
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 12

Secure Process Data in Cloud Storage Using

Data Integrity Protection
S.Muthukumari

 1
, D.Stanley

2
, A.Ramesh Kumar

 3

Department Of Computer Applications, Francis Xavier Engineering College,Tirunelveli,TamilNadu, India
1

Asst.Prof , Department Of Computer Applications, Francis Xavier Engineering College, Tirunelveli, TamilNadu, India
 2

Department Of Computer Applications, Francis Xavier Engineering College,Tirunelveli,TamilNadu, India
 3

Abstract: In this paper it is not an easy task to securely maintain all essential data where it has the need in many

applications for clients in cloud. To maintain our data in cloud, it may not be fully trustworthy because client doesn’t have

copy of all stored data. But any authors don’t tell us data integrity through its user and CSP level by comparison before and

after the data update in cloud. So we have to establish new proposed system for this using our data reading protocol

algorithm to check the integrity of data before and after the data insertion in cloud. Here the security of data before and

after is checked by client with the help of CSP using our ―effective automatic data reading protocol from user as well as

cloud level into the cloud‖ with truthfulness. Also we have proposed the multi-server data comparison algorithm with the

calculation of overall data in each update before its outsourced level for server restore access point for future data recovery

from cloud data server. Our proposed scheme efficiently checks integrity in efficient manner so that data integrity as well as

security can be maintained in all cases by considering drawbacks of existing methods.

Keywords: Cloud Storage, Data Integrity, Encryption, Security

I. INTRODUCTION

 CLOUD storage offers an on-demand data

outsourcing service model, and is gaining popularity due to

its elasticity and low maintenance cost. However, security

concerns arise when data storage is outsourced to third-

party cloud storage providers. It is desirable to enable cloud

clients to verify the integrity of their outsourced data, in case

their data have been accidentally corrupted or maliciously

compromised by insider/outsider attacks.

One major use of cloud storage is long-term

archival, which represents a workload that is written once

and rarely read. While the stored data are rarely read, it

remains necessary to ensure its integrity for disaster

recovery or compliance with legal requirements (e.g., [24]).

Since it is typical to have a huge amount of archived data,

whole-file checking becomes prohibitive. Proof of

retrievability (POR) [16] and proof of data possession (PDP)

[3] have thus been proposed to verify the integrity of a large

file by spot- checking

It implements FMSR-DIP codes, and evaluate their

overhead over the existing FMSR codes only a fraction of

the file via various crypto- graphic primitives.

Suppose that we outsource storage to a server,

which could be a storage site or a cloud-storage provider. If

we detect corruptions in our outsourced data (e.g., when a

server crashes or is compromised), then we should repair

repair traffic saving over traditional erasure codes? A related

approach is HAIL [4], which applies integrity protection for

erasure codes. It constructs protection data on a per-file basis

and distributes the protection data across different servers.

To repair any lost data during a server failure, one needs to

access the whole file, and this violates the design of

regenerating codes. Thus, we need a different design of

integrity protection tailored for regenerating codes

This paper design and implement a practical data

integrity protection (DIP) scheme for regenerating-coding-

based cloud storage. it augment the implementation of

functional minimum-storage regenerating (FMSR) codes

[15] and construct FMSR-DIP codes, which allow clients to

remotely verify the integrity of random subsets of long-term

archival data under a multiserver setting. FMSR-DIP codes

preserve fault tolerance and repair traffic saving as in FMSR

codes [15]. Also, we assume only a thin-cloud interface [23],

meaning that servers only need to support standard read/

write functionalities. This adds to the portability of FMSR-

DIP codes and allows simple deployment in general types of

storage services. By combining integrity checking and

efficient recovery, FMSR-DIP codes provide a low-cost

solution for maintaining data availability in cloud storage.

 It designs FMSR-DIP codes, which enable

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 13

integrity protection, fault tolerance, and efficient recovery

for cloud storage.

 It exports several tunable parameters from FMSR-

DIP codes, such that clients can make a trade-off between

performance and security.

 It conducts mathematical analysis on the security

of FMSR-DIP codes for different parameter choices.

II. LITERATURE SURVEY

 H. Abu-Libdeh L.Princehouse and

H.Weatherspoon et.al., proposed a Cloud storage

providers expose simple interfaces to developers. Amazon

S3’s data model provides flat namespaces (“buckets”) into

which named objects can be uploaded for later retrieval.

