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Abstract—This article proposes several improvements 
to an adaptive fingerprint enhancement method that is 
based on contextual filtering. The term adaptive implies 
that parameters of the method are automatically adjusted 
based on the input fingerprint image. Five processing 
blocks comprise the adaptive fingerprint enhancement 
method, where four of these blocks are updated in our 
proposed system. Hence, the proposed overall system is 
novel. The four updated processing blocks are; pre- 
processing, global analysis, local analysis and matched 
filtering. In the pre-processing and local analysis blocks, a 
nonlinear dynamic range adjustment method is used. In 
the global analysis and matched filtering blocks, different 
forms of order statistical filters are applied. These 
processing blocks yield an improved and new adaptive 
fingerprint image processing method. The performance of 
the updated processing blocks is presented in the 
evaluation part of this paper. The algorithm is evaluated 
towards the NIST developed NBIS software for  
fingerprint recognition on FVC databases. 

Index Terms—Image processing, successive mean 
quantization transform, directional filtering, fourier 

transform, spectral fea-ture estimation. 

 

I. INTRODUCTION 

Until the 1960’s, fingerprint matching was used solely for 

forensic purposes and human experts performed the  

fingerprint analysis manually. Research has been conducted 

the last 50 years to develop automatic  fingerprint 

identification systems (AFIS) (see, e.g., [1] for a survey on 

AFIS methods). However, fingerprint matching, especially 

when the fingerprint images have low quality or when the 

matching is performed cross-sensors, is still an open research 

question. The main problem in automatic fingerprint 

identification is to acquire matching reliable features from 

fingerprint images with poor quality. 

Contextual filtering is a popular technique for fingerprint 

enhancement, where topological filter features are aligned  

with the local orientation and frequency of the ridges in the 

fingerprint image. The first method utilizing contextual filters 

to enhance fingerprint images performed both the filter design 

and the filtering in the spatial domain. The method used a 

main filter having a horizontally directed pattern designed 

based on four manually identified parameters for each finger- 

print image. Additional directions were created by rotating the 

main horizontal filter while the filter size remained constant. 

 
Other fingerprint enhancement methods employ directional 

Gabor or Butterworth bandpass filters where the filtering is 

performed in the frequency domain.Second direc-tional 

derivatives for filter design, and a method for selecting a 

suitable size of the local area, were presented in Recently, a 

method based on curved Gabor filters that locally adapts the 

filter shape to the curvature and direction of the flow of the 

fingerprint ridges was introduced in [7]. This new type of 

Gabor filter design, shows a potential in fingerprint image 

enhancement in comparison to classical Gabor filter methods. 

However the computational load is immense which inhibits its 

use in practical applications. 

Another method that stands out from the classical direc- 

tional filter design approaches was proposed. Christo Ananth 

et al. [8] proposed a work, in this work, a framework of 

feature distribution scheme is proposed for object matching. 

In this approach, information is distributed in such a way that 

each individual node maintains only a small amount of 

information about the objects seen by the network. 

Nevertheless, this amount is sufficient to efficiently route 

queries through the network without any degradation of the 

matching performance. Digital image processing approaches 

have been investigated to reconstruct a high resolution image 

from aliased low resolution images. The accurate registrations 

between low resolution images are very important to the 

reconstruction of a high resolution image. The proposed 

feature distribution scheme results in far lower network traffic 

load. To achieve the maximum performance as with the full 

distribution of feature vectors, a set of requirements regarding 

abstraction, storage space, similarity metric and convergence 

has been proposed to implement this work in C++ and 

QT.Instead of requiring tuned parameters for each fingerprint 

image, the magnitude spectrum of each local area of the 

fingerprint  image was directly used to filter the same local 

area in the frequency domain. The rationale behind this 

method is that  the local magnitude spectrum carries 

properties similar to a matched filter, and by using the 

magnitude spectrum directly as a filter, dominant components 

related to ridges are amplified. It is noted that this approach 

provides a noise gain as well, which makes it less useful in 

practical situations. 

The negative influence on fingerprint recognition system 

per-formance for individuals of different ages was 

demonstrated in [9] and the matching results of Db3 in 

FVC2000 [10]. To compensate for varying fingerprint image 

characteristics and to achieve an optimal system performance, 

key parameters of most existing methods, e.g., the size of the 

local area, need to be tuned manually for every fingerprint 

image. This manual tuning for each image is tedious and 

costly and automatic systems are therefore desirable. 
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Fig. 1. Fingerprint sensor images of the little finger of a 30 years old man (a), and the little finger of a 5 years old boy (b), 
illustrates the varying fingerprint image quality. 

