

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

A

Using Hashes With Patterns Techniques for

Cracking Password

 A.ARCHANA Mrs.N.KOHILA M.Sc.,M.Phil.,MCA.,
 M.Phil Research Scholar, Assistant Professor,

 chana2591@gmail.com padmeshraj@gmail.com

 Department of Computer Applications, Vivekanandha College of Arts and Science for Women (Autonomous).

Abstract— It is a common mistake of application developers to store user passwords within databases as plaintext or only as their

unsalted hash values. Many real-life successful hacking attempts that enabled attackers to get unauthorized access to sensitive
database entries including user passwords have been experi- enced in the past. Seizing password hashes, attackers perform

brute-force, dictionary, or rainbow-table attacks to reveal plain- text passwords from their hashes. Dictionary attacks are very fast for
cracking hashes but their success rate is not sufficient. In this paper, we propose a novel method for improving dictionary attacks.
Our method exploits several password patterns that are commonly preferred by users when trying to choose a complex and strong

password. In order to analyze and show success rates of our developed method, we performed cracking tests on real-life leaked
password hashes using both a traditional dictionary and our pattern-based dictionary. We observed that our pattern-
based method is superior for cracking password hashes.

Index Terms— Password security, authentication, data security, dictionary attacks, hash cracking.

I. MOTIVATION

UTHENTICATION is one of the most important

requirements for information security. There exist various

methods for authentication based on what we know (e.g. pass-

words, PINs), what we have (e.g. security hardware tokens)

and who we are (e.g. Biometric fingerprints) [1]. Among

the existing methods, password-based systems are easier to

implement and therefore the most frequently used method for

authentication. Being very critical for security, passwords are

often targeted during cyber-attacks as well. An attacker that

hacks a system and reveals user passwords stored within the

database gets unauthorized access to accounts of all users.

In the past many enterprise companies and organizations

were victims of such attacks [2]–[6].

Attackers use frequently SQL injection vulnerabilities [7]

that exist within applications in order to access database tables.

They send arbitrary SQL queries to retrieve passwords and

other sensitive data from tables and manipulate stored data,

even by using automated tools such as sqlmap or Havij.

Considering this fact, developers must never store passwords

in plaintext within databases. Developers mostly know the

fact that they should store hash values of passwords instead

of plaintext. However, it is also a critical security weakness

if the hash value of a password is calculated and stored

without appending per-user unique salt value to the password

before hashing [8]. In a classical scenario, a user chooses

a password by a registration process. The hash value (md5,

sha1, sha256 etc.) of the password is calculated on the

backend- server and this calculated hash value is stored in

the database. This implementation is very insecure too.

Even though hash functions are one-way functions,

attackers can perform brute- force, dictionary or rainbow-

table attacks in order to reveal input values (i.e. plaintext

password) from the given output values (i.e. hash

value).

By brute-force attacks [9], the hash value of each

possible input value is calculated and compared with

the given hash value to crack. By dictionary attacks

[10], large dictionary containing thousands or millions

of possible passwords are utilized. Given a hash value to

crack, an attacker calculates the hash value of each

plaintext word from the dictionary line by line and

compares the calculated hash values with the given hash

value. If they are matched, the plaintext password is thus

revealed. On the other hand, a very large set of pre-

computed hash tables containing hash values and their

corresponding plaintext values are used by rainbow-table

attacks [11]. Given a hash value to crack, an attacker

checks if the given hash value exists within the pre-

computed lookup table. If it exists within the table, the

plaintext password is found out.

If we compare brute-force, dictionary and rainbow-

table attacks, they all have pros and cons. Brute-force

attacks find out the plaintext definitely in the end but

they are very time consuming. Dictionary attacks are fast

but the success rate is not sufficient. Rainbow-table

attacks are fast and successful at cracking but they

require having a very big disk storage capacity. They

are especially non-practical if a salt value is used for

password hashes.

In this paper, we propose a new method for increasing

success rates of dictionary attacks. For our method we

analyzed leaked real-life user passwords and identified

several patterns which are commonly chosen by many

users to create a complex and strong password from a

dictionary word. For example, a dot (“.”), an

exclamation mark (“!”) or “123” are often appended at
28

http://www.ijartet.com/
mailto:chana2591@gmail.com
mailto:padmeshraj@gmail.com

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

the end of a dictionary word. Similarly, a dictionary

word is repeated two times (e.g. kingking) or three times

(e.g. kingkingking). We developed a software tool, namely

pbp-generator (pattern based password generator), that

implements our identified patterns and creates a new

pattern-based large dictionary file from a given dictio-

nary file. We generated a pattern-based dictionary file

with ca. 2.3 billion passwords to crack password hashes

belonging to different datasets which consist of real-life

leaked password hashes.

