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Abstract: We propose an extended versions are presented that elaborates the effect of the design’s degrees of freedom, and 

the effect on non-uniformity of input patterns on energy consumption and the performance. The proposed architecture is 

based on a recently refined sparse clustered networks using binary connections that on-average eliminates most of the parallel 

comparisons performed during a search. Given an input tag, the proposed architecture computes a few possibilities for the 

location of the matched tag and performs the comparisons on them to locate a single valid match. And also by using a 

reordered overlapped search mechanism, most mismatches can be found by searching a few bits of a search word. Following 

a selection of design parameters, such as the number of CAM entries, the energy consumption and the search delay of the 

proposed design are 8%, and 26% of that of the conventional NAND architecture, respectively, with a 10% area overhead.
 

 

Keywords: Associative memory, content-addressable memory (CAM), low-power computing, sparse clustered networks 

(SCNs).  

I. INTRODUCTION 

 

A content addressable memory (CAM) is a type of 

memory that can be accessed using its contents rather than an 

explicit address. In order to access a particular entry in such 

memories, a search data word is compared against previously 

stored entries in parallel to find a match. Each stored entry is 

associated with a tag that is used in the comparison process. 

Once a search data word is applied to the input of a CAM, the 

matching data word is retrieved within a single clock cycle if 

it exists. This prominent feature makes CAM a promising 

candidate for applications where frequent and fast look-up 

operations are required, such as in translation look-aside 

buffers (TLBs) network routers database accelerators, image 

processing, parametric curve extraction, Hough 

transformation, Huffman coding/decoding virus detection,  

Lempel–Ziv compression  and image coding. Due to the 

frequent and parallel search operations, CAMs consume a 

significant amount of energy. CAM architectures typically 

use highly capacitive search lines (SLs) causing them not to 

be energy efficient when scaled. For example, this power 

inefficiency has constrained TLBs to be limited to no more 

than 512 entries in current processors. In Hitachi SH-3 and 

Strong ARM embedded processors, the fully associative 

TLBs consume about 15% and 17% of the total chip power. 

 Consequently, the main research objective has been 

focused on reducing the energy consumption without 

compromising the throughput. Energy saving opportunities 

have been discovered by employing either circuit-level 

techniques, architectural-level techniques, or the code sign of 

the two some of which have been selected. Although dynamic 

CMOS circuit techniques can result in low-power and low-

cost CAMs, these designs can suffer from low noise margins, 

charge sharing, and other problems. 
A new family of associative memories based on 

sparse clustered networks (SCNs) has been recently 

introduced and implemented using field-programmable gate 

arrays (FPGAs) . Such memories make it possible to store 

many short messages instead of few long ones as in the 

conventional Hopfield networks with significantly lower 

level of computational complexity. Furthermore, a significant 

improvement is achieved in terms of the number of 

information bits stored per memory bit (efficiency). In this 

paper, a variation of this approach and a corresponding 
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architecture are introduced to construct a classifier that can be 

trained with the association between a small portion of the 

input tags and the corresponding addresses of the output data. 

The term CAM refers to binary CAM (BCAM) throughout 

this paper. Originally included in preliminary results were 

introduced for an architecture with particular parameters 

conditioned on uniform distribution of the input patterns.  

 
 
 

 

 

 

 

 
 
 
 
 
 
Fig. 1. Simple example of a 4 × 4 CAM array consisting 

of the CAM cells, MLs, sense amplifiers, and differential 

SLs. 

 

The rest of this section is organized as follows. 

Section II describes basic operation of the CAM. In Section 

III, some of the recent research works related to this area are 

summarized. In Section IV, the proposed associativity 

algorithm is introduced. Section V describes the hardware 

architecture followed by Section VI with the simulation 

results. 

II. CAM REVIEW 

 
In a conventional CAM array, each entry consists of 

a tag that, if matched with the input, points to the location of 

a data word in a static random access memory (SRAM) block. 

The actual data of interest are stored in the SRAM and a tag 

is simply a reference to it. Therefore, when it is required to 

search for the data in the SRAM, it suffices to search for its 

corresponding tag. Consequently, the tag may be shorter than 

the SRAM-data and would require fewer bit comparisons.  
An example of a typical CAM array, consisting of 

four entries having 4 bits each, is shown in Fig. 1. A search 

data register is used to store the input bits. The register applies 

the search data on the differential SLs, which are shared 

among the entries. Then, the search data are compared against 

all of the CAM entries. Each CAM-word is attached to a 

common match line (ML) among its constituent bits, which 

indicates, whether or not, they match with the input bits. Since 

the MLs are highly capacitive, a sense amplifier is typically 

considered for each ML to increase the performance of the 

search operation.  
As an example, in TLBs, the tag is the virtual page 

number (VPN), and the data are the corresponding physical 

page number (PPN). A virtual address generated by the CPU 

consists of the VPN, and a page offset. The page offset is later 

used along with PPN to form the physical address. Since most 

TLBs are fully associative, in order to find the corresponding 

PPN, a fully parallel search among VPNs is conducted for 

every generated virtual address.  
A BCAM cell is typically the integration of a 6-

