
Efficiently Mining Frequent Item

Sets on Massive Data

1.Devayani.J 2.Dhivya.R 3.Elavarasi.M

4.Janaki.P Ms. R.Geetha (Assistant Professors for CSE)

Department of computer science and Engineering

Bharathiyar Institute of Engineering for Women,

Deviyakurichi-636112

 ABSTRACT

 Frequent item set mining is an important

operation to return all item sets in the transaction

table, which occur as a subset of at least a specified

fraction of the transactions. The existing algorithms

cannot compute frequent item sets on massive data

efficiently, since they either require multiple-pass

scans on the table or construct complex data

structures which normally exceed the available

memory on massive data. This paper proposes a

novel precomputation-based frequent item set

mining (PFIM) algorithm to compute the frequent

item sets quickly on massive data. PFIM treats the

transaction table as two parts: the large old table

storing historical data and the relatively small new

table storing newly generated data. PFIM first

preconstructs the quasi-frequent item sets on the old

table whose supports are above the lower-bound of

the practical support level. Given the specified

support threshold, PFIM can quickly return the

required frequent item sets on the table by utilizing

the quasi-frequent item sets. Three pruning rules are

presented to reduce the size of the involved

candidates. An incremental update strategy is

devised to efficiently re-construct the quasi-frequent

item sets when the tables are merged. The extensive

experimental results, conducted on synthetic and

real-life data sets, show that PFIM has a significant

advantage over the existing algorithms and runs two

orders of magnitude faster than the latest

algorithm.

INDEX TERMS

 Frequent item set mining, massive data, PFIM

algorithm, pruning rule, incremental update.

INTRODUCTION

 Frequent item set mining is an important

operation that has been widely studied in many

practical applications, such as data mining [1]–[3],

software bug detection, spatiotemporal data analysis

and biological analysis. Given a transaction table, in

which each transaction contains a set of items,

frequent item set mining returns all sets of items

whose frequencies (also referred to as support of the

set of items) in the table are above a given threshold.

Due to its practical importance, since firstly

proposed in [6], frequent item set mining has

received extensive attentions and many algorithms

are proposed [7]–[9]. The existing frequent item set

mining algorithms can be classified into two groups:

candidate-generation-based algorithms [10]–[14]

and pattern-growth-based algorithms [15]–[17]. The

candidate-generation-based algorithms first generate

candidate item sets and these candidates are

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

Vol. 9, Issue 6, June 2022

98

validated against the transaction table to identify

frequent item set. The anti-monotone property is

utilized in candidategeneration-based algorithms to

prune search space. But the candidate-generation-

based algorithms require multiple-pass table scans

and this will incur a high I/O cost on massive data.

The pattern-growth-based algorithms do not

generate candidates explicitly. They construct the

special tree-based data structures to keep the

essential information about the frequent item sets of

the transaction table. By use of the constructed data

structures, the frequent item sets can be computed

efficiently. However, pattern-growth-based

algorithms have the problem that the constructed

data structures are complex and usually exceed the

available memory on massive data. In frequent item

set mining, the number of the frequent item sets

normally is sensitive to the value of the support

threshold. If the support threshold is small, there

will be a large number of frequent item sets and it is

difficult for the users to make efficient decisions. On

the contrary, if the support threshold is large, it is

possible that no frequent item sets can be discovered

or the interesting item sets may e missed. The focus

of this paper is to find a new efficient algorithm to

compute frequent item sets on massive data quickly.

One useful trick, which is adopted to speed up the

execution in the existing algorithms, is to reuse the

work done in the counting operation of the shorter

item sets for that of the longer item sets. In this

paper, we want to utilize this reuse idea to a much

larger degree. Therefore, the overall data set can be

divided into two parts: the much larger old data set

storing the historical data, and the relative small new

data set storing the newly generated data. Based on

the description above, this paper devises a new

PFIM algorithm (Precomputation-based Frequent

Item set Mining algorithm) on massive data, which

utilizes the pre-constructed frequent item sets on the

old data set to return the frequent item sets quickly.

The extensive experiments are conducted on

synthetic and real-life data sets. The experimental

results show that, PFIM outperforms the existing

algorithms significantly, it runs two orders of

magnitude faster than the latest algorithm.

The contributions of this paper are listed as follows:

 • This paper proposes a novel precomputation-

based PFIM algorithm to compute frequent item sets

on massive data efficiently.

 • Three pruning rules are proposed in this

paper to reduce the number of the candidate frequent

item sets.

