
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 74

FPGA Implementation of Fully Synchronized

Multi-Rate FSM Based Memory Efficient NID

System
Ms. Flemin Nicklet

1
, Dr. S. Prakash

2

PG scholar, Department of ECE, Jerusalem College of Engineering, Pallikkaranai, Chennai
1

Professor, Department of ECE, Jerusalem College of Engineering, Pallikkaranai, Chennai
2

Abstract: High speed and always-on network access is becoming common place around the world, creating a demand for

increased network security. Network Intrusion Detection Systems (NIDS) attempt to detect and prevent attacks from the

network using pattern-matching rules in a way similar to anti-virus software. For the low-cost hardware-based intrusion

detection systems, this project work proposed a memory-efficient parallel string matching scheme. In order to reduce the

number of state transitions, the finite state machine tiles in a string matcher adopt bit-level input symbols. Long target

patterns are divided into sub patterns with a fixed length; deterministic finite automata are built with the sub patterns. Using

the pattern dividing, the variety of target pattern lengths can be mitigated, so that memory usage in homogeneous string

matchers can be efficient. In order to identify each original long pattern being divided, a two-stage sequential matching

scheme is proposed for the successive matches with sub-patterns. As an extended work, here adding the all digital Phase

locked loop (ADPLL) for the multi-rate clock synchronization. The input intrusions are divided into pages and each of the

incoming pages will be in variable rate. Hence it’s important to do synchronization as the clock mismatch will leads to 3

major cases. An adaptive reconfigurable PLL based clock divider is used for variable rate pattern match and gated clock

system through early mismatch detection is verified through exhaustive test bench simulation. And finally FPGA

implementation was carried out using ALTERA CYCLONE family FPGA.

Keywords: Network Intrusion Detection System (NIDS), Deterministic Finite Automata (DFA), Pattern matching, Pattern

division.

I. INTRODUCTION

 Most digital circuits designed and fabricated today

are “synchronous”. In essence, they are based on two

fundamental assumptions that greatly simplify their design:

(1) all signals are binary, and (2) all components share a

common and discrete notion of time, as defined by a clock

signal distributed throughout the circuit. Asynchronous

circuits are fundamentally different [1-3]. For synchronous

circuits, power gating can be implemented in the fine-grain

or coarse-grain manner. The fine-grain power gating

approach has more opportunities to reduce leakage at run-

time than the coarse-grain power gating approach [4].

However, there are several design issues associated with

incorporating fine-grain power-gating in synchronous

circuits. First, fine-grain power-gating needs significant

buffering and routing resources to distribute the sleep

control signal to all the cells in the synchronous system

[5].On the other hand, FPGA-based systems provide higher

flexibility and high throughput comparable to ASICs

performance. FPGA-based platforms can exploit the fact that

the NIDS rules change relatively infrequently, and use

reconfiguration to reduce implementation cost. In addition,

they can exploit parallelism in order to achieve satisfactory

processing throughput. Additionally, matching a large

number of patterns has high area cost, so sharing logic is

critical, since it could save a significant amount of resources,

and make designs smaller and faster.

 Since string matching is the most computationally

intensive part of an NIDS, our proposed architectures exploit

the benefits of FPGAs to design efficient string matching

systems. The proposed architectures can support between 3

to 10 Gbps throughput, storing an entire NIDS set of patterns

in a single device. In this work, I suggest solutions to

maintain high performance and minimize area cost, show

also how pattern matching designs can be updated and

partially or entirely changed, and advocate that some

solutions can offer high performance, while require low

area.

II. NIDS For Packet Inspection

A. Software-based string match

 Several string matching algorithms have been

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 75

recently proposed in NIDS specially for SNORT’s open

source NIDS. First versions of SNORT used brute-force

pattern matching, which was very slow, making clear that

using a more efficient string matching algorithm, would

improve performance. The first implementations that

improved SNORT used the Boyer-Moore algorithm, and

later a “2-dimentional linked list with recursive node

walking”. This implementation improved SNORT

performance 200-500%. The Boyer-Moore algorithm is one

of the most well-known algorithms that use two heuristics to

reduce the number of comparisons. It first aligns the pattern

and the incoming data (text), the comparison begins from the

right-most character, and in case of mismatch the text is

properly shifted.

 However, the Boyer-Moore algorithm compares each

pattern independently against the incoming data, and hence

substrings repeated in more than one patterns are compared

multiple times. Another implementation of SNORT uses

Wu-Mander multi-pattern matching algorithm. The MWM

algorithm performs a hash on 2-character prefix of the input

data, in order to index into a group of patterns. This SNORT

implementation is much faster than previous ones.
 The topic of this thesis is the analysis and design of

ADPLL based multi rate NIDS systems, something that is

currently not achievable.