transistor (6T) SRAM cell and comparator circuitry. The 

comparator circuitry is made out of either an XNOR or an XOR 

structure, leading to a NAND-type or a NOR-type operation, 

respectively. The selection of the comparing structure 

depends on the performance and the power requirements, as 

a NAND-type operation is slower and consumes less energy as 

opposed to that of a NOR type.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.Classical BCAM cell type(a)10T NOR(b)9T 

NAND 

 

The schematic of two types of typical BCAM cells 

are shown in Fig. 2. In a NAND-type CAM, the MLs are 

precharged high during the precharge phase. During the 

evaluation phase, in the case of a match, the corresponding 

ML is pulled down through a series of transistors [M5 in Fig. 

2(b)] performing a login NAND in the comparison process. 

In a NOR-type CAM [Fig. 2(a)], the MLs are also precharged 

high during the precharge phase. However, during the 

evaluation phase, all of the MLs are pulled down unless there 

is a matched entry such that the pull-down paths M3 − M4 and 

M5 − M6 are disabled. Therefore, a NOR-type CAM has a 

higher switching activity compared with that of a NAND type 
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since there are typically more mismatched entries than the 

matched ones. 
 

III. RELATED WORK 
 

Energy reduction of CAMs employing circuit-level 

techniques are mostly based on the following strategies: 1) 

reducing the SL energy consumption by disabling the 

precharge process of SLs when not necessary and 2) reducing 

the ML precharging, for example, by segmenting the ML, 

selectively precharging the first few segments and then 

propagating the precharge process if and only if those first 

segments match. This segmentation strategy increases the 

delay as the number of segments is increased. A hybrid-type 

CAM integrates the low-power feature of NAND type with the 

high-performance NOR is type while similar to selective 

precharging method, the ML segmented into two portions. 

The high-speed CAM designed in 32-nm CMOS achieves the 

cycle time of 290ps using a swapped CAM cell that reduces 

the search delay while requiring a larger CAM cell (11-

transistors) than a conventional CAM cell [9-transistors (9T)] 

used in SCN-CAM. A high-performance AND-type match-

line scheme is proposed in, where multiple fan-in AND gates 

are used for low switching activity along with segmented-

style match-line evaluation to reduce the energy consumption. 

 

In the bank-selection architecture  the CAM array is 

divided into B equally partitioned banks that are activated 

based on the value of added bits of length log2( B) to the search 

data word. These extra bits are decoded to determine, which 

banks must be selected. This architecture was considered at first 

to reduce the silicon area by sharing the comparison circuitry 

between the blocks but was later considered for power 

reduction as well. The drawback of this architecture is that the 

banks can overflow since the length of the words remains the 

same for all the banks. For example, let us consider a 128k-

entry CAM that incorporates 60-bit words and one additional 

bank-select bit such that two banks result with 64k entries 

each. 

 Therefore, each bank can have 2
60

 possibilities 

causing an overflow probability that is higher compared with 

when not banked. This overflow would require extra circuitry 

that reduces the power saving opportunity since as a result 

multiple banks are activated concurrently. 
The precomputation-based CAM (PB-CAM) architecture 

divides the comparison process and the circuitry into two 

stages. First, it counts the number of ones in an input and then 

compares the result with that of the entries using an additional 

CAM circuit that has the number of ones in the CAM-data 

previously stored. This activates a few MLs and deactivates 

the others. In the second stage, a modified CAM hierarchy is 

used, which has reduced complexity, and has only one pull-

down path instead of two compared with the conventional 

design. The modified architecture only considers 0 

mismatches instead of full comparison since the 1s have 

already been compared. The number of comparisons can be 

reduced to M × _log (N + 2) _ + (M × N)/ (N + 1) bits, where 

M is the number of entries in the CAM and N is the number 

of bits per entry. In the proposed design, we demonstrate how 

it is possible to reduce the number of comparisons to only N 

bits. Furthermore, in PB-CAM, the increase of the tag length 

affects the energy consumption, the delay, and also 

complicates the precomputation stage. 

 IV. SCN-CAM ALGORITHM 

 
                                       

 

 
 
 
 
 
 
 
 

Fig. 3. Top level block diagram of SCN-CAM. 
 

The CAM array is divided into M/ζ − 1 sub-blocks 

that can be independently activated for comparison. The 

compare-enable signals are generated by the SCN-based 

classifier. 