 • An incremental update strategy is devised to re-

construct the quasi-frequent itemsets quickly.

 • The experimental results show that PFIM has a

significant advantage over the existing algorithms.

RELATED WORKS

 The existing algorithms for frequent itemset mining

can be divided into two groups mainly: candidate-

generation based algorithms and pattern-growth-based

algorithms. This section will review the two kinds of

algorithms respectivel.

CANDIDATE-GENERATION-BASED

ALGORITHMS

 The candidate-generation-based algorithms firstly

generate the candidates of the frequent item sets,

then the candidates are validated against the

transaction table, and the frequent item sets are

discovered. It uses the downward closure property,

i.e. any superset of an infrequent itemset must also

be infrequent, to prune the search space. By a pass

of scan on the transaction table, it first counts the

item occurrences to find the frequent 1-itemsets F1.

Subsequently, the frequent k-item sets in Fk are used

to generate the candidates Ck+1 of the frequent (k +

1)-item sets. Another pass of scan is needed to

compute the supports of candidates in Ck+1 to find

the frequent (k + 1)-itemsets Fk+1. This process

iterates similarly until the Fk+1 is empty. Apriori

algorithm often needs multiple passes over table, it

will incur a high I/O cost on massive data. Savasere

et al. [12] propose Partition algorithm to generate

frequent itemsets by reading the transaction table at

most two times.

 The execution of Partition consists of two stages.

 In the first stage, Partition algorithm divides the

table into a number of non-overlapping partitions in

terms of the allocated memory, and the local

frequent itemsets for each partition are computed.

All the local frequent itemsets are merged at the end

of first stage to generate the candidates of frequent

itemsets.

 In the second phase, another pass over table is

performed to acquire the support of the candidates

and the global frequent item sets can be discovered.

The useful property adopted in Partition is that,

every global frequent item sets must be appeared in

local frequent item sets of at least one partition.

Partition algorithm utilizes vertical table

representation of transaction table and the support

counting is performed by recursive TID (transaction

identifier) list intersection. In the first phase,

Partition may generate many false positives, i.e. the

item sets are frequent locally but not frequent

globally. Therefore, it needs another table scan to

remove the false positives. Depending on the

allocated memory size, Eclat can recursively

partition large classes into smaller ones until each

class can be maintained entirely in the memory.

Then, each class is processed independently in the

breath-first fashion to compute the frequent itemsets.

Eclat processes the sublattices sequentially one by

one and does not need post-processing overhead as

Partition algorithms. Each node in PPC-tree is

associated with pre-post code via the pre-order and

post-order traversal on the PPC-tree. Each frequent

item can be represented by a node-list, i.e. the list of

Pre-Post code consisting pre-order code, post-order

code and the count of nodes registering the frequent

item. PPV fully uses candidate generation to

discover frequent itemsets, i.e. the node-lists of the

candidate itemsets of length (k + 1) are generated by

intersecting node-lists of frequent itemsets of length

k, then the frequent itemsets can be reported. PPV

can achieve a high execution efficiency since (1) the

node-list is more compact than the vertical structure,

(2) the support counting is transformed into the

intersection of node-lists, (3) the ancestor-

descendant relationship of two nodes can be verified

efficiently by their pre-post codes.

 Three key advantages of negFIN are:

 (1) employing bitwise operator to generate

new sets of nodes

 (2) reducing the time complexity of

discovering frequent itemsets to O(n)

 (3) using a promotion method to prune the

search space in set-enumeration.

 PATTERN-GROWTH-BASED

ALGORITHMS

 Pattern-growth-based algorithms do not

generate candidate itemsets explicitly but compress

the required information for frequent itemsets in

specific data structure. The frequent itemsets can

be acquired quickly with the notion of projected

databases, a subset of the original transaction

database relevant to the enumeration node. The

examination process of a node refers to the support

counting of the candidate extension of the node.

During the search, the projected transaction sets

are maintained for some of the nodes on the path

from the root to the node P currently being

extended. Normally, the projected transaction sets

only contain the relevant part of the transaction

database for counting the support at the node P.

the lower levels of the lexicographic tree, a

specialized counting technique called bucketing is

used to substantially improve the counting time.