Digital forensic investigators are involved with the

analysis of crime cases. They often come across password

protection during investigation. They need to crack

passwords either in order to access a particular user account

or to unlock encrypted or otherwise obfuscated digital

evidence [12]. Our pattern-based method would help

forensic investigators for more efficient password cracking.

It is important to note that security of hash functions is

not within the scope of this paper. If a user chooses a weak

password with a certain pattern, even a very secure hash

function cannot prevent attackers from cracking password

hashes. Patterns have no negative effect on computed hash

values. In conclusion, the focus of this paper is the analysis of

user-chosen plaintext passwords rather than the formal security

model of hash functions.

This paper is organized as follows: Section II explains

the details of how passwords and password patterns were

analyzed. The identifi password patterns are explained in

detail in Section III. Development of the software tool to

generate pattern-based dictionary and perform hash-cracking

tests with the generated pattern-based dictionary are explained

in Section IV. Section V discusses the related work. Possible

mitigation methods are given in Section VI. Section VII

concludes the paper.

TABLE I

THE TOP TEN LIST OF REGULAR EXPRESSIONS FOR PASSWORDS

WITH THE LENGTH BETWEEN 2 AND 5

II. THE ANALYSIS

Rockyou.com web portal was the target of a very critical

cyber-attack in December 2009 [3]. The hacker had found

SQL injection vulnerability in the rockyou website and got

access to its 32.6 million user passwords. Worse still, the

passwords were stored as plaintext in the database. The leaked

passwords without usernames were published in the Internet.

In the past, security researchers did not have such a large

real-life resource for password analysis. Therefore, the

published 32.6 million real-life passwords have become a

very valuable data for security experts and researchers.

A. Password Complexity Rules

It is always suggested that a secure password must

not consist of only lowercase letters. Instead, it must

contain lowercase and uppercase letters, digits and special

symbol characters. A password fulfilling these complexity

requirements would provide high entropy [13] and therefore

should be more resistant against password guessing attacks.

Today, enterprise companies and organizations define such

password rules within their security policies and try to enforce

their employees and customers to choose complex passwords.

On the other hand, it is questionable if a password fulfi g

the complexity rules including minimum length can be

considered as a strong password. Let’s take the following

password “P4s5w0rd1.” into consideration. This password has

the length of ten characters and contains fi e lowercase letters,

one uppercase letter, four digits and one special symbol. This

password is considered and accepted in general as a strong

password according to many password policies of enterprise

companies and organizations. But we believe, this is an

insecure password and can be easily cracked by using our

pattern-based attack.

The password “P4s5w0rd1.” contains three different

common patterns. The first pattern is capitalization of the

http://www.ijartet.com/

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

first letter. The second pattern is replacing certain letters

with numbers (a→4, o→0, s→5) and the third
pattern is appending “1.” to the password. Since people
are bad

at remembering complicated passwords and have to use

complex passwords due to password policies, they tend

to create “strong” passwords by using such patterns.

However, these common patterns jeopardize security of the

passwords. If many passwords share the same patterns, they

can be identified and then misused to guess passwords

successfully with the help of automated tools.

B. Rockyou Pattern Analysis Based on Regular Expressions

Skull security [14] provides various leaked real-life

password dictionaries to download. We utilized their

special “rockyou” password list that includes additionally

the total count for each unique password.

In the first step, we analyzed the rockyou passwords

based on their regular expression representations. We

created different Top 10 lists which consist of the most

common regular expressions and their hit counts according

to the different password lengths as shown in Table I, II

and III. The Top 10 lists showed us some interesting

facts. Most of the passwords are composed of appending

numbers to letters. Therefore, we decided to continue

with the analysis of dual and triple combinations of

different character groups as explained in the following

section. Another interesting fact is that the top one regular

expression of passwords with the length of ten characters

is ˆ[0-9]{10}$. This shows us that passwords belonging

to this group consist of only numbers with the length of

ten digits. We examined such passwords manually and

concluded that these are mostly telephone numbers.

http://www.ijartet.com/

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

TABLE II

THE TOP TEN LIST OF REGULAR EXPRESSIONS FOR PASSWORDS

WITH THE LENGTH BETWEEN 6 AND 9

C. ockyou Pattern Analysis Based on

Dual and Triple Combinations

After analyzing the most common regular expressions

representations, we analyzed the frequency of dual and triple

combinations of different character groups (i.e. alpha, digitl

and special symbol). In this analysis, [:alpha:] represents any

alpha character between a to z and between A to Z. [:digit:]

represents numbers between 0 and 9. [:symbol:] represents

the following punctuation characters: . , " ’ ? ! ; : # $ % &

() * + - / < > = @ [] ˆ _ { } |.
By the dual combination analysis, the total

numbers of [:alpha:]+[:digit:], [:alpha:]+[:symbol:] and

[:digit:]+[:symbol:] combinations and their reverse order
combinations were analyzed. This analysis showed us
that

circa 10 million rockyou passwords (30%) are in the

form of [:alpha:] + [:digit:] combination, which means
users mostly prefer appending a number to a dictionary
word to

create their passwords. Based on these results, we decided

to examine [:alpha:]+[:digit:] combinations further to find
more specific patterns. In the Table IV, the total counts of
all dual combinations and their examples from the
rockyou list are shown.

