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Abstract: In this paper it is not an easy task to securely maintain all essential data where it has the need in many 

applications for clients in cloud. To maintain our data in cloud, it may not be fully trustworthy because client doesn’t have 

copy of all stored data. But any authors don’t tell us data integrity through its user and CSP level by comparison before and 

after the data update in cloud. So we have to establish new proposed system for this using our data reading protocol 

algorithm to check the integrity of data before and after the data insertion in cloud. Here the security of data before and 

after is checked by client with the help of CSP using our ―effective automatic data reading protocol from user as well as 

cloud level into the cloud‖ with truthfulness. Also we have proposed the multi-server data comparison algorithm with the 

calculation of overall data in each update before its outsourced level for server restore access point for future data recovery 

from cloud data server. Our proposed scheme efficiently checks integrity in efficient manner so that data integrity as well as 

security can be maintained in all cases by considering drawbacks of existing methods. 
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I. INTRODUCTION 

 CLOUD storage offers an on-demand data 

outsourcing service model, and is gaining popularity due to 

its elasticity and low maintenance cost. However, security 

concerns arise when data storage is outsourced to third- 

party cloud storage providers. It is desirable to enable cloud 

clients to verify the integrity of their outsourced data, in case 

their data have been accidentally corrupted or maliciously 

compromised by insider/outsider attacks. 

One major use of cloud storage is long-term 

archival, which represents a workload that is written once 

and rarely read. While the stored data are rarely read, it 

remains necessary to ensure its integrity for disaster 

recovery or compliance with legal requirements (e.g., [24]). 

Since it is typical to have a huge amount of archived data, 

whole-file checking becomes prohibitive. Proof of 

retrievability (POR) [16] and proof of data possession (PDP) 

[3] have thus been proposed to verify the integrity of a large 

file by spot- checking 

It implements FMSR-DIP codes, and evaluate their 

overhead over the existing FMSR codes only a fraction of 

the file via various crypto- graphic primitives. 

Suppose that we outsource storage to a server, 

which could be a storage site or a cloud-storage provider. If 

we detect corruptions in our outsourced data (e.g., when a 

server crashes or is compromised), then we should repair 

repair traffic saving over traditional erasure codes? A related 

approach is HAIL [4], which applies integrity protection for 

erasure codes. It constructs protection data on a per-file basis 

and distributes the protection data across different servers. 

To repair any lost data during a server failure, one needs to 

access the whole file, and this violates the design of 

regenerating codes. Thus, we need a different design of 

integrity protection tailored for regenerating codes  

This paper design and implement a practical data 

integrity protection (DIP) scheme for regenerating-coding- 

based cloud storage. it augment the implementation of 

functional minimum-storage regenerating (FMSR) codes 

[15] and construct FMSR-DIP codes, which allow clients to 

remotely verify the integrity of random subsets of long-term 

archival data under a multiserver setting. FMSR-DIP codes 

preserve fault tolerance and repair traffic saving as in FMSR 

codes [15]. Also, we assume only a thin-cloud interface [23], 

meaning that servers only need to support standard read/ 

write functionalities. This adds to the portability of FMSR- 

DIP codes and allows simple deployment in general types of 

storage services. By combining integrity checking and 

efficient recovery, FMSR-DIP codes provide a low-cost 

solution for maintaining data availability in cloud storage. 

 It designs FMSR-DIP codes, which enable 
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integrity protection, fault tolerance, and efficient recovery 

for cloud storage. 

 It exports several tunable parameters from FMSR- 

DIP codes, such that clients can make a trade-off between 

performance and security. 

 It  conducts  mathematical analysis on the security 

of FMSR-DIP codes for different parameter choices. 

II. LITERATURE SURVEY 

  H. Abu-Libdeh  L.Princehouse and 

H.Weatherspoon  et.al., proposed a Cloud storage 

providers expose simple interfaces to developers. Amazon 

S3’s data model provides flat namespaces (“buckets”) into 

which named objects can be uploaded for later retrieval. 

Other storage services can be mounted as network file 

systems. There is no widely agreed-upon standard interface, 

but S3’s REST API has been adopted by smaller providers 

and by the open-source Eucalyptus server software. These 

interfaces differ, but are similar enough to be considered 

interchangeable. Storage providers are forced to compete on 

price rather than by offering unique services.  Cloud storage 

is a highly competitive market. A change in pricing scheme 

or the emergence of new competition can render a particular 

provider unfavorably expensive compared to its alternatives. 