 
 
 
 

 

(c) (d) 

Fig. 2. A sinusoidal signal (a) and its corresponding  magnitude spectrum (b). A local area inside a fingerprint image (c) and its 
corresponding magnitude spectrum (d). The spatial and spectral similarities between the sinusoidal signal and the fingerprint are 
used as a fundament in the proposed method 

 
 

This article extends an existing adaptive fingerprint en- hancement system by incorporating new processing blocks to construct an 

improved novel system. The proposed fingerprint enhancement  method  is based  on spatial  contextual filtering using matched 

directional filters. A non-linear dynamic range adjustment method is used as a pre-processing stage in this paper. An outlier 

suppression using a median filter  is proposed in the global spectral analysis to further improve the estimation of the fingerprint’s 

fundamental frequency. The median filter suppresses noise and it has also a grouping effect which aids the frequency estimation. 

The present method furthermore proposes to use local dynamic range adjustment  to improve local spectral features estima-tion, 

and where order statistical filters are used to smooth the spectral features yielding a robust algorithm behavior. The evaluation 

(a) (b)

(a) (b) 



 
focuses on the complete assessment of the proposed method’s performance using the NBIS software for fingerprint recognition 

developed by NIST [13] on a three FVC databases [14], [15], [16]. 

 

 
The paper is outlined as follows. The proposed method is introduced in section II. An evaluation is conducted in section 

III. A discussion is provided in section IV, and a summary with conclusions is given in section V. 

 
A. Abbreviations 

Frequently occurring abbreviations in this paper are pre- sented here: 

AAC Area Above Curve 

DET Detection Error Tradeoff 

EER Equal Error Rates 

FMR False Match Rate FNMR False Non Match Rate 

FMR100 FNMR when FMR is 1.0% FMR1000 FNMR when FMR is 0.1% 

ZeroFMR FNMR when FMR is 0.0% 
 

FVC Fingerprint Verification Contest NIST National Institute of Standards and 

Technology 

NBIS NIST Biometric Image Software 

SMQT Successive Mean Quantization Transform 
 

II. PROPOSED METHOD 

A spatial sinusoidal signal and its corresponding magnitude spectrum is illustrated together with a local fingerprint image 

patch and its corresponding magnitude spectrum in Fig. 2.  This example is used to state the following observations: 

1) Local fingerprint image patches are spatially and spec- trally similar to a sinusoidal signal, where the dominant peaks in 

the magnitude spectrums of the two signals are co-located. 

2) The location of the dominant peak in the magnitude spectrum of a local image area carries information about the local 

orientation and frequency of the fingerprint pattern. 

3) The magnitude of the dominant spectral peak acts as an indicator of the quality of the fingerprint in that particular local 

area [11] (see Fig. 10). 

These observations act as a fundament to the method in this paper where the location and magnitude of the dominant local 

spectral peak are utilized for designing matched directional filters [11], [12]. The contextual filtering and a background 

segmentation are then performed in the spatial   domain based 3
 

on the extracted local features. 
 

Fig. 3. Processing blocks of the proposed method, where blocks in gray notate 
updated processing blocks. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig. 4. Fingerprint image (a), and corresponding SMQT 
enhanced image (b). Both images have eight bit dynamic 
range. 

Third, based on the estimated fundamental frequency from 

the global analysis, a local adaptive analysis (see section II-C) 

adjusts the fundamental frequency to match the local image 

area. The local analysis proposes the use of a local dynamic 

range adjustment method to further improve spectral features 

estimation. Fourth, the matched filtering is based on the 

spectral features estimated in the local analysis, where an 

additional order-statistical filtering of the spectral features is 

introduced to increase the method’s resilience towards noise 

(see section II-D). Finally, an image segmentation separates 

fingerprint data from the background (see section II-E). This, 

taken all together, comprises the proposed new fingerprint 

enhancement system that automatically tunes its parameters 

according to each individual fingerprint image. 

 

A. Pre-processing 

Let I(n1, n2) represent a fingerprint image of size N1 ×N2, 

where n1 ∈	[0, N1 − 1] and n2 ∈	[0, N2 − 1] denote horizontal 

and   vertical   coordinates,   respectively.   Without   loss    of 

generality, each element of I(n1, n2) is assumed to be quantized 

in 256 gray-scale levels, i.e., the dynamic range of the image is 

eight bits. However, the fingerprint image may not use the full 

dynamic range in a practical situation and  this 



 
may degrade system performance. 

 
Large regional contrast variation is quite typical for low 

quality fingerprint images which require a high dynamic range 

usage in order to not embed fingerprint ridges in the back- 

ground. Hence, the SMQT-enhancement is performed using 

eight bits so as to avoid the risk of obstructing important data 

in heavily noisy fingerprint images. 

 
In addition, the eight-bit SMQT used in the pre-processing 

requires only a fractional amount of processing as opposed to 

other parts of the proposed method (see Table II). Optimizing 

the processing load on this part of the algorithm yields 

therefore only an insignificant reduction of processing power 

but increases the risk of reduced performance. 

 

(a) (b) 

Fig. 5. Fingerprint image (a) and corresponding magnitude 
spectrum (b). The circular structure around the origin in the 
fingerprint magnitude spectrum stems from the characteristics 
of the periodic fingerprint pattern. 