By the triple combination analysis, the total numbers

of [:alpha:]+[:digit:]+[:symbol:], [:alpha:]+[:symbol:]+

[:digit:] and [:digit:]+[:symbol:]+[:alpha:] combinations
and their reverse order combinations were analyzed.
Compared with

the dual combinations, the triple combinations are not very

much preferred by the rockyou users. The most frequently

used triple combinations are [:alpha:]+[:symbol:]+[:digit:]

with 0.57% and [:alpha:]+[:digit:]+[:symbol:] with 0.25%.
Analyzing these combinations further we identified that digits

and special symbols are together (e.g. “#1”, “123.”, “*1” etc.)

appended to dictionary words to create passwords. The total

counts of all triple combinations and their examples from the

rockyou list are shown in Table V.

In addition to dual and triple combination analysis, we

checked the frequencies of the punctuation characters. This

analysis showed that certain symbols are more frequent than

the others. The most frequently used punctuation character

is point (.) with 0.7%. Underscore (_) has the second place

with 0.58% and exclamation mark (!) has the third place

with 0.55%. The total counts of each punctuation character in

the password list are given in the Table VI. These frequencies

were taken into consideration in our further analysis.

III. THE IDENTIFIED PATTERNS

The rockyou.com password list contains exactly

32,603,388 passwords. If the repeating passwords are

http://www.ijartet.com/

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

TABLE V

TRIPLE COMBINATION OF CHARACTER GROUPS WITH EXAMPLES

TABLE VI

TOTAL COUNTS OF PUNCTUATION CHARACTERS

WITHIN ROCKYOU PASSWORDS

TABLE VII

APPENDING PATTERN EXAMPLES

TABLE VIII

PREFIXING PATTERN EXAMPLES

TABLE IX

INSERTING PATTERN EXAMPLES

eliminated, there are exactly 14,344,399 unique passwords.

We examined thousands of passwords for possible patterns

during our analysis of regular expressions and dual/triple

combinations. Furthermore, we checked manually around

500 thousand passwords out of 14.4 million unique passwords

to find additional patterns. The rockyou list of Skullsecurity

was sorted according to the most frequently used password

order. Therefore, the main password patterns exist already

within our analyzed 500 thousand passwords group.

As a result, we identified several patterns which belong

mainly to ten categories. These are Appending, Prefixing,

Inserting, Repeating, Sequencing, Replacing, Reversing,

Capitalizing, Special-format and Mixed Patterns.

A. Appending Pattern

The dual combination analysis showed that ca. 30% of all

rockyou passwords are in the form of [:alpha:] + [:digit:]
combination. Analyzing this special dual combination

further, we identified many password examples of appending

pattern, where a certain digit or punctuation character (or digit/

character groups) is added at the end of a dictionary word.

http://www.ijartet.com/

 ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology(IJARTET)
 Vol. 2, Issue 11, November 2015

Table VII gives the total counts of

passwords belonging to this pattern and some password

examples.

Among all patterns we identified, this pattern is the

most frequent one. For example, about 2.8 million

passwords are combinations of alpha characters with one or

more digits.

B. Prefixing Pattern

The dual combination analysis showed that there are
around 900 thousand passwords having the form of

[:digit:]+[:alpha:] combination. Analyzing this special dual
combination further,

we identified many password examples of prefixing pattern

by which a certain digit and/or punctuation character (or

digit/ character groups) is added at the beginning of a

dictionary word. Table VIII gives the total counts of

passwords belonging to this type and some password

examples.

C. Inserting Pattern

In addition to appending and prefixing patterns, we

identified many password examples of inserting pattern

by which a certain digit and/or punctuation character (or

digit/ character groups) is inserted into a dictionary word.

Table IX gives some password examples of this pattern.

Since distin- guishing inserting patterns from replacing

patterns requires

http://www.ijartet.com/

TABLE X

REPEATING PATTERN EXAMPLES

TABLE XI

SEQUENCING PATTERN EXAMPLES

manual analysis (e.g. passw0rd vs. pass4word), the total counts

for pattern examples are not given in the table.

D. Repeating Pattern

In addition to dual and triple combination analysis, we

examined passwords which contain only alpha, digit or

punctuation characters. This analysis showed that 44% of all

passwords consist of only alpha characters, 16% contain only

numbers and 0.015% contain only punctuation characters.