B. Hardware based string matching

 Software-based Intrusion Detection Systems can only

support modest throughput. Hardware based NIDS system

can easily adapt in NIDS application needs, achieving better

performance with reasonable cost. Many ASIC intrusion

detection systems usually store their rules using large

memory blocks, and examine incoming packets in integrated

processing engines. Generally, ASICs programmable

security co-processors are expensive, complicated, and

although they can support higher throughput compared to

GPP, they do not achieve impressive performance. The

memory blocks that store the NIDS rules are re-loaded,

whenever an updated rule-set is available.

 The most common technique for pattern matching in

ASIC intrusion detection systems is the use of regular

expressions. Updating the rule-set is not a trivial procedure,

since the system must be able to support a variation of rules,

with sometimes complex syntax, and special features. On the

other hand, FPGAs are more suitable; because they are

reconfigurable they provide hardware speed and exploit

parallelism.

C. Algorithms in misuse detection

• Simple string matching

• State Machine Matching

Simple string matching:

 The Boyer-Moore algorithm uses two different heuristics

for pattern match. The first heuristic, referred to as the bad

character heuristic, works as follows: if the search pattern

contains a malicious character the pattern is shifted out as a

mismatching character and it is aligned with the rightmost

position at which it appears inside the pattern. The second

heuristic, works as follows: if a mismatch is found in the

middle of the malicious character, the search pattern is

shifted to the next occurrence of the matched suffix in the

pattern. Both heuristics can lead to a shift distance of m.

State Machine Matching:

 Aho-Corasick String Matching Automaton for a given

finite set M of patterns is a (deterministic) finite automaton

G accepting the set of all words containing a word of P

.Formation about where to jump from one state to another in

FSM machine for each character in pattern M It just follows

the string to be matched making transitions via FSM states,

the transition function which tells which state to jump for

each patterns. Whenever we reach a final FSM state a match

is reported by the engine.

 D. NFA/DFA implementation at hardware level

 The most common approach is the regular expressions

matching, implemented using Finite Automata (NFAs or

DFAs). Regular expressions produce designs with low cost,

but at a modest throughput. The basic idea of is to generate

regular expressions for every pattern or group of patterns,

and implement them with N/DFA. A regular expression is a

pattern that describes one or more strings. It consists of

characters, which are considered as regular expressions, and

meta-characters (j,*, (,),) that have special use. Regular

expression syntax includes the following rules:

• ab, a followed by b.

• ajb, a or b.

• a*, zero, one, or more a.

 There are also other meta-characters that lead to

more complex syntaxes, and more efficient regular

expressions.

 Non-deterministic Finite Automata (NFAs) are

direct graphs, their nodes are states, and their edges are

labeled with a character. There is an initial and one or more

final states. On the other hand, Deterministic Finite

Automata (DFAs) are similar to NFAs, but they do not

include characters. Additionally, only one state can be active

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 76

in DFAs, while NFAs can have more than one active state.

Generally, NFAs are simpler and easier to design by just

listing all stored patterns. On the other hand, DFAs are

easier to implement, because there are no choices to be

considered, since there are no characters and there is only

one state active. Theoretically, DFA can be exponentially

larger than NFA, but in practice often DFAs have, as

compared to NFAs, a similar number of states (O (n) states,

where n is the number of expression characters). The use of

parallelism (processing multiple bytes or characters per

cycle) is in general difficult in finite-automata

implementations that are built with the implicit assumption

that the input is checked one byte at a time. One proposed

solution to this problem is the usage of packet-level

parallelism where multiple pattern matching subsystems

operating in parallel can process more than one packet.

E. Clock phase violation

 In any synchronous digital system clock signal will

be used for time reference for data propagation. Due to clock

skew phase of clock signal will be varying from one circuit

to another one. This will lead clock mismatch problem.

Sometimes it will lead Meta stability problem. In our

proposed NIDS system this problem arises in three levels as

follows

Clock mismatch in ASCII conversion module: With this

violation leads failure to get incoming patterns for pattern

match.

 Clock mismatch in string matching conversion module:

With this violation leads failure to match incoming patterns

with data base.

 Clock mismatch in pages: Even with incoming intrusions

match with data base pattern match module can’t assert any

signals.