As shown in Fig. 3, the proposed architecture (SCN-

CAM) consists of an SCN-based classifier, which is 

connected to a special-purpose CAM array. The SCN-based 

classifier is at first trained with the association between the 

tags and the address of the data to be later retrieved. The 

proposed CAM array is based on a typical architecture, but is 

divided into several sub-blocks that can be compare-enabled 

independently. Therefore, it is also possible to train the 

network with the association between the tag and each CAM 

sub-block if the number of desired sub-blocks is known. 

However, in this paper, we focus on a generic architecture 

that can be easily optimized for any number of CAM sub-

blocks. Once an input tag is presented to the SCN-based 

classifier, it predicts which CAM sub-block(s) need to be 

compare-enabled and thus saves the dynamic power by 

disabling the rest. Disabling a CAM sub-block avoids 
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charging its highly capacitive SLs, while applying the search 

data, and also turns the precharge path off for the MLs. 

A. SCN-Based Classifier 

  SCN-Based Classifier is used for either training or 

decoding purposes, the input tag is reduced in length to q bits, 

and then divided into c equally. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Representation of the proposed SCN-CAM 
 

As shown in Fig. 4, an SCN-based classifier consists 

of two parts: 1) PI and 2) PII. The neurons in PI are binary, 

correspond to the input tags, and are grouped into c equally 

sized clusters with l neurons in each. Processing of an input 

tag in the SCN-based classifier is for either of the two 

situations: training or decoding. In this classifier, either for 

training or decoding purposes, the input tag is reduced in 

length to q bits, and then divided into c equally sized partitions 

of length κ bits each. Each partition is then mapped to the 

index of a neuron in its corresponding cluster in PI, using a 

direct binary-to-integer mapping from the tag portion to the 

index of the neuron to be activated. Thus, l = 2κ . If l is a given 

parameter, the number of clusters is calculated to be c = q/ 

log2(l).  

Network Training: The binary values of the 

connections in the SCN-based classier indicate associations 

of the input tags and the corresponding outputs. The 

connection values are set during the training process, and are 

stored in a memory module such that they can later be used to 

retrieve the address of the target data. A connection has a 

value 1 when there exists an association between the 

corresponding neuron. 

Network Update: When an update is requested in 

SCN-CAM, retraining the entire SCN-based classifier with 

the entries is not required. The new entry can therefore be 

added by adding new connections while keeping the previous 

connections for other entries in the network.   
Tag Decoding: Once the SCN-based classifier has been 

trained, the ultimate goal after receiving the tag is to 

determine which neuron(s) in should be activated based on 

the given q bits of the tag. This process is called decoding in 

which the connection values are recalled from the memory. 

The decoding process is divided into two steps.   
1) An input tag is reduced in length to q bits and divided 

into c equally sized partitions. The q bits can be selected 

within the tag bits in such a way to reduce the 

correlation.   
2) Local Decoding (LD): A single neuron per cluster in 

PI is activated using a direct binary-to-integer mapping 

from the tag portion to the index of the neuron to be 
activated. 

B. Tag-Length Reduction 

Given the input tags, the number of bits in the 
reduced-length tag, q, determines the number of possible 

ambiguities in PII. The generated ambiguities can be 

corrected with additional comparisons to find the exact match 
in the CAM. Therefore, no errors are produced in determining 
the matched result(s). On the other hand, no length reduction 
leads to the generation of no ambiguities, but a higher level of 
hardware complexity in the SCN-based classifier, since more 
neurons are required. 

C. Data Distribution 

The number of ambiguities, generated in PII is 

dependent on the correlation factor of the tag pattern that is the 

number of similar repeating bits in the subset of tags. 

 

V. CIRCUIT IMPLEMENTATION 
 

A top-level block diagram of the implementation 

of SCN-CAM is shown in Fig. 3. It shows how the SCN-

based classifier is connected to a custom-designed CAM 

array, where an example pertaining to the operation of a 4-

bit CAM is demonstrated. A 10- transistor (10T) NOR-type 

CAM with NOR-type ML architecture was used. The 

conventional NAND and NOR-type CAM architectures were 

also implemented for comparison purposes.  
In order to implement a circuit that can elaborate 

the benefit of the proposed algorithm, a set of design points 

were selected among 15 different parameter sets with the 

common goal of discovering the minimum energy 

consumption per search, while keeping the silicon-area 

overhead and the cycle time reasonable.  
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Fig. 5. Relationship between the length of the truncated 
tag (q), the number of matched entries in SCN-CAM (λ), 

and the estimated matching probability (P(λ)) for M = 
512. 

Fig. 5 shows simulations results on how it is possible 

to reduce the estimated number of required comparisons by 

increasing q. It is interesting to note that the number of 

clusters in PI does not affect the number of neurons.  