Clients may not be able to pick an optimal cloud storage 

provider because the switching cost overrides the desired 

benefits. Thus, clients experience vendor lock-in if their 

stored data is large.  The fundamental problem is that clients 

have to make an all-or-none decision in switching their data 

to new providers 

                 By striping data across multiple providers and 

adding appropriate redundancy, clients can tolerate outages 

and operational failures, as well as adapt to changes in the 

economic landscape.The goal of RACS is slightly different 

than RAID-5. Cloud storage is assumed to be much more 

reliable than hard disks, so data loss prevention is a much 

less compelling reason to use error correcting codes. RACS 

lowers the cost of switching providers, e.g., as a result of 

economic failure. Only1m of all data needs to be moved to 

leave a vendor. By reducing the impact of vendor lock-in, 

RACS increases the leverage of customers when negotiating 

contracts with cloud providers. RACS is implemented as an 

HTTP proxy with the same interface as Amazon S3. 

 M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, 

R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, 

I. Stoica, and M. Zaharia et.al Proposed a Cloud 

Computing, the long-held dream of computing as a utility, 

has the potential to transform a large part of the IT industry, 

making software even more attractive as a service and 

shaping the way IT hardware is designed and purchased. 

Developers with innovative ideas for new Internet services 

no longer require the large capital outlays in hardware to 

deploy their service or the human expense to operate it. 

 Our goal in this paper to reduce that confusion by 

clarifying terms, providing simple figures to quantify 

comparisons between of cloud and conventional Computing, 

and identifying the top technical and non-technical obstacles 

and opportunities of Cloud Computing. Applications 

Software needs to both scale down rapidly as well as scale 

up, which is a new requirement. Such software also needs a 

pay-for-use licensing model to match needs of Cloud 

Computing. Infrastructure Software needs to be aware that it 

is no longer running on bare metal but on VMs. Moreover, 

billing needs to built in from the start.                                 

Hardware Systems should be designed at the scale of a 

container (at least a dozen racks), which will be is the 

minimum purchase size. Cost of operation will match 

performance and cost of purchase in importance, rewarding 

energy proportionality such as by putting idle portions of the 

memory, disk, and network into low power mode. 

Processors should work well with VMs and flash memory 

should be added to the memory hierarchy, and LAN 

switches and WAN routers must improve in bandwidth and 

cost. 

III.  THEORY 

 
Figure 1 

                  We adopt the adversarial model in [4] as our 

threat model. We assume that an adversary is mobile 

Byzantine, meaning that the adversary compromises a subset 

of servers in different time epochs (i.e., mobile) and exhibits 

arbitrary behaviors on the data stored in the compromised 

servers (i.e., Byzantine). To ensure meaningful file 

availability, we assume that the adversary can compromise 

and corrupt data in at most n  k out of the n servers in any 

epoch, subject to the ðn; kÞ-MDS fault tolerance 

requirement. At the, end of each epoch, the client can ask for 

randomly chosen parts of remotely stored data and run a 
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probabilistic checking protocol to verify the data integrity. 

Servers corrupted by the adversary may or may not correctly 

return data requested by the client. If corruption is detected, 

then the client may trigger the repair phase to repair 

corrupted data. 

3.1 Working principle of FMSR Code   

It first reviews FMSR codes in NCCloud [15], on 

which our DIP scheme is developed. FMSR codes belong to 

maximum distance separable (MDS) codes. An MDS code is 

defined by the parameters (n-k) where k < n. It encodes a file 

F of size |F| into n pieces of size |F|/k each. An (n,k)-MDS 

code states that the original file can be reconstructed from 

any k out of n pieces (i.e., the total size of data required is 

|F|). An extra feature of FMSR codes is that a specific piece 

can be reconstructed from data of size less than |F|. FMSR 

codes are built on regenerating codes [11], which minimize 

the repair traffic while preserving the MDS property. 

We consider a distributed storage setting in which a 

file is striped over n servers using an (n,k)-FMSR code. 

Each server can be a storage site or even a cloud storage 

provider, and is assumed to be independent of other servers. 

An (n,k)-FMSR code splits a file of size |F| evenly into k(n-

k) native chunks, and encodes them into n(n-k) code chunks 

where each native and code chunk has size |F|/k(n-k) . Each 

code chunk, denoted by Pi (where 1<=i<=n(n-k)), is 

constructed by a random linear combination of the native 

chunks, similar to the idea in [20]. The n(n-k) code chunks 

are stored in n servers (i.e., n -k code chunks per server), 

where the k(n-k) code chunks from any k servers can be 

decoded to reconstruct the original data. Decoding can be 

done by inverting the encoding matrix [19]. 