 

 
Mean Quantization Transform (SMQT) [17], [18] is used as a 

dynamic range adjustment in this paper (see an example in  
Fig. 4). The SMQT can be viewed as a binary tree build of a 

simple Mean Quantization Units (MQU) where each level 

performs an automated break down of the information. Hence, 
with increasing number of levels the more detailed underlying 

information in the image is revealed. This is equivalent to a 

nonlinear histogram stretch while still preserving basic 
histogram shape. This nonlinear property of SMQT yields a 

balanced image enhancement. Thus, the SMQT adjusts the 
dynamic range adaptively and nonlinearly and it is configured 

by only one design parameter B. The parameter B corresponds 

to the number of levels in the binary tree and is equal to the 
number of bits used to represent the SMQT processed image. 

The nonlinear SMQT-operation is denoted as SMQTB { }.  

The parameter is set to B = 8 in the pre-processing stage of 
this paper, which means that the dynamic range adjustment 

provided by the SMQT-operation does not alter the bit-depth 
of the enhanced fingerprint image. The pre-processed eight-bit 
SMQT image is denoted as X(n1, n2) = SMQT8 {I(n1, n2)}, 
where the notation X means that this enhanced image acts as 
input to further processing. 

Large regional contrast variation is quite typical for low 

quality fingerprint images which require a high dynamic range 

usage in order to not embed fingerprint ridges in the back- 

ground. Hence, the SMQT-enhancement is performed using 

eight bits so as to avoid the risk of obstructing important data 

in heavily noisy fingerprint images. In addition, the eight-bit 

SMQT used in the pre-processing requires only a fractional 

amount of processing as opposed to other parts of the 

proposed method (see Table II). Optimizing the processing 

load on this part of the algorithm yields therefore only an 

insignificant reduction of processing power but increases the 

risk of reduced performance. 

The employment of the SMQT algorithm for fingerprint 

enhancement with B = 8 has been previously proposed in [19]. 

While the idea is novel and is equivalent to the preprocessing 

step in this paper, it lacks an evaluation on fingerprint image 

databases with relevant metrics such as EER. Hence, it does 

not provide any major contribution in relation to [18] which 

proposes SMQT for arbitrary grayscale image enhancement. 
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(a) (b) 

Fig. 7. Fingerprint magnitude spectrum with an overlayed 
circle whose radius corresponds to the estimated fundamental 
frequency ωf (a) and the corresponding radial frequency 
histogram As(ω) whose peak value is located at the 
fundamental frequency (b). 

 

(see, e.g., [23]) of the pre-processed and median filtered input 

image Z(n1, n2), where, ω1 ∈	 [−π, π) and ω2 ∈	[−π, π) denote 
normalized  frequency. The spectral image  is repre-sented   in 
polar form for clarity in the presentation, i.e., F (ω , ω ) ≡ F 

1 2 

 
 

 
Fig. 6. Processing blocks of the global analysis, where blocks 
in gray notate novel processing blocks. 

(ω, θ), related through the following change of variables ω1 = 
ω ·  cos θ and ω2 = ω ·  sin θ, where ω is the normalized radial 
frequency and θ denotes the polar angle. 

A radial frequency histogram A(ω) is obtained by integrat- 
ing the magnitude spectrum |F (ω, θ)| along the polar angle θ, 
according to 

 

B. Global Analysis 

The magnitude spectrum of a fingerprint image typically 

contains a circular structure around the origin, see the example 

 

1 

A(ω)  =   2π 

1 

 
2π 

 

0 |F (ω, θ)| dθ 
π 

in Fig. 5. The circular structure stems from the fact that a 

fingerprint has nearly the same spatial frequency throughout 

the image but varying local orientation. The circular structure 

in the magnitude spectrum has been used for estimating 

fingerprint quality in [20], [21]. In a recent study, the circular 

spectral structure was exploited to detect the presence of a 

fingerprint pattern in the image [22]. This paper employs that 

the radially dominant component in the circular structure 

corresponds to the fundamental frequency of the fingerprint 

image. This fundamental frequency is inversely proportional  

to a fundamental window size which is used as a base window 

size in our method. 

The fundamental fingerprint frequency is estimated in the 

global analysis according to the following steps (see a block 

schema in Fig. 6): 

1) A new processing stage suppresses data outliers by a 
median filter. 

2) A radial frequency histogram is computed from the 
magnitude spectrum of the median filtered image. 

3) The   fundamental   frequency   of   the   fingerprint     is 

 

=   π 0  |F (ω, θ)| dθ, (1) 
 

where, due to the complex conjugate symmetry of F (ω, θ), it 
is sufficient to integrate only over one half-plane in Eq. 1. 

