

4:17-44, Mar 2004.

[4]Y.Deng,P.Frankl,andJ.Wang. Testing of web database

applications.In Workshop on Testing, Analysis and

Verification of WebServices, July2004.

[5]S.Elbaum, G.Rothermel, S.Karre, and M.Fisher.Leveraging

user session data to support web-application testing. IEEE

Transactions on Software Engineering, May 2005.

[6]J.A.JonesandM.J.Harrold. Test suite reduction and

prioritization for modified condition/decision coverage. IEEE

TransactionsonSoftwareEngineering,29(3),March2003.

[7]E.Kirda,M.Jazayeri,C.Kerer,and M.Schranz. Experiences

in engineering flexible webservice. IEEE MultiMedia,

8(1):58–65,2001

[8]http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shu

ffle

[9] Edwards, W. and Barron, F.H. "SMARTS and

SMARTER: Improved Simple Methods for Multiattribute

Utility Measurement", Organizational Behavior and Human

Decision Processes, 60, (1994), pp. 306–25.

[10] http://www.martinfowler.com/articles/injection.html

[11] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. (1983).

"Optimization by Simulated Annealing". Science 220 (4598):

671–680.

 [12] Christo Ananth, M.Danya Priyadharshini, “A Secure Hash

 Message Authentication Code to avoid Certificate Revocation

 list Checking in Vehicular Adhoc networks”, International

 Journal of Applied Engineering Research (IJAER), Volume 10,

Special Issue 2, 2015,(1250-1254)

[13] Metropolis, Nicholas; Rosenbluth, Arianna W.;

Rosenbluth, Marshall N.; Teller, Augusta H.; Teller, Edward

(1953). "Equation of State Calculations by Fast Computing

Machines". The Journal of Chemical Physics 21 (6): 1087.

doi:10.1063/1.169911

DynamicMock dataAccess = new

DynamicMock(typeof(ICloudDataAccess));

Ecom mockecom = new Ecom

((ICloudDataAccess)dataAccess.MockInstance);

Ecom realecom= new Ecom ();

While(test suite complete or execution time elapsed==

false)

{ if(bug found==true) { report and return to next case; }

If(BCR < ACR && test is insignificant)

{

Realecom=Mockecom.createInstance();

Exit();

}

realEcom.doOperations();

 Tc1 Tc2 Tc3 Tc4 Tc

5

Tc6 Total

(mm:ss)

keerthi 11 34 14 443 3 8 08:55

Vivek 12 21 23 45 3 9 01:53

User3 17 22 8 45 2 9 01:41

User 4 14 28 2* 45 3 9 01:41

Total time: 10:48