A drawback of such methods, unlike SCN-CAM, is 

that as the length of the tags is increased, the cycle time and 

the circuit complexity of the precomputation stage are 

dramatically increased. For design selections in Table I, this 

overhead is only 3.4% compared with that of the conventional 

CAM. The silicon area of the SCN-based classifier can be 

estimated by the area of the decoders, SRAM arrays, the 

precharging devices, interconnections and the standard cells. 
TABLE I REFERENCE DESIGN PARAMETERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  
 

 

 

 

 

 

 

 
 

 
 
 

Fig. 6. Comparisons in SCN-CAM versus the number of 
bits in the reduced-length tag. 

 
Fig.  6 shows simulation results on expected value of 

the number of SCN-CAM entries and number of bits in the 
reduced length code. 

A. SCN-CAM: Architecture of SCN-Based Classifier 

The SCN-based classifier in SCN-CAM architecture 

generates the compare-enable signal(s) for the CAM sub-

blocks attached to it. The architecture of the SCN-based 

classifier is shown in Fig. 7. It consists of c κ -to-l one-hot 

decoders, c SRAM modules of size l × M each, M c−input 

AND gates, M/ζ ζ −input OR gates, and M/ζ 2-input NAND 

gates. Each row of an SRAM module stores the connections 

from one tag to its corresponding output neuron. Each 

reduced-length tag of length q is thus divided into c subtags 

of κ bits each, where each subtag creates the row address of 

each SRAM module. 

1) Training: During the training process, the SRAM mod-ules 

store the connection values between the input tags and their 

corresponding outputs, which are later used in the decod-ing 

process. 
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Fig. 7.Simplified SCN-CAM architecture 

B. SCN-CAM: CAM Architecture 

In order to exploit the prominent feature of the 

SCN-based associative memory, a conventional CAM 

array is divided into sufficient number of compare-enabled 

sub-blocks such that: 1) the number of sub-blocks are not 

too many to expand the layout and to complicate the 

interconnections and 2) the number of sub-blocks should 

not be too few to be able to exploit to energy-saving 

opportunity with the SCN-based classifier.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .8.Simplified array organization of the proposed 

CAM architecture. 

 

Fig .8 shows the simplified array organization for 

CAM architecture. For example when N = 4, search data 

word is 0110 and En0 = 1. The sub-block compare-enable 

signals are generated by the SCN-based classifier.  

 

VI. CIRCUIT EVALUATION 

A complete circuit for SCN-CAM was implemented 

and simulated using HSPICE and TSMC 65-nm CMOS 

technology according to design parameters, including full 

dimensions of CAM arrays, SRAM arrays, logical gates, and 

extracted parasitics from the wires in the physical layout. 

Fig. 9 shows the cycle time is measured by the 

maximum reliable frequency of operation in the worst-case 

cycle time (SS) scenario. The required silicon area of SCN-

CAM is estimated to be 10.1% larger than that of the 

conventional NAND-type counterpart mainly due to the 

existence of the gaps between the SRAM blocks of the SCN-

based classifier. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 9. Simulation results for SCN-CAM based on 
reference design parameters table 

 
TABLE II Simulation Results 
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VII. CONCLUSION 

 
    The proposed architecture (SCN-CAM) employs a 

novel associativity mechanism based on a recently developed 

family of associative memories based on SCNs.  
SCN-CAM is suitable for low-power applications, 

where frequent and parallel look-up operations are required. 

SCN-CAM employs an SCN-based classifier, which is 

connected to several independently compare-enabled CAM 

sub-blocks, some of which are enabled once a tag is pre-sent 

to the SCN-based classifier. By using independent nodes in 

the output part of SCN-CAM’s training network, simple and 

fast updates can be achieved without retraining the network 

entirely. With optimized lengths of the reduced-length tags, 

SCN-CAM eliminates most of the comparison operations 

given a uniform distribution of the reduced-length inputs. 

Depending on the application, non-uniform inputs may result 

in higher power consumptions, but does not affect the 

accuracy of the final result. In other words, a few false-

positives may be generated by the SCN-based classifier, 

which are then filtered by the enabled CAM sub-blocks. 

Therefore, no false-negatives are ever generated.  
Conventional NAND-type and NOR-type 

architectures were also implemented in the same process 

technology to com-pare SCN-CAM against, along with other 

recently developed CAM architectures. It has been estimated 

that for a case study design parameter, the energy 

consumption and the cycle time of SCN-CAM are 8.02%, and 

28.6% of that of the conventional NAND-type architecture, 

respectively, with a 10.1% area overhead. Future work 

includes investigating sparse compression techniques for the 

matrix storing the connections in order to further reduce the 

area overhead. 
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