Other storage services can be mounted as network file

systems. There is no widely agreed-upon standard interface,

but S3’s REST API has been adopted by smaller providers

and by the open-source Eucalyptus server software. These

interfaces differ, but are similar enough to be considered

interchangeable. Storage providers are forced to compete on

price rather than by offering unique services. Cloud storage

is a highly competitive market. A change in pricing scheme

or the emergence of new competition can render a particular

provider unfavorably expensive compared to its alternatives.

Clients may not be able to pick an optimal cloud storage

provider because the switching cost overrides the desired

benefits. Thus, clients experience vendor lock-in if their

stored data is large. The fundamental problem is that clients

have to make an all-or-none decision in switching their data

to new providers

 By striping data across multiple providers and

adding appropriate redundancy, clients can tolerate outages

and operational failures, as well as adapt to changes in the

economic landscape.The goal of RACS is slightly different

than RAID-5. Cloud storage is assumed to be much more

reliable than hard disks, so data loss prevention is a much

less compelling reason to use error correcting codes. RACS

lowers the cost of switching providers, e.g., as a result of

economic failure. Only1m of all data needs to be moved to

leave a vendor. By reducing the impact of vendor lock-in,

RACS increases the leverage of customers when negotiating

contracts with cloud providers. RACS is implemented as an

HTTP proxy with the same interface as Amazon S3.

 M. Armbrust, A. Fox, R. Griffith, A.D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia et.al Proposed a Cloud

Computing, the long-held dream of computing as a utility,

has the potential to transform a large part of the IT industry,

making software even more attractive as a service and

shaping the way IT hardware is designed and purchased.

Developers with innovative ideas for new Internet services

no longer require the large capital outlays in hardware to

deploy their service or the human expense to operate it.

 Our goal in this paper to reduce that confusion by

clarifying terms, providing simple figures to quantify

comparisons between of cloud and conventional Computing,

and identifying the top technical and non-technical obstacles

and opportunities of Cloud Computing. Applications

Software needs to both scale down rapidly as well as scale

up, which is a new requirement. Such software also needs a

pay-for-use licensing model to match needs of Cloud

Computing. Infrastructure Software needs to be aware that it

is no longer running on bare metal but on VMs. Moreover,

billing needs to built in from the start.

Hardware Systems should be designed at the scale of a

container (at least a dozen racks), which will be is the

minimum purchase size. Cost of operation will match

performance and cost of purchase in importance, rewarding

energy proportionality such as by putting idle portions of the

memory, disk, and network into low power mode.

Processors should work well with VMs and flash memory

should be added to the memory hierarchy, and LAN

switches and WAN routers must improve in bandwidth and

cost.

III. THEORY

Figure 1

 We adopt the adversarial model in [4] as our

threat model. We assume that an adversary is mobile

Byzantine, meaning that the adversary compromises a subset

of servers in different time epochs (i.e., mobile) and exhibits

arbitrary behaviors on the data stored in the compromised

servers (i.e., Byzantine). To ensure meaningful file

availability, we assume that the adversary can compromise

and corrupt data in at most n k out of the n servers in any

epoch, subject to the ðn; kÞ-MDS fault tolerance

requirement. At the, end of each epoch, the client can ask for

randomly chosen parts of remotely stored data and run a

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 14

probabilistic checking protocol to verify the data integrity.

Servers corrupted by the adversary may or may not correctly

return data requested by the client. If corruption is detected,

then the client may trigger the repair phase to repair

corrupted data.

3.1 Working principle of FMSR Code

It first reviews FMSR codes in NCCloud [15], on

which our DIP scheme is developed. FMSR codes belong to

maximum distance separable (MDS) codes. An MDS code is

defined by the parameters (n-k) where k < n. It encodes a file

F of size |F| into n pieces of size |F|/k each. An (n,k)-MDS

code states that the original file can be reconstructed from

any k out of n pieces (i.e., the total size of data required is

|F|). An extra feature of FMSR codes is that a specific piece

can be reconstructed from data of size less than |F|. FMSR

codes are built on regenerating codes [11], which minimize

the repair traffic while preserving the MDS property.

We consider a distributed storage setting in which a

file is striped over n servers using an (n,k)-FMSR code.

Each server can be a storage site or even a cloud storage

provider, and is assumed to be independent of other servers.