III. HIGHLY SYNCHRONIZED NIDS SYSTEM

A. Phase Locked Loop

 The common approach for clock processing,

such as de-skewing and frequency multiplication, is based

on analog Phase-Locked-Loops (PLLs) or DLLs. In recent

years, the interest in all-digital DLLs (ADDLL) increased,

and several papers reporting such implementations have

been published. The Phase Locked Loop (PLL) is one of the

most ubiquitous electronic components found in almost

every electronic device

B. Feedback Divider Component

 As mentioned earlier the feedback frequency

divider (÷N) is used in frequency synthesis to produce a PLL

output signal frequency FV that is some multiple, N, of the

reference signal, FR. There are two common classes of

feedback divider: the integer-N and fractional-N dividers.

The integer-N type divides the frequency by an integer

divide ratio, while the fractional-N divider provides a

fractional divide ratio.

Fig.1. ADLL block diagram

C. Variable Delay Line

 The register-controlled variable delay line consists

of a combination of inverters and capacitors or a NAND gate

chain [2], [3]. The unit delay is determined by the logic gate

delay, such as that from an inverter or NAND. The unit

delay of a basic logic gate is too large to meet the skew

design specification. Therefore, a fine delay control scheme

is employed. The variable delay line consists of both coarse

and fine delay lines. In this case, in order to move the

switching compensation from a coarse delay line to a fine

delay line, the dual delay line is adopted.

Fig.2. Delay lines

C. Pattern identification

 For each target pattern, a unique identification

index should be provided in order to distinguish its pattern

match from other pattern matches. If multiple target patterns

are mapped onto a DFA, it is possible that a target pattern

can be a sub-pattern of other target patterns. For example, it

is assumed that four target patterns {“abc,” “abcd,” “ac,”

“bcd”} are mapped on a DFA, where target pattern lengths

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 77

range from 2 to 4. The fourth target pattern is a suffix of the

second target pattern. If the second target pattern is matched,

the fourth target pattern is always matched, but not vice

versa. We let a target pattern Pi be a suffix of another target

pattern Pj for Pi ¼6 Pj. If different identification indexes are

provided for the matches with Pi and Pj, respectively, Pi is

explicitly identified when Pj is matched.

 If only the identification index for Pj is provided,

Pi is implicitly identified. In this case, only the target pattern

with the longest prefix from the initial state has its own

identification index in the implicit identification; therefore,

users could detect matches with Pi after analyzing the

identification for Pj with extra effort. Let’s assume that only

k sub-patterns of a quotient vector, Qi ¼ fSPi1; SPi2; . . . ;

SPikg, are mapped onto a DFA. In this case, the number of

output states for the sub-patterns is equal to or smaller than

k.

D. Bit based leaf attaching algorithm

Fig.3. Proposed bit based comparison architecture

 Tree search algorithm is a good choice for a string

matching engine as the lookup latency does not depend on

the length of the pattern, but on the number of patterns in the

dictionary. In the case of the tree search, the latency is

proportional to log of the number of patterns. However, in

order to use tree search algorithms, the given set of patterns

needs to be processed to eliminate the overlap between

patterns. Leaf-pushing can be used to eliminate overlap.

E. Gated-Clock Design

 To reduce power consumption in NIDS system a

set of strategies termed dynamic power management (DPM)

is often used. The DPMs strategy consists in disabling some

of the FSM circuits by performing early detection operations

during bit wise matching form LSB to MSB, thus reducing

power consumption.

Fig.4. Early detection strategy

 At circuit level, this strategy is applied by the so-

called “gated clock” approach which disables the clock of

FFs More specifically, for FFs without an enable signal,

which is our case; we can adopt the early detection as it is

shown in Fig. 4.

IV. RESULTS
 Here ADPLL based synchronous NIDS system is

designed with 5 page pipelined architecture using and its

parameter optimization is proved over asynchronous

mechanism. The leaf attaching -based algorithm is highly

suitable for VLSI implementation, since it is built using

prefix and parallel computations. ADPLL system

components are designed and its functionality is verified

using Modelsim simulation. We used to prove the efficiency

of pipelined architecture through EDA tool synthesis to

realize the low hardware Complexity VLSI implementation.