Since it is a known fact that users prefer choosing passwords

without numbers and special symbols, 44% was an expected

result for only-letter passwords. On the other hand,

16% seemed very unusual for passwords containing only

digits.

Analyzing the passwords in this group further, we

found out that some users tend to choose certain number

combinations (e.g. 29, 1980, etc.) and repeat them to create a

password. For example, a birth year is chosen and repeated

(e.g. 19791979). We also realized that not only numbers,

but words and punctuation characters are repeated as well to

create passwords. As an example, a dictionary word is repeated

two or three times (e.g. kingkingking). Table X shows some

examples of repeating pattern.

E. Sequencing Pattern

In the analysis we identified the sequencing pattern by

which sequences of keyboard layouts, alphabet letters, digits or

their combinations are used to create passwords (e.g. qwerty,

123abcd, abcdqwer, etc.).

The most frequent keyboard sequence is “qwerty” with

13,456 passwords. The most frequent letter sequence is

“abcdef” with 2,733 passwords. The most frequent digit

sequence is “123456” with 290,729 passwords. This is the

number one password in the Top 10 list.

Table XI shows examples of the sequencing pattern for

keyboard layouts, alphabet letters, digit sequences and their

combinations.

TABLE XII

REPLACING PATTERN EXAMPLES

F. Replacing Pattern

In the analysis of inserting pattern we realized that

certain letters are replaced with a number or a symbol.

As an example, the letter “o” is replaced with the number

zero (e.g. password → passw0rd). Similarly, the letter “s”

is replaced with “$” or “fi e (5)” (e.g. sport → $port,

august → augu5t). We examined this pattern further in order
to identify more replacements. Table XII lists the identified

replacement possibilities and their example passwords from

the rockyou list.

G. Capitalizing Pattern

By this pattern some lowercase letters of a dictionary word

are exchanged with their uppercase equivalents. As examples,

the word “password” can be converted into “Password”,

“passWord” or “passworD”. Providing this, such passwords

become compliant with password policies which require

passwords to contain at least one uppercase letter. More

passwords examples of this pattern from the rockyou list are

given in Table XIII.

TABLE XIII

CAPITALIZING PATTERN EXAMPLES

TABLE XIV

SPECIAL-FORMAT PATTERN EXAMPLES

H. Reversing Pattern

By this pattern dictionary word letters are put in a reverse

order. As an example, the word “password” is converted

into “drowssap”. Some examples of this pattern from the

rockyou list are as follows: drowssap, uoykcor, fedcba, elgoog,

uoyevoli, ssecnirp, yraunaj, ylevol.

I. Special-Format Pattern

The last identifi pattern is special-format pattern. This

pattern group contains passwords having special formats like

dates in various forms (e.g. dd/mm/yy, mm/dd/yy, dd/mm/yyyy

etc.), combinations of a birth month with a day or year

in different forms (e.g. january15, jan15, jan2007 etc.) and

combinations of a sportsman player name with his/her shirt

number etc. Some examples of the special-format patterns

with password examples from the rockyou list are given

in Table XIV.

J. Mixed Patterns

This pattern represents mixing of two or more pattern types.

Capitalization with reversing (e.g. droW) and capitalization

with insertion (e.g. Wo2rd) are two examples. Table XV gives

more examples of this pattern from the rockyou list.

IV. CRACKING TESTS WITH THE IDENTIFIED PATTERNS

After identifying several patterns, we proceeded with the

benchmark of the identified patterns. We checked if they can

improve efficiency of dictionary attacks by cracking more

real-life passwords hashes that were leaked from different web

portals in the past.

TABLE XV

EXAMPLES OF MIXED PATTERNS

Fig. 1. Architecture of pbp-generator.

A. pbp-Generator (Pattern Based Password Generator)

We developed a software tool namely pbp-generator for

benchmarking. As shown in Figure 1 pbp-generator gets a

dictionary file as input, creates several variations of each

dictionary word from the given input file based on Type 1

identified patterns (see Table XVI) and adds them to the

output fi which represents the generated pattern-based

dictionary file. Additionally, pbp-generator adds many other

passwords from Type 2 identified patterns (see Table XVII)

into the output file. The Type 2 patterns are not applied

on input file, but they are used to create certain passwords

(e.g. month name with year, special keyboard sequences etc.)

to be added directly into the output dictionary file. The

passwords from the given dictionary file are explicitly included

within the output dictionary fi because this enables us

to distinguish if a given hash can be cracked only with

the pattern-based dictionary but not with the given input

dictionary file. Before the output file is finalized, double

passwords are removed and therefore the final file includes

TABLE XVI

TYPE 1 IMPLEMENTED PATTERNS (PATTERNS THAT ARE

APPLIED TO EACH WORD IN THE DICTIONARY FILE)

TABLE XVII

TYPE 2 IMPLEMENTED PATTERNS (PATTERNS THAT ARE

DIRECTLY ADDED TO THE OUTPUT DICTIONARY FILE.)

only unique pattern-based passwords. Finally, the output file

of pbp-generator can be utilized for more efficient dictionary

attacks.