An (n,k)-FMSR code splits a file of size |F| evenly into k(n-

k) native chunks, and encodes them into n(n-k) code chunks

where each native and code chunk has size |F|/k(n-k) . Each

code chunk, denoted by Pi (where 1<=i<=n(n-k)), is

constructed by a random linear combination of the native

chunks, similar to the idea in [20]. The n(n-k) code chunks

are stored in n servers (i.e., n -k code chunks per server),

where the k(n-k) code chunks from any k servers can be

decoded to reconstruct the original data. Decoding can be

done by inverting the encoding matrix [19].

Suppose that one server fails. Our goal is to

reconstruct the lost data of the failed server in a new server,

so as to maintain the (n,k)-MDS fault tolerance. We define

the repair traffic as the amount of data read from the other

surviving servers, so as to reconstruct the lost data. We

assume that there is a proxy (NCCloud in our case) that

handles the entire Repair operation.

The conventional repair method for a single-server

failure is to simply reconstruct the whole file by contacting

any k surviving servers, so the repair traffic is |F|. Note that

this repair method applies to all (n,k)-MDS codes. On the

other hand, in FMSR codes, we first randomly pick a chunk

from each of the (n-1) surviving servers, and then generate

(n-k) random linear combinations of these (n-1) chunks to

store in a new server. To guarantee that the MDS fault

tolerance is preserved after multiple rounds of repair,

NCCloud performs two-phase checking on the new code

chunks generated in the Repair operation [15]. Fig. 1

illustrates the Repair operation for the (4, 2)-FMSR code, in

which the repair traffic is reduced by 25 percent to 0:75jFj.

It is shown that the repair traffic of FMSR codes can be

further reduced to 50 percent for k=n-2 if n is large [15].

Figure 2

Example of how a file is repaired in (4,2)-FMSR codes.

Each of the code chunks P1;...;P8 is a random linear

combination of the native chunks. P1 and P2 are distinct

random linear combinations of P3, P5, and P7.

 We implement FMSR-DIP codes atop NCCloud

[15]. In this section, we address how our implementation can

fine-tune various design parameters to trade security for

performance. Please refer to Section 5 of the supplementary

file, available online, for additional implementation details

on how we integrate FMSR-DIP codes into NCCloud and

how we instantiate the cryptographic primitives.

 FMSR-DIP codes operate in units of bytes.

However, byte-level operations may make the

implementation inefficient in practice, especially for large

files. Here, we describe how FMSR-DIP codes can be

extended to operate in units of blocks (i.e., a sequence of

bytes) to trade security for performance. In the following, we

describe the possible tunable parameters that are supported

in FMSR-DIP codes.

PRP block size. Instead of permuting bytes, we can

permute blocks of a tunable size (called the PRP block size).

A larger PRP block size increases efficiency, but at the same

time decreases security guarantees.

PRF block size. In a byte-level PRF operation, we

can simply take the first byte of the AES-128 output as the

PRF output. In fact, we can also compute a longer PRF and

apply the PRF output to a block of bytes of a tunable size

(called the PRF block size). To extend the PRF beyond the

AES block size (16 bytes), we can pad the nonce with a

chain of input blocks of 16 bytes each, and encrypt them

using CBC mode. However, setting the PRF block size to

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 15

larger than 16 bytes shows minimal performance

improvement, as AES is invoked once for every 16 bytes of

input in CBC mode and the total number of AES invocations

remains the same for a larger PRF block size.

Check block size. Reading data from cloud storage

is priced based on the number of GET requests. In the Check

operation, downloading 1 byte per request will incur a huge

monetary overhead. To reduce the number of GET requests,

we can check a block of bytes of a tunable size (called the

check block size). The checked blocks at the same offset of

all code chunks will contain multiple rows of bytes.

Although not necessary, it is recommended to set the check

block size as a multiple of the PRF block size, so as to align

with the PRF block operations.

AECC parameters. The AECC parameters (n’,k’)

control the error tolerance within a code chunk and the

domain size of the PRP being used in AECC. Given the

same k’, a larger n’ implies better protection, but introduces

a higher computational overhead.

Checking percentage. The checking percentage

defines the percentage of a file to be checked in the Check

operation. A larger implies more robust checking, at the

expense of both higher monetary and performance over-

heads with more data to download and check.

3.2 Cryptographic Primitives

 Our DIP scheme is built on several

cryptographic primi- tives, whose detailed descriptions can

be found in [13], [14]. The primitives include:

1. symmetric encryption,

2. a family of pseudorandom functions (PRFs),

3 .a family of pseudorandom permutations (PRPs),

and

4 .message authentication codes (MACs).

Each of the primitives takes a secret key.