Moreover, the computational accuracy can be selected based

on the trade-off between the hardware Complexity and

approximation error. In addition, since our proposed

algorithm has uniform scaling factor, it is also suitable for

scaled FPGA implementation. In order to evaluate the

practicality of implementing NIDS system on a single

FPGA, a typical top module was designed as a cascade of

NIDS sections, and was implemented on an ALTERA

CYCLONE Family FPGA through QUARTUS II EDA tool

based hardware synthesis.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 78

Fig.5. variable rate synchronized pattern match output

Fig.6. Clock Mismatch simulation report

Fig.7. Gated latch multi rate NIDS system

Fig.8. NIDS system RTL hardware view

Fig.9. FSM state machine viewer

V. CONCLUSION

 This paper has described an approach to the

implementation of multi rate NIDS based on field

programmable gate arrays (FPGAs). The proposed ADPLL-

based parallel string matching scheme minimizes total

memory requirements with variable rate pattern match. The

problem of variable data rate can be mitigated by dividing

source clock into multi rate with a phase locked.

Considering the unnecessary transition that occurs with

practical rule sets, it is concluded that the proposed CLOCK

GATED ADPLL string matching scheme is useful for

reducing total power requirements of parallel string

matching engines. Because of the programmability of this

technology, the method proposed in this paper can be

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 79

extended to provide a variety of other high performance real

time pattern match realizations.

REFERENCES

[1]. P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “Using String

Matching for Deep Packet Inspection,” IEEE Computer, vol. 41,

no. 4, pp. 23-28, Apr. 2008.

[2]. Snort, Ver.2.8, Network Intrusion Detection System, http://

www.snort.org., 2011.

[3]. Clam Antivirus, Ver.0.95.3. http://www.clamav.net., 2011.

[4]. C.-H. Lin, Y.-T. Tai, and S.-C. Chang, “Optimization of Pattern

Matching Algorithm for Memory Based Architecture,” Proc.

Third ACM/IEEE Symp. Architecture for Networking and

Comm. Systems, pp. 11-16, 2007.

[5]. Hoang Le, member, IEEE, and Viktor K. Prasanna, fellow,

IEEE, “A Memory Efficient and Modular Approach for Large-

Scale String Pattern Matching”,vol. 62, no. 5, May 2013.

[6]. H. Kim, H. Hong, H.-S. Kim, and S. Kang, “A Memory-

Efficient Parallel String Matching for Intrusion Detection

Systems,” IEEE Comm. Letters, vol. 13, no. 12, pp. 1004-1006,

Dec. 2009.

[7]. Haoyu Song and John W. Lockwood, Dept. CSE, Washington

University, “Efficient Packet Classification for Network

Intrusion Detection using FPGA”, 2005

[8]. F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R.H. Katz, “Fast

and Memory-Efficient Regular Expression Matching for Deep

Packet Inspection,” Proc. Second ACM/IEEE Symp.

Architecture for Networking and Comm. Systems, pp. 93-102,

2006.

[9]. A.V. Aho and M.J. Corasick, “Efficient String Matching: An

Aid to Bibliographic Search,” Comm. ACM, vol. 18, no 6, pp.

333-340, 1975.

[10]. L. Tan and T. Sherwood, “A High Throughput String Matching

Architecture for Intrusion Detection and Prevention,” Proc. 32nd

IEEE/ACM Int’l Symp. Computer Architecture, pp. 112-122,

2005.

[11]. L. Tan, B. Brotherton, and T. Sherwood, “Bit-Split String-

Matching Engines for Intrusion Detection and Prevention,”

ACM Trans. Architecture and Code Optimization, vol. 3, no. 1,

pp. 3-34, Mar. 2006.

[12]. Y.-J. Jeon, J.-H. Lee, H.-C. Lee, K.-W. Jin, K.-S. Min, J.-Y. Y.

Chung, and H.-J. J. Park, “A 66–333-MHz 12-mW register-

controlled DLL with a single delay line and adaptive-duty-cycle

clock dividers for production DDR SDRAMs,” IEEE J. Solid-

State Circuits, vol. 39, no. 11, pp. 2087–2092, Nov. 2004.

[13]. K.-H. Kim, J.-B. Lee, W.-J. Lee, B.-H. Jeong, G.-H. Cho, J.-S.

Lee, G.-S. Byun, C. Kim, Y.-H. Jun, and S.-I. Cho, “A 1.4 Gb/s

DLL using 2nd order charge-pump scheme with low phase/duty

error for high-speed DRAM application,” in IEEE Int. Solid-

State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 213–214.

[14]. T. Hamamoto, K. Furutani, T. Kubo, S. Kawasaki, H. Iga, T.

Kono, Y. Konishi, and T. Yoshihara, “A 667-Mb/s operating

digital DLL architecture for 512-Mb DDR,” IEEE J. Solid-State

Circuits, vol. 39, no. 1, pp. 194–206, Jan. 2004.