B. The Cracking Tests

We used pbp-generator to generate a pattern-based

dictionary file from the original rockyou password list

which contains 14,344,399 unique passwords. pbp-generator

generated a pattern-based dictionary file that contains

2,247,786,433 (circa 2.3 billion) unique passwords. The new

dictionary file contains 156 times more passwords compared

with the rockyou list.

Having two different password files (i.e. the original

rockyou list and the generated pattern-based dictionary fi

we performed dictionary attacks by using Hashcat tool [15].

In our analysis, we used real-life MD5 and SHA1 password

hashes that were disclosed by different cyber-attacks and made

publicly available [16] on the Internet.

We performed two parallel tests. In the fi t test, we checked

how many password hashes can be cracked with the original

rockyou password list. In the second test, we checked how

many password hashes can be cracked by using our pattern-

based password list generated by pbp-generator. As the success

results and cracked password examples given in Table XVIII

show, our patterns enabled many more additional hashes to

be cracked. For example, ca. 577,000 Gamigo.com password

hashes could be cracked with the help of the rockyou list.

On the other hand, the pattern-based dictionary file could

crack ca. 365,000 additional password hashes which could

not be cracked with the rockyou list. Based on this result,

63% more passwords could be cracked with our patterns.

Similarly, by eharmony.com analysis the pattern-based

dictionary could crack ca. 28,000 additional passwords. This

concludes that we could crack 150% more passwords

compared with cracking with the rockyou list which could

crack only ca. 18,500 password hashes.

C. Performance Analysis

Since the pattern-based dictionary contains many more

passwords than the rockyou list, it takes longer to perform hash

cracking with the pattern-based dictionary. The hash cracking

tests were performed on a 64-bit machine with an Intel i5

dual core 3.2 GHz processor and 12 GB RAM. Hashcat was

executed with 32 parallel-running threads. Testing with the

rockyou dictionary took 37 seconds to complete the test for

Gamigo.com having about 7 million password hashes. The

same test took 8 minutes 59 seconds to complete when testing

with the pattern-based dictionary.

V. RELATED WORK

Password security and cracking password hashes were

extensively studied by many security researchers in the past.

However, to the best of our knowledge, there is no other study

which analyzes real-life patterns in detail, identifies several

common password patterns and utilizes them to increase

success rates of dictionary attacks as explained in this paper.

A. Pattern Analysis

Veras et al. [17] studied password patterns too, but

they focus only on numbers and different date formats

in passwords. They did not perform any password cracking

benchmark test based on their identified patterns.

Wu [18] analyzed password security of a Kerberos realm

containing slightly over 25 thousand users. They could crack

a total of 2,045 passwords successfully by the end of the

two-week experiment. The half of the guessed passwords

was from a dictionary. For the remaining half, they used

the patterns prefix, suffix, capitalization and reversing.

Comparing with our patterns, both their identified pattern set

and benchmarking dataset are very limited.

B. Cracking Tests

Weir et al. [19] performed password cracking attacks

against many real-life passwords including the rockyou

database. They analyzed the passwords according to the NIST

SP800-63 policy rules and showed that Shannon entropy as

defined by NIST does not provide a good model to check

security complexity of passwords. In their model, they

compute the probability for a given password. Providing this, it

is possible to blacklist passwords having the probability above a

certain threshold since they are not secure against guessing

attacks. We believe their model generates insecure passwords

if we consider our pattern-based attacks. For example, their

model suggests violin123 and !!password123 as strong secure

passwords. But this is not correct. These passwords contain

certain patterns. We show in this paper that such passwords

can be easily cracked with pattern-based dictionaries. Stone-

Gross et al. [20] took control of the Torping botnet which

contained 297,962 unique username and password pairs. They

did password cracking analysis by using john-the-ripper [21]

in brute-force mode and could crack ca. 100 thousand

passwords in 24 hours. Yan et al. [22] explain their empirical

study which investigates the trade-off between security and

memorability. They set up three different groups which chose

their passwords freely or based on a mnemonic phrase. The

last group was given a random password. In the

end, they performed dictionary attacks to crack passwords of

the study attendees. About 32% of the freely-chosen passwords

could be successfully cracked. In their dictionary attack, they

used replacement pattern as well, but in a very basic form.

Weir et al. [23] created automatically a probabilistic context-

free grammar based upon a training set of previously leaked

passwords and used this grammar to generate word-mangling

rules which were afterward used for password cracking tests.