Han et al. [16] propose a FP-tree-based FP

algorithm to mine the complete set of frequent

patterns by pattern fragment growth. FP

(frequent-pattern tree) is a compact prefix

trie structure to store the essential information

about frequent patterns. In each transaction, only

frequent length-1 items, which are sorted with the

descending order of support, are used to construct

the FP-tree. Then the FP-growth algorithm works

on FP-tree rather than on the original database to

mine frequent patterns. FP-growth algorithm starts

with a frequent length-1 pattern (initial suffix

pattern), and the set of frequent items co

with the suffix pattern is extracted as conditional

pattern base, which is then constructed as

conditional FP-tree. With the current suff

and the conditional FP-tree, if the conditional FP

tree is not empty, FP-growth performs mining

recursively. A special data structure, FP

devised. Given an itemset of m items, FP

(m − 1) × (m − 1) matrix, where each element

the matrix corresponds to the counter of an ordered

pair of items. By the special data structure, a new

FPgrowth* is proposed, which can reduce the

traversal time on FP-tree and speed up the FP

growth method significantly.

 PRELIMINARIES

 Given a transaction table T of n

transactions, each of transactions is a subset of the

universe of items U = {i1, i2, . . . , id }. Here, the

itemset is a subset of U and a k-

itemset with k items. A unique transaction

identifier TID is associated with every transaction.

extended. Normally, the projected transaction sets

ain the relevant part of the transaction

the node P. At

the lower levels of the lexicographic tree, a

specialized counting technique called bucketing is

used to substantially improve the counting time.

based FP-growth

algorithm to mine the complete set of frequent

patterns by pattern fragment growth. FP-tree

pattern tree) is a compact prefix-based

trie structure to store the essential information

ch transaction, only

1 items, which are sorted with the

descending order of support, are used to construct

growth algorithm works

tree rather than on the original database to

algorithm starts

1 pattern (initial suffix

pattern), and the set of frequent items co-occurring

with the suffix pattern is extracted as conditional-

pattern base, which is then constructed as

tree. With the current suffix pattern

tree, if the conditional FP-

growth performs mining

recursively. A special data structure, FP-array, is

devised. Given an itemset of m items, FP-array is a

− 1) × (m − 1) matrix, where each element of

the matrix corresponds to the counter of an ordered

pair of items. By the special data structure, a new

FPgrowth* is proposed, which can reduce the

tree and speed up the FP-

Given a transaction table T of n

transactions, each of transactions is a subset of the

universe of items U = {i1, i2, . . . , id }. Here, the

-itemset is an

itemset with k items. A unique transaction

ated with every transaction.

Given an itemset IS, itssupport sup(T , IS) is

defined as the fraction of transa

subset, i.e. sup(T , IS) = |{t|IS

Obviously, the support measures the correlation of

the items. For an itemset IS, its greater support

value means that the items of IS occur together

more frequently in T. Definition 1 (Frequent

Itemset Mining): Given a transaction table T and a

specified support threshold minsup, frequent

itemset mining determines all itemsets who

supports are no less than minsup.

ions in T which

PFIM ALGORITHM

 INTUITIVE IDEA

This part describes intuitive idea of PFIM algorithm.

Generally, the number of frequent itemsets is very

Given an itemset IS, itssupport sup(T , IS) is

ined as the fraction of transa contain IS as a

subset, i.e. sup(T , IS) = |{t|IS ⊆ t, t ∈ T }| n

Obviously, the support measures the correlation of

IS, its greater support

value means that the items of IS occur together

more frequently in T. Definition 1 (Frequent

Itemset Mining): Given a transaction table T and a

specified support threshold minsup, frequent

itemset mining determines all itemsets whose

supports are no less than minsup.

This part describes intuitive idea of PFIM algorithm.

Generally, the number of frequent itemsets is very

sensitive to the value of minsup. If the value of

minsup is too small, the number of frequent itemsets

will be so large that the users can become

overwhelmed with too many results and it is

difficult for users to find the really useful

information from them. Therefore, in this paper, we

assume that there exists a lower-bound for the value

of minsup in practical applications. The lower-

bound is denoted by ω in this paper. The value of ω

can be determined by some domain experts, or the

lowest value of the support used in the past frequent

itemset mining. On massive data, the existing

algorithms often cannot meet the users’ requirement,

they either need to scan the table multiple times, or

need a complex data structure and a high memory

consumption. This is the motivation of this paper,

i.e. we want to devise a highly efficient algorithm to

mine the frequent itemsets on massive data quickly.