Suppose that one server fails. Our goal is to 

reconstruct the lost data of the failed server in a new server, 

so as to maintain the (n,k)-MDS fault tolerance. We define 

the repair traffic as the amount of data read from the other 

surviving servers, so as to reconstruct the lost data. We 

assume that there is a proxy (NCCloud in our case) that 

handles the entire Repair operation. 

The conventional repair method for a single-server 

failure is to simply reconstruct the whole file by contacting 

any k surviving servers, so the repair traffic is |F|. Note that 

this repair method applies to all (n,k)-MDS codes. On the 

other hand, in FMSR codes, we first randomly pick a chunk 

from each of the (n-1) surviving servers, and then generate 

(n-k) random linear combinations of these (n-1)  chunks to 

store in a new server. To guarantee that the MDS fault 

tolerance is preserved after multiple rounds of repair, 

NCCloud performs two-phase checking on the new code 

chunks generated in the Repair operation [15]. Fig. 1 

illustrates the Repair operation for the (4, 2)-FMSR code, in 

which the repair traffic is reduced by 25 percent to 0:75jFj. 

It is shown that the repair traffic of FMSR codes can be 

further reduced to 50 percent for k=n-2 if n is large [15]. 

 
Figure 2 

Example of how a file is repaired in (4,2)-FMSR codes. 

Each of the code chunks P1;...;P8 is a random linear 

combination of the native chunks. P1 and P2 are distinct 

random linear combinations of P3, P5, and P7. 

                 We implement FMSR-DIP codes atop NCCloud 

[15]. In this section, we address how our implementation can 

fine-tune various design parameters to trade security for 

performance. Please refer to Section 5 of the supplementary 

file, available online, for additional implementation details 

on how we integrate FMSR-DIP codes into NCCloud and 

how we instantiate the cryptographic primitives. 

 FMSR-DIP codes operate in units of bytes. 

However, byte-level operations may make the 

implementation inefficient in practice, especially for large 

files. Here, we describe how FMSR-DIP codes can be 

extended to operate in units of blocks (i.e., a sequence of 

bytes) to trade security for performance. In the following, we 

describe the possible tunable parameters that are supported 

in FMSR-DIP codes. 

PRP block size. Instead of permuting bytes, we can 

permute blocks of a tunable size (called the PRP block size). 

A larger PRP block size increases efficiency, but at the same 

time decreases security guarantees. 

PRF block size. In a byte-level PRF operation, we 

can simply take the first byte of the AES-128 output as the 

PRF output. In fact, we can also compute a longer PRF and 

apply the PRF output to a block of bytes of a tunable size 

(called the PRF block size). To extend the PRF beyond the 

AES block size (16 bytes), we can pad the nonce with a 

chain of input blocks of 16 bytes each, and encrypt them 

using CBC mode. However, setting the PRF block size to 
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larger than 16 bytes shows minimal performance 

improvement, as AES is invoked once for every 16 bytes of 

input in CBC mode and the total number of AES invocations 

remains the same for a larger PRF block size. 

Check block size. Reading data from cloud storage 

is priced based on the number of GET requests. In the Check 

operation, downloading 1 byte per request will incur a huge 

monetary overhead. To reduce the number of GET requests, 

we can check a block of bytes of a tunable size (called the 

check block size). The checked blocks at the same offset of 

all code chunks will contain multiple rows of bytes. 

Although not necessary, it is recommended to set the check 

block size as a multiple of the PRF block size, so as to align 

with the PRF block operations. 

AECC parameters. The AECC parameters (n’,k’) 

control the error tolerance within a code chunk and the 

domain size of the PRP being used in AECC. Given the 

same k’, a larger n’ implies better protection, but introduces 

a higher computational overhead. 

Checking percentage. The checking percentage  

defines the percentage of a file to be checked in the Check 

operation. A larger  implies more robust checking, at the 

expense of both higher monetary and performance over- 

heads with more data to download and check. 

3.2 Cryptographic Primitives 

                           Our DIP scheme is built on several 

cryptographic primi- tives, whose detailed descriptions can 

be found in [13], [14]. The primitives include: 

1. symmetric encryption, 

2. a family of pseudorandom functions (PRFs), 

3 .a family of pseudorandom permutations (PRPs), 

and 

4 .message authentication codes (MACs). 