They were able to crack 28% to 129% more passwords than

John the Ripper. Our approach achieves better results for

certain datasets. For example, we could crack 151% more

passwords in case of Eharmony.com dataset and similarly

239% more passwords in case of DamnSmallLinux dataset

compared with their results. Moreover, their test dataset is

very limited. One of their dataset contains 67,072 passwords

and the other one contains 7,480 passwords. We used

15 different datasets and the Gamigo.com dataset contains

alone more than 7 million passwords. Zhang et al. [24]

presented a large-scale study of password expiration in

practice. They provided an effi search algorithm

framework for attacking future passwords from expired ones.

They applied their search algorithm to a large, real-world data

set for the analysis of password expiration and confirmed that

password expiration is not an effective approach as expected.

C. Complexity Analysis

Imperva analyzed the complexity of the rockyou

passwords and released a study [25]. According to their results,

sixty percent of the passwords are quite insecure and contain

only lowercase letters, uppercase letters or numeric values.

About thirty percent of the passwords have the length which

is equal to or below six characters. They listed the most

frequently used 20 passwords as well. “123456” is at the

top in the list. This analysis shows only generic complexity

results, but does not mention any patterns. Houshmand and

Aggarwal [26] propose a new system which analyzes whether

a user proposed password is weak or strong by estimating

the probability of the password being cracked. They modify

then the weak password to create a strengthened password as

well. Some examples of weak and strengthened password are

trans2 → %trans2, colton00 → 8colton00. This system is also
insecure against pattern-based dictionary attacks. An attacker

can delve into the details of this system, identify specific

patterns used by this system and use these identified patterns

to generate possible strengthened passwords. Stanekova and

Stanek [27] evaluate several methods of choosing PIN against

dictionary-based guessing attacks and discuss two methods

for constructing easy to remember PIN words for randomly

chosen PINs. Narayanan and Shmatikov [28] show how to

reduce the size of password search space for dictionary attacks

by using Markov modeling techniques. Mazurek et al. [29]

performed an empirical study over the plaintext passwords of

25 thousand faculty, staff, and students at a research university.

They found that some elements of the university population

create more secure passwords than others. For example,

computer science students make passwords more than

1.8 times as strong as the business school students.

Comparing their contributions with ours, their focus is mainly

the relation analysis of different categories like gender,

college types, user types, etc. rather than password patterns.

Jakobsson and Dhiman [30] built a model of passwords by

using the Rockyou dataset. They parsed and scored passwords

from five other datasets of disclosed passwords (i.e. Rootkit,

Sony, Paypal, Justin Bieber fan web page and Porn web

page datasets). They analyzed then the usage of various

rules in the datasets. Their analysis showed the average

number of components per password in the different datasets.

As a result, they found out that Justin Bieber dataset has

the highest average number of word components compared

with the other datasets. Kelley et al. [31] studied the impact

of different password policies on password strength. They

investigated mainly the resistance of passwords created under

different policies and the performance of guessing algorithms

under different training sets.

D. New Password Schemes

Forget et al. [32] proposes a password creation scheme

based on Persuasive Technology [33]. This scheme inserts

or replaces randomly fixed number of characters in a user

chosen password. As explained in this paper, inserting

or replacing characters are typical patterns which can be

misused to guess passwords successfully. Xiao et al. [34]

propose some password mechanisms in which a user can

choose a virtual password scheme ranging from weak security

to strong security. The proposed schemes provide several

system recommended functions like flipping one digit in

the password, reversing bits of the password, adding an

additional digit/character at a fixed place, etc. We showed

that such functions can be attacked since their results contain

certain patterns.

VI. MITIGATION METHODS

The following mitigation methods can be suggested in order

to minimize the risks from patterns and protect users against

unauthorized access to their accounts.

One possible solution can be that users exploit secure pass-

word managers (SPM) to store their passwords. SPMs generate

unique, random and complex passwords without any pattern,

store them within a database and store the database in an

encrypted form (e.g. AES-256) on file systems. In order to

decrypt the database and retrieve the passwords, a master

secure password must be provided by users. In addition, some

SPMs ask users to provide a physical file which is generated

randomly during the setup phase of the password database

creation. Providing this, users generate secure passwords for

each service they use with the help of their SPM and do

not need to memorize them. They just need to memorize

the master password and protect the physical file against

unauthorized access. It is in this case important that the master

password is complex, randomly generated and contains no

pattern. But it is not a problem for users to memorize a single

complex password and remember it later. Furthermore, some

SPMs offer smart-card authentication.

Another solution can be two-factor authentication.

Today authentication systems should not depend only on

knowledge of username-password pairs, especially for critical

applications like email, online banking or e-commerce. A new

authentication factor based on what we possess (e.g. hardware

token, smart-card) or who we are (e.g. fingerprint) should

be additionally checked during authentication process.