3) Step 3 - Fundamental frequency estimation: The radial 
frequency histogram may contain impulsive noise due to  
noisy input signals. This paper therefore proposes employing  
a smoothing filter (smoothing along the ω-variable in A(ω)) to 
suppress the impulsive noise, where the smoothed radial    fre- 

quency histogram is denoted as AS (ω). The radial frequency 
at the point where the radial frequency histogram attains its 

largest value corresponds to the fundamental frequency ωf of 
the fingerprint image, i.e., 

 

ωf = arg  max  AS (ω). (2) 

ω∈[ωmin,π] 

The lower boundary ωmin is introduced in order to avoid 
erroneous peak values related to low frequency noise. Em- 
pirical analysis shows that there are at least 10 full periods of 
the fingerprint pattern in an image. Hence, the lower search 
boundary is computed as 

assumed located at the point where the radial frequency 

his-togram   attains   its   maximal   value.   The    radial 
ω 

min 
= 2 ·  π ·  10  

max (N  , N ) 

 
. (3) 

frequency histogram is herein proposed to  be smoothed 1 2 
in order to reduce the impact of spurious noise. 

1) Step 1 - Data-outlier suppression: This paper proposes 
to apply a 3 × 3 median filter to the SMQT enhanced 
image in 
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Fig. 8. Processing blocks of the local adaptive analysis, where 
blocks in gray notate novel processing blocks. 

 
 

The fundamental frequency ωf , computed in Eq. 2, is in- 
versely proportional to a fundamental area size Lf , according 
to 

Lf   = 2π   . (4) 

ωf 

 

The major advantage of the method proposed in this paper is 

that it is adaptive towards sensor and fingerprint variability. 

The adaptive behavior is due to that the estimated  

fundamental area size acts as a base window size in all stages 

of the method. Hence, no parameter tuning is required to use 

the proposed method for different sensors or applications. 

 
C. Local Adaptive Analysis 

The purpose of the local analysis is to adaptively estimate 

local spectral features corresponding to fingerprint ridge fre- 

quency and orientation. Most parts of a fingerprint image 

containing ridges and valleys have, on a local scale, simi- 

larities to a sinusoidal signal in noise. Hence, they have a 

magnitude spectrum with two distinct spectral peaks located  

at the signal’s dominant spatial frequency, and oriented in 

alignment with the spatial signal, see the example in Fig. 2. In 

addition,  the  magnitude  of  the  dominant  spectral  peak   in 

Fig. 9. Example of local area size M × M , and corresponding 

sizes after growth M+ × M+ and shrinkage M− × M−. 

 
 

Due to the local variability of a fingerprint, for example in 
regions around deltas, cores and minutiae where the  
fingerprint ridges are curved or when the local  ridge 
frequency deviates from the estimated fundamental frequency 

ωf , two additional local area sizes are introduced. A larger 

local area size, denoted as M+ × M+, where M+ = (1 + η) ·  M , 

and a smaller local area size, denoted as M− × M−, where M− = 

(1 − η) ·  M , are considered here. Note that both M+ and M−  

are forced to be odd-valued integers. The design parameter   η 

∈	[0, 1] defines the change, i.e., growth and shrinkage, of the 

larger and smaller area sizes in relation to the nominal local 

area size. It is stressed that all parameters used herein are 

functions of the automatically estimated fundamental area size 

Lf . Hence, the size of the local area, including the larger and 

smaller area sizes, automatically adapt to fingerprint and 

sensor variability. The approach to use three different sizes of 

the local area is illustrated in Fig. 9. Similar methods that 

incorporate multi-size windows or fingerprint image scaling 

are proposed in [26], [27], [28]. However, these methods 

adapt on a global scale, and this stands in contrast to the 

proposed method that adapts to each fingerprint on a local 

scale and thereby matches local variability better. 

relation to surrounding spectral peaks indicates the strength of  
the dominant signal. These features are utilized in the local 
analysis. A similar method based on local spectral analysis   is 

 

described in [24], [25]. However, according to the 

evaluation in section III, there are distinct performance 

improvements in the proposed method. 
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2) Step 2 - Data transformation, windowing, zero padding: 

The local analysis uses a spatial window to suppress spectral 

side-lobes. The use of a window may yield feature estimation 

errors if a fingerprint valley is in the center of the local area 

since the window suppresses adjacent ridges. Hence, the 

dominant peak will be suppressed in the frequency spectrum  

as well. A simple test triggers a data-transformation that 
¯  

circumvents this problem. An arithmetic mean, denoted as H, 
is estimated for data-values in and around the center of each 
local area according to 

 

¯    1  
H = (2K + 1)

2
 

K K 
 

 
k    =  K k =  K 

1  − 2  − 

 

H(k1, k2) (7) 

where the parameter K = _(M − 1)/4_ controls the number   of 
center points included in the estimate. The test and the 
following data transformation are conducted as follows 

 

(c) (d) 

Fig. 10. The quality map Q(n1, n2) obtained by using a local 

¯  
If H > 

2 : 
B−1 

SMQT with B = 2 (a) and B = 8 (b). A close-up of quality 
map in (a) and (b) are 
shown in (c) and (d) respectively. 

 
where 2B

 

B 
H(m1, m2)  ←  2   − 1 − H(m1, m2), (8) 

− 1 denotes the maximal signal value for an   image 

The two quality maps are close to identical for both cases. 
 