Intuitively, it means that it is computationally infeasible for

an adversary to break the security of a primitive without

knowing its corresponding secret key.

 We also need a systematic adversarial error-

correcting ;code (AECC) [5], [9] to protect against the

corruption of a chunk. In conventional error-correcting

codes (ECC), when a large file is encoded, it is first broken

down into smaller stripes to which ECC is applied

independently. AECC uses a family of PRPs as a building

block to randomize the stripe structure so that it is

computationally infeasible for an adversary to target and

corrupt any particular stripe. Both FMSR codes and AECC

provide fault tolerance. The difference is that we apply

FMSR codes to a file striped across servers, while we apply

AECC to a single code chunk stored within a server.

3.3 New Features of FMSR-DIP Implementation

 In previous FMSR-DIP codes we have only a single

link between the chunks it may not give integrity because if

the single link available is lost then there is no way to get the

information available in the chunk. To overcome this

drawbacks it provides a XOR linked list in the XOR linked

list to get the link from both previous and next chunk. If a

single link is lost then we can get the information through

another link. It provides a high integrity.

Figure 3

By having the double link through the each and

every link the unauthorised person can get the file to avoid

this we are using an RSA algorithm. The main purpose of

this RSA algorithm is to enable a key generation by using

key, the authorised person only can get the file this system

gives a high integrity in the NC cloud.

IV. SIMULATION RESULT

Figure 4

In this above figure show the user and admin login.

Valid user only view the details of the files.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 16

Figure 5

 In the above figure register to the new user. Then

click the register button those who are only to view the files

and then only the specified user to click the login button then

go for next steps (i.e display the network details).

Figure 6

In the above figure show the network details. This

show those who are connected to the same network.

Figure 7

In the above figure show the details of the

registered users details only.

Figure 8

In the above figure show the user request. User

request to the admin and accepted the request to user.

Admin send the key to the specified valid user.

Figure 9

 This form is used to upload the file when admin

uploaded file was splitted and stored in a different server.

Figure 10

The user view and download file using the valid key then

only download the file otherwise neglet the file. Splitted file

was merged and download the files.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 17

V. CONCLUSION
 We design and implement a practical data integrity

protection (DIP) scheme for regenerating-coding based

cloud storage. We augment the implementation of functional

minimum-storage regenerating (FMSR) codes and construct

FMSR-DIP codes, which allow clients to remotely verify the

integrity of random subsets of long-term archival data under

a multiserver setting. FMSR-DIP codes preserve fault

tolerance and repair traffic saving as in FMSR codes. Also,

we assume only a thin-cloud interface, meaning that servers

only need to support standard read/ write functionalities.

This adds to the portability of FMSRDIP codes and allows

simple deployment in general types of storage services. By

combining integrity checking and efficient recovery, FMSR-

DIP codes provide a low-cost solution for maintaining data

availability in cloud storage. The problem of checking the

integrity of static data, which is typical in long-term archival

storage, The FMSR-DIP codes provide a low cost solution

for maintaining data availability in cloud storage design

FMSR-DIP codes, which enable integrity protection, fault

tolerance, and efficient recovery for cloud storage. Conduct

mathematical analysis on the security of FMSR-DIP codes

for different parameter choices. It can implement FMSR-

DIP codes and evaluate the running times of different basic

operations, including Upload, Check, Download, and Repair,

for different parameter choices. In this we are using security

process in the form of code based derived key from the

master key in the before system there is no security in the

form encryption and decryption process. In this it uses

dynamic public cloud and XOR Linked list to the recovery

processes.

VI. FUTURE ENHANCEMENT

 Using MD5 file encrypting with higher security and

priority.Merge and split file using correlation game theory.It

is used for splitting the files in speed manner.

References

[1]. H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon,

“RACS: A Case for Cloud Storage Diversity,” Proc. First

ACM Symp. Cloud Computing (SoCC ’10), 2010

[2]. .M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.

[26] “TechCrunch,” Online Backup Company Carbonite

Loses Customers’ Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud

Computing,” Comm. ACM, vol. 53, no. 4, pp 50-58, 2010.

[3]. G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L.

[27] M. Vrable, S. Savage, and G. Voelker, “Cumulus:

Filesystem Kissner, Z. Peterson, and D. Song, “Remote Data

Checking Using Provable Data Possession,” ACM Trans.

Information and System Security, vol. 14, article 12, May

2011.

[4]. K. Bowers, A. Juels, and A. Oprea, “HAIL: A High-

Availability and Integrity Layer for Cloud Storage,” Proc.