As examples, online banking applications benefit today

tamper-resistant hardware tokens and similarly some online

services like Google Mail, Twitter, Wordpress etc. support

software tokens that are sent over SMS or generated by a

native mobile app (e.g. Google Authenticator).

Considering the pattern risks, it is vital to revise current

password authentication systems as well. They normally check

if a user-given password is a dictionary word or not. If it is

a dictionary word, it is black-listed and rejected. The user

is asked to choose a non-dictionary password. This existing

feature should be extended to cover passwords with patterns.

They can let pbp-generator create a pattern-based dictionary

file from their current dictionary file and afterward check if

users enter passwords which exist within the pattern-based

dictionary file.

Academic researchers focusing on password security and

authentication systems should take patterns into considera-

tion and propose solutions accordingly. The related academic

works from the past should be re-evaluated by considering the

risks caused by patterns. Security awareness trainings held

especially for non-security experts should take patterns into

consideration as well. Attendees should be informed about the

patterns and warned not to use pattern-based passwords.

VII. CONCLUSION

Weak passwords are critical threats for authentication

systems. Seizing password hashes, especially unsalted hashes,

attackers can use different attack techniques (i.e. brute-force,

dictionary, rainbow-tables) to crack hashes and reveal plaintext

passwords. Security experts try to establish security awareness

for strong passwords. In addition, authentication systems

enforce password policies to fulfill complexity rules. Being

forced to use strong passwords, people tend to use similar

patterns when choosing their “strong” passwords. But such

patterns endanger security of passwords.

In this paper we explain how frequently used patterns can

be identified and misused to generate pattern-based password

dictionaries. These common patterns can be afterward

exploited to crack more password hashes compared with

traditional dictionary attacks. In order to identify common

password patterns, we performed both manual and automated

analysis on a large set of leaked real-life passwords of

rockyou.com gaming portal. After identifying the patterns,

we developed a software tool, namely the pbp-generator,

which creates many pattern-based passwords from a given

traditional dictionary. We utilized the generated pattern-based

dictionary to perform cracking tests against real-life leaked

password hashes from 15 different datasets. According to the

test results, we could crack with pattern-dictionaries many

more password hashes, which cannot be cracked by using

the rockyou password list. From this perspective, our pro-

posed pattern-based attacks enhance dictionary attacks and

can be considered as the new generation of dictionary attacks.

It can especially help forensic investigators for more efficient

password cracking compared with the existing techniques.

ACKNOWLEDGMENT

[12] G. Fragkos and T. Tryfonas, “A cognitive model for the forensic recovery
of end-user passwords,” in Proc. 2nd Int. Workshop Digit. Forensics
Incident Anal. (WDFIA), Aug. 2007, pp. 48–54.

[13] C. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, 1948.

[14] SkullSecurity Passwords. [Online]. Available: https://wiki.skullsecurity.
org/Passwords, accessed Apr. 22, 2015.

[15] Hashcat—Advanced Password Recovery Practices. [Online]. Available:
http://hashcat.net, accessed Apr. 22, 2015.

[16] Hashdumps and Passwords. [Online]. Available: http://www.adeptus-
mechanicus.com/codex/hashpass/hashpass.php, accessed Apr. 22, 2015.

[17] R. Veras, J. Thorpe, and C. Collins, “Visualizing semantics in passwords:
The role of dates,” in Proc. 9th Int. Symp. Vis. Cyber Secur. (VizSec),
2012, pp. 88–95.

[18] T. Wu, “A real-world analysis of Kerberos password security,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 1999. [Online]. Available:
https://www.gnu.org/software/shishi/wu99realworld.pdf

[19] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” in Proc. 17th ACM Conf. Comput. Commun. Secur.,
New York, NY, USA, 2010, pp. 162–175.

[20] B. Stone-Gross et al., “Your botnet is my botnet: Analysis of a botnet

takeover,” in Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2009, pp. 635–647.

[21] John the Ripper Password Cracker. [Online]. Available:
http://www.openwall.com/john/, accessed Apr. 22, 2015.

[22] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memo-
rability and security: Empirical results,” IEEE Security Privacy, vol. 2,
no. 5, pp. 25–31, Sep./Oct. 2004.

[23] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. 30th IEEE
Symp. Secur. Privacy (SP), May 2009, pp. 391–405.

[24] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: An algorithmic framework and empirical analysis,”
in Proc. 17th ACM Conf. Comput. Commun. Secur. (CCS), 2010,
pp. 176–186.

 [25] M.Muthamil Jothi, A.Nancy, V.Manjula, R.Muthu Veni, S.Kavya, Christo

 Ananth, “Efficient message forwarding in MANETs”, International

 Journal of Advanced Research in Management, Architecture, Technology
 And Engineering (IJARMATE), Vol. 1, Issue 1, August 2015, pp:6-9

[26] S. Houshmand and S. Aggarwal, “Building better passwords using
probabilistic techniques,” in Proc. 28th Annu. Comput. Secur. Appl.