 

3) A local magnitude spectrum is computed and the dom- 

inant spectral peak is located from which the local 

features frequency, orientation and magnitude are esti- 

mated. 

4) A test if the local area needs to be reexamined, using a 

larger and a smaller size of the local area, is conducted. 

Steps 1-3 of the local analysis are repeated using these 

alternative area sizes if a reexamination is required. 

1) Step 1 - Local dynamic range adjustment: Low quality 
fingerprint images usually consist of regions with a poor con- 
trast between signal (i.e., fingerprint pattern), and background. 
This poor contrast may remain in some local areas even after 
global contrast enhancement. Local image areas having a poor 
contrast yield unsatisfactory local features extraction due to 
the low signal to noise ratio. A local contrast enhancement is 
therefore proposed herein by applying the SMQT dynamic 
range adjustment method on each local image area according 
to H(m1, m2) = SMQT2 {J(m1, m2)}. It is noted that, the local 
analysis  is  based  on  local  areas  J(m1,  m2)  of  the  globally 

having B bits of dynamic range, where B = 2 due to the two- 
bit SMQT representation. The proposed test and 
transformation imply that, the sample values in the local area 
are inverted if the mean value is above half of the maximal 
dynamic range, which corresponds to having a fingerprint 
valley in the center of the local image area. 

In order to improve local features extraction, the frequency 

spectrum has to have an adequate resolution. Therefore, each 

transformed local area is zero padded to the next higher power 

of two since an FFT is used to frequency-transform the image. 

To reduce the magnitude of spectral side-lobes, a two- 

dimensional Hamming window is applied to the local area, 

smoothing the transition between data and the zero-padding. 

It is noted that these steps are carried out for each local  
area, but where the local area indices n1 and n2 are omitted for 
clarity in the presentation. 

3) Step 3 - Spectral features estimation: A local magnitude 
spectrum G(ω1, ω2) = |F {H(m1, m2)}| is obtained by com- 
puting the modulus of the two-dimensional Fourier transform 
of the transformed, zero-padded and windowed local area 
H(m1, m2). Spectral features include the magnitude PD and 
frequencies ωD,1, ωD,2 of the dominant spectral peak and the 
magnitude of the second largest spectral peak PD2 . 

A  quality  measure  is  computed  based  on  the   extracted 

SMQT-processed X(n1, n2) image. 

Through empirical analysis, it has been found that the 
SMQT used for local dynamic range adjustment only requires 

features. The measure  P D  quantifies the significance of the 
largest peak in relation to Pmax, the maximum magnitude 
possible including the bias of the window. The measure PD2

 

PD 
a two-bit representation, i.e., B = 2, without degrading the 
local spectral features estimation. This stands out from the 
eight bits used in the dynamic range adjustment in the pre- 
processing stage (see section II-A). Quality maps, computed 
according to section II-C4, where local areas are enhanced by 
a two-bit SMQT (B = 2) and an eight-bit SMQT (B = 8) are 
illustrated in Fig. 10. The quality maps for the two dynamic 
ranges are close to identical, however, where the lower value 
B = 2 requires less computational resources and is therefore 
preferred in a practical implementation. 

assesses the relationship between the two largest spectral 
peaks, PD and PD2 , found in the magnitude spectrum of each 
local area. If the local area contains a dominant narrowband. 

 

 
It is noted that each local area comprises a set of features, 
hence, the entire fingerprint image is represented, after the 
local analysis, by the feature maps PD (n1, n2), ωD,1(n1, n2), 

ωD,2(n1, n2) PD2 (n1, n2), and Q(n1, n2). 
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4) Step 4 - Local area reexamination test: Some local areas 
need to be analyzed using a different local area size than the 
fundamental area size due to the variability in some regions of 
a fingerprint. Regions where the fingerprint ridges are curved, 
such as near cores, deltas and minutiae points, or where the 
local ridge frequency deviate from the estimated fundamental 
frequency ωf , may yield inaccurate spectral features  
estimates. These regions are reexamined using two additional 
sizes of the local area. 
A reexamination of the local area is conducted if Q ≤ QT , 
where QT is a system design threshold. This means that steps 
1-3 of the local adaptive analysis are repeated using the larger 
and smaller area sizes M+ and M−, respectively. After the 
reexamination using the two new local area sizes is  
completed, similar quality scores Q+ and Q− are calculated 
from the features from each respective stage. The final  
spectral features are chosen based on which of the measures 
Q, Q+ and Q−  have the best quality (i.e., highest value). 