Each of the primitives takes a secret key. 

Intuitively, it means that it is computationally infeasible for 

an adversary to break the security of a primitive without 

knowing its corresponding secret key. 

           We also need a systematic adversarial error-

correcting ;code (AECC) [5], [9] to protect against the 

corruption of a chunk. In conventional error-correcting 

codes (ECC), when a large file is encoded, it is first broken 

down into smaller stripes to which ECC is applied 

independently. AECC uses a family of PRPs as a building 

block to randomize the stripe structure so that it is 

computationally infeasible for an adversary to target and 

corrupt any particular stripe. Both FMSR codes and AECC 

provide fault tolerance. The difference is that we apply 

FMSR codes to a file striped across servers, while we apply 

AECC to a single code chunk stored within a server. 

3.3  New Features of FMSR-DIP Implementation  

 In previous FMSR-DIP codes we have only a single  

link between the chunks it may not give integrity because if 

the single link available is lost then there is no way to get the 

information available in the chunk. To overcome this 

drawbacks it provides a XOR linked list in the XOR linked 

list to get the link from both previous and next chunk. If a 

single link is lost then we can get the information through 

another link. It provides a high integrity. 

  
Figure 3 

By having the double link through the each and 

every link the unauthorised person can get the file to avoid 

this we are using an RSA algorithm. The main purpose of 

this RSA algorithm is to enable a key generation by using 

key, the authorised person only can get the file this system 

gives a high integrity in the NC cloud.                             

IV.  SIMULATION RESULT 

 
Figure 4 

In this above figure show the user and admin login. 

Valid user only view the details of the files. 
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Figure 5 

 In the above figure register to the new user. Then 

click the register button those who are only to view the files 

and then only the specified user to click the login button then 

go for next steps (i.e display the network details ). 

 
Figure 6 

In the above figure show the network details. This 

show those who are connected to the same network. 

 
Figure 7 

In the above figure show the details of the 

registered users details only. 

 
Figure 8 

In the above figure show the user request. User 

request to the admin and  accepted the request to user. 

Admin send the key to the specified valid user. 

 
Figure 9 

 This form is used to upload the file when admin 

uploaded file was splitted and stored in a different server. 

 
Figure  10 

The user view and download file using the valid key then 

only download the file otherwise neglet the file. Splitted file 

was merged and download the files.       

 

                                                                                                                             



                                                                                                                    ISSN 2394-3777 (Print) 
                                                                                                                                                             ISSN 2394-3785 (Online)    
                                                                                                                                         Available online at www.ijartet.com  
                         
                             
                            International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

  Vol. 2, Issue 5, May 2015 

 

 

 

 

                                                                 All Rights Reserved © 2015 IJARTET                                                   17 
 

V.  CONCLUSION 
 We design and implement a practical data integrity 

protection (DIP) scheme for regenerating-coding based 

cloud storage. We augment the implementation of functional 

minimum-storage regenerating (FMSR) codes and construct 

FMSR-DIP codes, which allow clients to remotely verify the 

integrity of random subsets of long-term archival data under 

a multiserver setting. FMSR-DIP codes preserve fault 

tolerance and repair traffic saving as in FMSR codes. Also, 

we assume only a thin-cloud interface, meaning that servers 

only need to support standard read/ write functionalities. 

This adds to the portability of FMSRDIP codes and allows 

simple deployment in general types of storage services. By 

combining integrity checking and efficient recovery, FMSR-

DIP codes provide a low-cost solution for maintaining data 

availability in cloud storage. The problem of checking the 

integrity of static data, which is typical in long-term archival 

storage, The FMSR-DIP codes provide a low cost solution 

for maintaining data availability in cloud storage design 

FMSR-DIP codes, which enable integrity protection, fault 

tolerance, and efficient recovery for cloud storage. Conduct 

mathematical analysis on the security of FMSR-DIP codes 

for different parameter choices. It can implement FMSR-

DIP codes and evaluate the running times of different basic 

operations, including Upload, Check, Download, and Repair, 

for different parameter choices. In this we are using security 

process in the form of code based derived key from the 

master key in the before system there is no security in the 

form encryption and decryption process. In this it uses 

dynamic public cloud and XOR Linked list to the recovery 

processes. 

VI.  FUTURE ENHANCEMENT 

 Using MD5 file encrypting with higher security and 

priority.Merge and split file using correlation game theory.It 

is used for splitting the files in speed manner. 
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