16th ACM Conf. Computer and Comm. Security (CCS ’09),

2009.

[5]. K. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability:

Theory and Implementation,” Proc. ACM Workshop Cloud

Comput- ing Security (CCSW ’09), 2009

[6]. B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data

Checking for Network Coding-Based Distributed Storage Sys-

tems,” Proc. ACM Workshop Cloud Computing Security (CCSW

’10),2010.

[7]. H.C.H. Chen and P.P.C. Lee, “Enabling Data Integrity Protection

in Regenerating-Coding-Based Cloud Storage,” Proc. IEEE 31st

Symp. Reliable Distributed Systems (SRDS ’12), 2012.

[8]. L. Chen, “NIST Special Publication 800-108,” Recommendation

for Key Derivation Using Pseudorandom Functions (Revised),

http:// csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf,

Oct. 2009.

[9]. R. Curtmola, O. Khan, and R. Burns, “Robust Remote Data

Checking,” Proc. ACM Fourth Int’l Workshop Storage Security

and Survivability (StorageSS ’08), 2008.

[10]. R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:

Multiple-Replica Provable Data Possession,” Proc. IEEE 28th

Int’l Conf. Distributed Computing Systems (ICDCS ’08), 2008.

[11]. A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K.

Ramchandran, “Network Coding for Distributed Storage Sys-

tems,” IEEE Trans. Information Theory, vol. 56, no. 9, 4539-

4551, Sept. 2010.

[12]. D. Ford, F. Labelle, F.I. Popovici, M. Stokel, V.-A. Truong, L.

Barroso, C. Grimes, and S. Quinlan, “Availability in Globally

Distributed Storage Systems,” Proc. Ninth USENIX Symp.

Operating Systems Design and Implementation (OSDI ’10), Oct.

2010.

[13]. O. Goldreich, Foundations of Cryptography: Basic Tools.

Cambridge Univ. Press, 2001.

[14]. O. Goldreich, Foundations of Cryptography: Basic

Applications.Cambridge Univ. Press, 2004.

[15]. Y. Hu, H. Chen, P. Lee, and Y. Tang, “NCCloud: Applying

Network Coding for the Storage Repair in a Cloud-of-

Clouds,”Proc. 10th USENIX Conf. File and Storage Technologies

(FAST ’12),2012.

[16]. A. Juels and B. Kaliski Jr., “PORs: Proofs of Retrievability for

Large Files,” Proc. 14th ACM Conf. Computer and Comm.

Security (CCS ’07), 2007.

[17]. H. Krawczyk, “Cryptographic Extraction and Key Derivation:

The HKDF Scheme,” Proc. 30th Ann. Conf. Advances in

Cryptology (CRYPTO ’10), 2010.

[18]. E. Naone, “Are We Safeguarding Social Data?” http://

www.technologyreview.com/blog/editors/22924/, Feb. 2009.

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 2, Issue 5, May 2015

 All Rights Reserved © 2015 IJARTET 18

[19]. J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-

Tolerance in RAID-Like Systems,” Software - Practice &

Experience, vol. 27, no. 9, pp. 995-1012, Sept. 1997.

[20]. M.O. Rabin, “Efficient Dispersal of Information for Security,

Load Balancing, and Fault Tolerance,” J. ACM, vol. 36, no. 2, pp.

335- 348, Apr. 1989.

[21]. I. Reed and G. Solomon, “Polynomial Codes over Certain Finite

Fields,” J. Soc. Industrial and Applied Math., vol. 8, no. 2, pp.

300- 304, 1960.

[22]. B. Schroeder, S. Damouras, and P. Gill, “Understanding Latent

Sector Errors and How to Protect against Them,” Proc. USENIX

Conf. File and Storage Technologies (FAST ’10), Feb. 2010.

[23]. B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:

What Does an MTTF of 1,000,000 Hours Mean to You?” Proc.

Fifth USENIX Conf. File and Storage Technologies (FAST ’07),

Feb. 2007.

[24]. T. Schwarz and E. Miller, “Store, Forget, and Check: Using

Algebraic Signatures to Check Remotely Administered Sto-

rage,” Proc. IEEE 26th Int’l Conf. Distributed Computing

Systems, (ICDCS ’06), 2006.

[25]. H. Shacham and B. Waters, “Compact Proofs of

Retrievability,”Proc. 14th Int’l Conf. Theory and Application of

Cryptology and Information Security: Advances in Cryptology

(ASIACRYPT ’08),2008.