D. Matched Filtering 

A local area that contains a fingerprint image pattern is highly 
periodic and it therefore renders a strong dominant peak. The 
estimated local features ωD,1 and ωD,2 (from sec-tion II-C3) 
represent, respectively, the vertical and horizontal spatial 
frequencies of the local dominant spectral peak. 
The estimated frequencies ωD,1 and ωD,2 are occasionally 
highly varying, e.g., where local curvature or irregularities 
such as cores, deltas and minutiae points in the fingerprint are 
located. A smoothing of these estimated frequencies is thus 
performed to reduce the impact of this noise. The smoothing  
is conducted on the polar coordinates ωD ≡ ωD(n1, n2) and θD ≡ 
θD(n1, n2) instead of the Cartesian coordinates. 

 

III. EVALUATION 

The proposed fingerprint enhancement algorithm is acting 

as a pre-processing stage to the NIST fingerprint recognition 

system consisting of a minutiae extractor (MINDTCT) and a 

minutiae matcher (BOZORTH3). The evaluation assesses the 

performance of the method, when the novel parts of each 

processing block are active respectively inactive, in section 

III-A. This part of the evaluation shows the improved 

performance due to each updated processing block in the 

proposed method. A complete performance evaluation where 

the proposed method is benchmarked towards the NIST im- 

plementation is provided in section III-B. The evaluation of 

the proposed method is carried out using the 12 databases 

included in FVC2000 [14], FVC2002 [15] and FVC2004 [16]. 

The evaluation results are quantified using Equal Error Rates 

(EER), in percentage, calculated according to [10]. The area 

above the Receiver Operating Curve (ROC), also known as  

the Area Above Curve (AAC) [30], [31], is used to 

complement the EER measure. In real applications, fingerprint 

matching systems often operate far from the EER point by 

decreasing the False Match Rate (FMR) in order to assure a 

high level of security. However, decreasing the FMR will 

cause the False Non Match Rate (FNMR) to increase, i.e., a 

larger amount of true matches are rejected. It is therefore of 

interest to evaluate the FNMR when FMR is 1%, 0.1% and 

0%, evaluated as FMR100, FMR1000, and ZeroFMR [32]. 

The performance measures EER, AAC, FMR100, FMR1000 

and ZeroFMR, should be minimal and ideally zero. It is 

stressed that the proposed method is evaluated having  the 

same parameter values for all databases, i.e., there is no 

parameter tuning to improve the performance for a specific 

database. In particular, the method parameter values used in 

the evaluation are listed in Table I. These are design parameters 

that are independent of specific fingerprints and sensors. The 

parameters are, except for QT , combined with  the 

automatically estimated funda-mental area size Lf to adaptively 

steer the method. Hence, parameters such as the local area size 

or the order statistical filter size automatically adapt to 

fingerprint image variability. This adaptive behavior is 

identified as the main advantage of the present method. The 

design parameter QT  refers to a threshold of the quality map 

Q. Since Q ∈	[0, 2] for all fingerprints, the choice of QT is also 
independent of specific fingerprints and sensors. 

 
 

A. Effects of processing blocks 

The purpose with this evaluation is to examine the effect of 
each of the four updated processing blocks of the new 

TABLE II 
PROCESSING BLOCKS 1 TO 4 TOGGLED ON AND OFF, 

THE CORRESPONDING PERFORMANCE METRICS 
AND COMPUTATIONAL IMPACT. BLOCK 1 REFERS 
TO THE SMQT8 OF THE PRE-PROCESSING, BLOCK 2 

REFERS TO THE MEDIAN FILTERING IN THE  
GLOBAL ANALYSIS, BLOCK 3 REFERS TO THE  

SMQT2 OF THE LOCAL ANALYSIS, AND BLOCK 4 
REFERS TO THE ORDER STATISTICAL FILTER IN THE 

MATCHED FILTERING BLOCK. 

 
 Processing blocks Performance 

measure 
Computational 

impact 

Variant Block 1 Block 2 Block 3 Block 4 EER   AAC Instructions 
rel. to var. 16 

1 off off off off 4.9%   2.4% 65.15% 
2 off off off on 4.8%   2.4% 65.27% 
3 off off On off 2.7%   0.3% 99.82% 
4 off off On on 2.6%   0.4% 99.95% 
5 off on off off 4.8%   2.4% 65.15% 
6 off on off on 4.8%   2.5% 65.28% 
7 off on On off 2.8%   0.3% 99.83% 
8 off on On on 2.5%   0.4% 99.96% 
9 on off off off 2.6%   0.4% 65.19% 

10 on off off on 2.7%   0.3% 65.31% 
11 on off On off 2.6%   0.2% 99.87% 
12 on off On on 2.5%   0.2% 99.99% 
13 on on off off 2.6%   0.4% 65.20% 
14 on on off on 2.7%   0.3% 65.32% 
15 on on On off 2.6%   0.2% 99.87% 

16 on on On on 2.4% 0.2% 100.00% 

 
 

proposed enhancement system, see Fig. 3. The evaluation is 

performed on the smaller B-set containing 10 users with eight 

samples per user in each of the 12 databases of the FVC2000, 

FVC2002 and FVC2004 databases. 
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Fig. 11. Examples of the proposed fingerprint enhancement method. Top row: Original images, (from left) 46 2 FVC2004 db1a, 
82 1 FVC2004 db2a, 50 2 FVC2000 db2a, and 69 1 FVC2000 db1a. Middle row: Enhancement with the original method 
(variant 1). Bottom row: Enhancement with the proposed method (variant 16). 