Some of the existing algorithms, such as FP-tree-

based methods

or vertical-representation-based methods, reuse the

work that has already been done previously in the

current frequent itemset mining, so they can

discover frequent itemsets faster. But, when the

current frequent itemset mining is done, their works

are lost and the next mining still needs to be

executed from scratch. On massive data

applications, data usually is stored in read/append-

only mode [19]. Therefore, the overall transaction

table T can be divided into two parts: the large old

transaction table TO and the relative small new

transaction table T1, i.e. T = TO∪T1. Usually T1

keeps the accumulated new transactions. When the

size of T1 reaches to some level, for example, 5% of

the size of TO, the data in T1 will be merged into

TO. Since the size of TO is much larger than that of

T1, we have enough confidence that the time

interval of two consecutive merging operations

should be long enough. During the time interval

between two consecutive merging, TO remains

unchanged and only T1 updates frequently. Under

such circumstances, given the frequent itemset

mining with varying support thresholds, why not we

keep the precomputed itemsets whose support

values in TO are no less than ω and only compute

the required frequent itemsets considering the

existence of T1. In this way, the work done for TO

can be reused for all the frequent itemset mining in a

long enough time. This is the motivation why we

develop PFIM algorithm. In the rest of this section,

we first show the precomputation operation in

Section IV-B, then introduce PFIM algorithm

detailedly in Section IV-C and Section IV-D. The

update operation of the pre-constructed itemsets are

presented in Section IV-E, and some issues are

discussed in Section IV-F.

A. PRE-COMPUTATION OPERATION

 This part describes the pre-computation

operation to generate the required itemsets on the

large old transaction table TO whose supports are no

less than ω. The required itemsets here are referred

to as quasi-frequent itemsets, distinguishing from

the frequent itemsets with the support threshold

minsup specified by users. Let tno be the number of

transactions in TO and tn1 be the number of

transactions in T1. Since the size of TO is much

large, usually exceeds the size of the allocated

memory. Therefore, the process of pre-computing

the quasifrequent itemsets consists of two stages:

candidate generation and result refinement. In the

stage of candidate generation, we retrieve the

transactions in TO sequentially and maintain the

retrieved transactions in an in-memory buffer BUF,

whose size is set according to the size of the

allocated memory. If BUF is full, we can compute

the local quasi-frequent itemsets in BUF by the

current vertical frequent itemset mining algorithms.

The quasi-frequent itemsets corresponding to current

BUF are kept in a file. Then we empty BUF and

continue the sequential scan for the next iteration.

The process is similarly executed until all

transactions in TO is retrieved and all local quasi

frequent itemsets are generated. [5] emphasized that

Security is an important issue in current and next

generation networks. Blockchain will be an

appropriate technology for securely sharing

information in next-generation networks. Digital

images are the prime medium attacked by cyber

attackers. In this paper, a blockchain based security

framework is proposed for sharing digital imag

a multi user environment.

B. BASIC PROCESS

Given the support threshold minsup, this part

introduces the basic process that PFIM discovers the

frequent itemsets on T = TO ∪ T1.

 1)THE SPECIAL CASE

 First, we discuss a special case. If T1 is empty,

i.e. tn1 = 0, the processing of PFIM is simple. It just

needs to read the quasi-frequent itemsets in Fqf

sequentially. ∀t ∈ Fqf , let t be the current element

retrieved in Fqf . If t.SUP ≥ dtno × min

reported as a frequent itemset. Since the elements in

Fqf are arranged in descending order of SUP, if

t.SUP < dtno × minsupe, it can be guaranteed that all

The process is similarly executed until all

transactions in TO is retrieved and all local quasi-

] emphasized that

Security is an important issue in current and next-

chain will be an

appropriate technology for securely sharing

generation networks. Digital

images are the prime medium attacked by cyber

attackers. In this paper, a blockchain based security

framework is proposed for sharing digital images in

Given the support threshold minsup, this part

introduces the basic process that PFIM discovers the

First, we discuss a special case. If T1 is empty,

i.e. tn1 = 0, the processing of PFIM is simple. It just

frequent itemsets in Fqf

Fqf , let t be the current element

 dtno × minsupe, t.IS is

reported as a frequent itemset. Since the elements in

Fqf are arranged in descending order of SUP, if

t.SUP < dtno × minsupe, it can be guaranteed that all

frequent itemsets are discovered and the sequential

scan on Fqf terminates

2) THE GENERAL CASE

 Of course, usually, T1 is not empty. Due to the

existence of new transactions, we may find new

frequent itemsets from T1 and TO which are not

contained in Fqf . In the rest of this part, we describe

the processing of PFIM given that T1 is n

An itemset is frequent, if there are at least dn ×

minsupe transactions in T containing it, where n =

tno+tn1 and T = TO ∪T1.