The author would like to thank Necati Erşen Ş işeci, Conf. (ACSAC), 2012, pp. 109–118.

M. Oğ uzhan Topgül, M. Oğuzhan Külekçi and Yalçın Çakmak

who provided valuable comments on drafts of this article.

REFERENCES

[1] L. O’Gorman, “Comparing passwords, tokens, and biometrics for user
authentication,” Proc. IEEE, vol. 91, no. 12, pp. 2021–2040, Dec. 2003.

[2] (2011). PlayStation Network Hack: Why it Took Sony
Seven Days to Tell the World. [Online]. Available: http://
www.theguardian.com/technology/gamesblog/2011/apr/27/playstation-
network-hack-sony

[3] (2009). RockYou Hack Compromises 32 Million Passwords. [Online].
Available: http://www.scmagazine.com/rockyou-hack-compromises-32-
million-passwords/article/159676/

[4] (2013). Software Company Tom Sawyer Hacked, 61,000 Vendors
Accounts Leaked. [Online]. Available: http://www.databreaches.net/

software-company-tom-sawyer-hacked-61000-vendors-accounts-leaked/
[5] (2013). Hackers Leak Data Allegedly Stolen from Chinese Chamber

of Commerce Website. [Online]. Available: http://news.softpedia.com/
news/Hackers-Leak-Data-Allegedly-Stolen-from-Chinese-Chamber-of-
Commerce-Website-396936.shtml

[6] LinkedIn Hack. [Online]. Available: http://en.wikipedia.org/wiki/
2012_LinkedIn_hack, accessed Apr. 22, 2015.

[27] L. Staneková and M. Stanek, “Analysis of dictionary methods for PIN
selection,” Comput. Secur., vol. 39, pp. 289–298, Nov. 2013.

[28] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. 12th ACM Conf. Comput. Commun.
Secur. (CCS), New York, NY, USA, 2005, pp. 364–372.

[29] M. L. Mazurek et al., “Measuring password guessability for an
entire university,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), 2013, pp. 173–186.

 [30] A.Nasrin Banu, M.Manju, S.Nilofer, S.Mageshwari, A.Peratchi Selvi,

 Christo Ananth, “Efficient Energy Management Routing in WSN”,

 International Journal of Advanced Research in Management,
 Architecture, Technology And Engineering (IJARMATE), Vol. 1, Issue

 1, August 2015, pp:16-19
[31] P. G. Kelley et al., “Guess again (and again and again): Measuring

password strength by simulating password-cracking algorithms,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2012, pp. 523–537.

[32] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Biddle, “Improving
text passwords through persuasion,” in Proc. 4th Symp. Usable Privacy
Secur. (SOUPS), 2008, pp. 1–12.

[33] B. J. Fogg, “Persuasive technology: Using computers to change what
we think and do,” Ubiquity, Dec. 2002

[34] Y. Xiao, C.-C. Li, M. Lei, and S. V. Vrbsky, “Differentiated virtual
passwords, secret little functions, and codebooks for protecting users
from password theft,” IEEE Syst. J., vol. 8, no. 2, pp. 406–416,
Jun. 2014.

[7] SQL Injection. [Online]. Available: https://www.owasp.org/index.php/

SQL_Injection, accessed Apr. 22, 2015.
[8] Password Storage Cheat Sheet. [Online]. Available:

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet,
accessed Apr. 22, 2015.

[9] Brute-Force Attacks. [Online]. Available: https://www.owasp.org/
index.php/Brute_force_attack, accessed Apr. 22, 2015.

[10] V. Goyal, V. Kumar, M. Singh, A. Abraham, and S. Sanyal, “CompChall:
Addressing password guessing attacks,” in Proc. Int. Conf. Inf. Technol.,
Coding Comput. (ITCC), Apr. 2005, pp. 739–744.

[11] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology (Lecture Notes in Computer Science), vol. 2729,
D. Boneh, Ed. Berlin, Germany: Springer-Verlag, 2003, pp. 617–630.

39

http://hashcat.net/
http://www.gnu.org/software/shishi/wu99realworld.pdf
http://www.gnu.org/software/shishi/wu99realworld.pdf
http://www.gnu.org/software/shishi/wu99realworld.pdf
http://www.openwall.com/john/
http://www.theguardian.com/technology/gamesblog/2011/apr/27/playstation-
http://www.theguardian.com/technology/gamesblog/2011/apr/27/playstation-
http://www.scmagazine.com/rockyou-hack-compromises-32-
http://www.databreaches.net/
http://news.softpedia.com/
http://en.wikipedia.org/wiki/
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://www.owasp.org/
http://www.owasp.org/