 



 
 

in EER and AAC only if combined with either, or both, of 

block 1 and 3. This is attributed to the fact that blocks 2 and 4 

are intended to improve heavily degraded fingerprint images. 

For those images, the nonlinear blocks 2 and 4 provide a 

positive amplification of performance together with the 

nonlinear blocks 1 and 3. 

An illustration of the fingerprint enhancement with variant  

1 and variant 16 of the proposed method is given in Fig. 11. 

The most pronounced visual effect is that fingerprints 

processed with the new method preserve larger parts of the 

original fingerprint, parts which were excluded in the original 

method. Another observation is that scars in the  fingerprint 

are better removed (especially in the rightmost example), and 

this is attributed to a combination of the improved feature 

extraction and the added order statistical filtering of the 

matched filter design. 

 
B. Performance evaluation 

In order to be able to relate the results from this eval-uation 

with results from earlier research, the FVC protocol of 

fingerprint verification, involving 2800 genuine matchings  

and 4950 imposter matchings, is adopted [10]. Results for  the 

12 databases with, and without, the proposed fingerprint 

enhancement method are provided in Table III. The proposed 

method improves the EER results for the NIST fingerprint 

recognition system on all databases. The improvement is 

specifically pronounced in the databases FVC2000, FVC2002 

Db1a, Db3a and Db4a, and FVC2004 Db1a and Db2a, where 

the reduction in EER is between 12.5 % and up to 50 % in 

relation to the NIST method. The proposed method reduces 

the EER by as much as 50 % in the database FVC2000 Db3a, 

which, according to [10], is the most difficult of the four 

FVC2000 databases. 

In Table III, the AAC performance results show that the 

proposed method improves or provides the same AAC as the 

NIST method. The AAC is reduced in the databases 

FVC2000 Db1a, Db3a, Db4a, FVC2002 Db3a, Db4a, and 

FVC2004 Db1a, Db2a, Db4a by 24.3% to 66.7%. Note that, 

even if AAC in FVC2002 Db1a, Db2a, and FVC2004 Db3a 

is unchanged by the proposed method, the relative 

improvement in EER, FMR100 and FMR1000 is increased, 

especially in FVC2004 Db3a. It is further observed that, for 

databases where the EER is improved also show 

improvements in the AAC. 

The corresponding figures for FMR100 and FMR1000 

fol- lows the same improvement trend as for EER and AAC. 

The proposed method shows a significant performance 

improve- ment for all databases, where the FMR100 is 

reduced by up to 56.8% (in FVC2000 Db3a) and where 

FMR1000 is reduced  by up to 49.2% (in FVC2000 Db3a). 

ZeroFMR is improved  by 8.3 % up to 48.0 % in ten of the 

twelve databases. In two databases, FVC2000 Db1a and 

FVC2002 Db2a, the ZeroFMR is degraded by the proposed 

method in relation to NIST. To complement the data in 

Table III, so called Detection Error Tradeoff (DET) curves, 

which plots FMR against FNMR. 

The performance provided by the proposed method is put in 

relation to other published fingerprint image enhancement 

methods evaluated on FVC databases in a NIST-related man- 

ner. The method presented by Chikkerur et. al. [24] demon- 

strated 24.6% and 23.1% of relative improvement for EER  and 

FMR100, respectively, on the FVC2002 Db3a database in 

comparison to the NIST method. This should be contrasted to 

the proposed method (see Table III) which reduces EER by 

34.3% and FMR100 by 36.4% on the same database. The 

fingerprint enhancement method proposed by Fronthaler et. al. 