PRUNING OPERATION

 In terms of the description in Section IV

C, PFIM can reuse the pre-computation result of TO

and reduce the execution cost significantly. In this

part, we discuss how to improve PFIM further to

speed up its execution by pruning operation. 1)

PRUNING IN STEP 2 One main part of the cost in

PFIM is to compute the support counts of the

itemsets of STCAD in T1, i.e. step 3 in Section IV

C.2. Therefore, if we can reduce the number of

itemsets in STCAD in step 2, the counting cost in T1

can be decreased. In Section IV

it satisfies: dn × minsupe − mas1

minsupe That is, we use the maximum count mas1

of the single item in T1 to determine the support

count range of the possible frequent itemsets.

Obviously, if we can narrow down the sup

range, the size of STCAD can be reduced. As

described in the process of step 2, PFIM can

determine directly whether the quasi

itemsets in Fqf are frequent itemsets.

step 2, PFIM maintains the possible frequent

itemsets in STCAD. Before entering the step 3, we

wonder whether the size of STCAD can be

decreased further. But, it should be noted that, the

reason to prune the itemsets in STCAD is that the

execution cost in step 3 can be high if STCAD

frequent itemsets are discovered and the sequential

Of course, usually, T1 is not empty. Due to the

existence of new transactions, we may find new

frequent itemsets from T1 and TO which are not

contained in Fqf . In the rest of this part, we describe

the processing of PFIM given that T1 is not empty.

An itemset is frequent, if there are at least dn ×

minsupe transactions in T containing it, where n =

In terms of the description in Section IV-

computation result of TO

and reduce the execution cost significantly. In this

part, we discuss how to improve PFIM further to

speed up its execution by pruning operation. 1)

EP 2 One main part of the cost in

PFIM is to compute the support counts of the

itemsets of STCAD in T1, i.e. step 3 in Section IV-

C.2. Therefore, if we can reduce the number of

itemsets in STCAD in step 2, the counting cost in T1

on IV-C.2, ∀t ∈ STCAD,

− mas1 ≤ t.SUP < dn ×

minsupe That is, we use the maximum count mas1

of the single item in T1 to determine the support

count range of the possible frequent itemsets.

Obviously, if we can narrow down the support count

range, the size of STCAD can be reduced. As

described in the process of step 2, PFIM can

determine directly whether the quasi-frequent 1-

Fqf are frequent itemsets. At the end of

step 2, PFIM maintains the possible frequent

in STCAD. Before entering the step 3, we

wonder whether the size of STCAD can be

decreased further. But, it should be noted that, the

reason to prune the itemsets in STCAD is that the

execution cost in step 3 can be high if STCAD

contains many itemsets, the cost of pruning

operation should keep low also. Otherwise, the

overall cost in step 2 and step 3 can still be large,

which can affect the high efficiency of PFIM. In

order to prune itemsets in STCAD as many as

possible with a low cost, PFIM first chooses two

items of each quasifrequent itemset in STCAD

which have the smallest support counts in cnt1. ∀t ∈

STCAD, we keep an item pair (it,1, it,2) in t.IS in

PIP (Pruning Item Pair), (it,1, it,2) are two items

with the smallest support counts in cnt1 among all

items in t.IS and it,1 ≺ it,2. PFIM computes the

support counts of the item pairs in PIP in the similar

operation as step 3 in Section IV-C.2.

 UPDATE OPERATION

 As the description above, the new

transactions are accumulated in T1. When the size of

T1 reaches a certain threshold, for example, 5% of

the size of TO, the transactions in T1 and TO are

merged. At this point, the quasi-frequent itemsets in

Fqf needs to be updated also. Of course, re-

construction totally is one choice, i.e. re-compute

the quasi-frequent itemsets with the support

threshold ω on T = TO ∪ T1 from scratch. But the

total re-construction can be expensive. Therefore, in

this paper, we propose an incremental update

strategy, which utilizes the existing information

computed already to speed up the update operation.

[2] discussed about a method, Optimality results are

presented for an end-to-end inference approach to

correct(i.e., diagnose and repair) probabilistic

network faults at minimum expected cost. One

motivating application of using this end-to-end

inference approach is an externally managed overlay

network, where we cannot directly access and

monitor nodes that are independently operated by

different administrative domains, but instead we

must infer failures via end to-end measurements. [4]

discussed about a method, Sensor network consists

of low cost battery powered nodes which is limited

in power. Hence power efficient methods are needed

for data gathering and aggregation in order to

achieve prolonged network life. However, there are

several energy efficient routing protocols in the

literature; quiet of them are centralized approaches,

that is low energy conservation.