[27], [28] showed an improvement of EER compared to the 

methods by Hong et. al. [4] and Chikkerur et. al. [25] for the 

databases in FVC2004. The relative EER improvement 

compared to the NIST method on FVC2004 Db1a to Db4a 
are 17.2%, 13.7%, 19.3% and 4.1%, respectively. The corre- 
sponding relative EER improvement of the proposed method in 
relation to NIST is 29.9%, 45.4%, 6.1% and 7.0% for the same 
databases, i.e., our method shows an improvement for three of 
the four databases in FVC2004 in relation to [28]. A recently 
published method by Gottschlich [7] demonstrates an 
improvement of EER in comparison to [28] for the same 
databases. The different settings of curved Gabor filters in [7] 
exhibit relative EER improvement compared to the NIST 
method between 27.6% to 33.1% for    Db1a, 33.6% to 37.9% 
for Db2a, 17.7% to 22.6% for Db3a, and 11.0% to 17.8% for 
Db4a respectively. The combination of curved Gabor filters and 
oriented diffusion filtering yields relative EER improvement 
compared to the NIST method between 35.9%  to 38.6% for 
Db1a, 47.3% to 54.7% for Db2a, 32.3%  to 45.2% for Db3a, 
and 26.0% to 32.9% for Db4a respectively. The drawback of 
the method in [7] is its immense computational cost, estimated 
to be up to seven times more than the method proposed in this 
paper, which inhibits its practical usability in some 
applications. The estimation is based on the difference in 
number of instructions that are required to process one image. 
The number of instructions in our method is obtained by apply-
ing a reduced instruction set methodology. For the algorithm in 
[7], the specified hardware with processing time was used to 
approximate the number of instructions. In comparison to [7], 
the improvement of the proposed method for Db1a lies in 
between the performance of the curved Gabor filter method and 
NIST’s method,  and  above the method in [7] for Db2a. In 
relation to the combined method in [7], the performance of the 
method proposed in this paper is close for Db2a. 

 

IV. DISCUSSION 

The quality of fingerprint images and fingerprint sensor 

characteristics have a great influence on the performance of a 

fingerprint matching system. It is therefore common to  employ 

fingerprint enhancement to increase the image quality and to 

improve the matching performance. In this paper, the proposed 

enhancement method is compared with three similar methods 

based on contextual filtering. Contextual filtering methods are 

dependent on locally estimated features such as fingerprint 

ridge frequency, orientation, and curvature, where these 

features are used to perform matched filtering locally. The 

feature estimation accuracy constrains how well these methods 

work, and one dominating factor is the size of the analysis 

window, i.e., the local area size, in relation to the characteristics 

of the fingerprint image. 

The method proposed in this paper performs better than the 

method proposed by Chikkerur et. al. [24] on the FVC2002 

Db3a database. Both methods are based on the same principle. 

That is, they estimate the local features by frequency analysis. 

The main difference is that the method in [24] has a block 

based processing with a fixed size of the local area and do not 

employ the adaptive window size that is used in our work, 

leading to unsatisfactory feature estimates. Also the method 



 
does not employ any nonlinear contrast enhancement on a 

global- or a local level. 

The proposed method shows an improvement on three out of 
four FVC2004 databases in comparison to the method 
proposed by Fronthaler et. al. [28]. The pyramid 
decomposition of the fingerprint image in [28] is to some 
extent related to the multi-size window reexamination in our 
paper. The relative EER improvement compared to the NIST 
method on FVC2004 Db1a to Db4a 
are 17.2%, 13.7%, 19.3% and 4.1%, respectively. The corre- 

sponding relative EER improvement of the proposed method 

in relation to NIST is 29.9%, 45.4%, 6.1% and 7.0% for the 

same databases, i.e., our method shows an improvement for 

three of the four databases in FVC2004 in relation to [28].  

The main restriction of the pyramid decomposition approach 

is that it is based on the size of the image and not on the 

image content, i.e., the fingerprint characteristics. 

Enhancement of the fingerprints with a fundamental ridge 

frequency near or outside of the assumed boundary ridge 

frequency will be re- duced. The application of the proposed 

estimated fundamental frequency in the pyramid 

decomposition could further  improve the performance of the 

method in [28]. 

Another recent published method is proposed  by 

Gottschlich [7]. In this paper, curved Gabor filters are 

investigated. The curved Gabor method has an advantage 

compared to the linear methods explored here and in [24] 

and [28] due the possibility to follow curved patterns. 

However, this comes with an additional computational cost. 

The paper reports a performance improvement of the 

FVC2004 database compared to [24] and [28]. A possible 

performance improvement could involve the use of curved 

Gabor filters [7] in combination with the adaptive windows 

size and the nonlinear contrast enhancement proposed in this 

paper. 

 

 
V. SUMMARY AND CONCLUSIONS 

This paper presents an adaptive fingerprint enhancement 
method. The method extends previous work by focusing on 
pre-processing of data on a global and a local level. A pre- 
processing using the non-linear SMQT dynamic range 
adjustment method is used to enhance the global contrast of 
the fingerprint image prior to further processing. Estimation 
of the fundamental frequency of the fingerprint image is 
improved in the global analysis by utilizing a median filter 
leading to a robust estimation of the local area size. A low- 
order SMQT dynamic range adjustment is conducted locally  
in order to achieve reliable features extraction used in the 
matched filter design and in the image segmentation. The 
matched filter block is improved by applying order statistical 
filtering to the extracted features, thus reducing spurious 
outliers in the feature data. 

 

A possible future research direction is to perform a detailed 

and systematic analysis of the impact of the different chosen 

design parameters (see, Table I). Furthermore, various opti- 

mizations of the implemented processing steps could reduce 

the number of instructions required by the proposed method. 
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Fig. 12. DET curves for the NIST plus the proposed enhancement method (solid) and the NIST method (dashed) for FVC 
databases. Note that 10−∞  denotes the ZeroFM 
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