DISCUSSIONS

 This paper assumes that there exists a lower-

bound ω for the value of minsup in practical

applications. The value of ω is determined by the

domain experts or the lowest value of the used

support levels. However, some user may submit a

frequent itemset mining with the specified minsup

which is lower than ω. Although this case should be

quite unusual (too many frequent itemsets can be

generated), we still hope that PFIM can deal with

this case. Total re-computation on T = TO ∪ T1 is

one choice. But this choice should be expensive and

it neglects the pre-computation result of the existing

Fqf . A proper alternative is to reuse the

precomputation result. Fqf maintains the quasi-

frequent itemsets whose support counts in TO are no

less than dω × tnoe. We first compute the frequent

itemsets on TO with support level minsup (here

minsup < ω).

PERFORMANCE EVALUATION

 A. EXPERIMENTAL SETTINGS

 To evaluate the performance of PFIM, we

implement it in Java with jdk-8u20-windows-x64.

The experiments are executed on LENOVO

ThinkCentre M8400 (Intel (R) Core(TM) i7-3770

CPU @ 3.40GHz (8 CPUs) + 32G memory + 64 bit

windows 7). The used data set is stored in Seagate

Expansion STBV3000300 (3TB). In the

experiments, the performance of PFIM is evaluated

against Apriori [20] and negFIN [25]. The reason to

select the two algorithms for performance evaluation

is that, (1) Apriori is a classic level-wise algorithm

and thus we select it as the baseline algorithm, (2)

negFIN is the latest algorithm and it shows a

performance advantage over the other main frequent

itemset mining algorithms [25].

PRE-COMPUTATION OPERATION AND

UPDATE OPERATION

 In this part, we report the execution times of

precomputation operation and the update operation.

As depicted in Figure 8(a), given that tn1/tno = 0.03,

we illustrate the pre-computation cost of PFIM with

the varying values of tno. The pre-computation time

of PFIM increases quickly with the greater value of

tno. At tno = 100×106 , the pre-computation

322337.466s. For one hand, this indicates that

frequent itemset mining algorithms require a rather

long execution time to compute frequent itemsets if

the value of minsup is small. For the other hand, the

pre-computation operation is expensive on m

data. But it should be noted that the pre

only is executed once from scratch and then the

incremental update can be performed.

performance advantage over the other main frequent

itemset mining algorithms [25].

COMPUTATION OPERATION AND

In this part, we report the execution times of

precomputation operation and the update operation.

As depicted in Figure 8(a), given that tn1/tno = 0.03,

computation cost of PFIM with

computation time

of PFIM increases quickly with the greater value of

computation time is

322337.466s. For one hand, this indicates that

frequent itemset mining algorithms require a rather

long execution time to compute frequent itemsets if

the value of minsup is small. For the other hand, the

computation operation is expensive on massive

data. But it should be noted that the pre-computation

only is executed once from scratch and then the

REFERENCES

 [1] A. Ceglar and J. F. Roddick, ‘‘Association

mining,’’ ACM Comput. Surv.,

2006.

 [2] Christo Ananth, Mona, Kamali, Kausalya,

Muthulakshmi, P.Arthy, “Efficient Cost Correction

of Faulty Overlay nodes”, International Journal of

Advanced Research in Management, Architecture,

Technology and Engineering (IJARMA

1,Issue 1, August 2015,pp:26-

 [3] H. Wang, W. Wang, J. Yang, and P. S. Yu,

‘‘Clustering by pattern similarity in large data sets,’’

in Proc. ACM SIGMOD Int. Conf. Manage. Data,

Jun. 2002, pp. 394–405.

 [4] Christo Ananth, S.Mathu Muhila,

N.Priyadharshini, G.Sudha, P.Venkateswari,

H.Vishali, “A New Energy Efficient Routing

Scheme for Data Gathering “,International Journal

Of Advanced Research Trends In Engineering And

Technology (IJARTET), Vol. 2, Issue 10, October

2015), pp: 1-4.

 [5] Christo Ananth, Denslin Brabin, Sriramulu

Bojjagani, “Blockchain based security framework

for sharing digital images using reversible data

hiding and encryption”, Multimedia Tools and

[1] A. Ceglar and J. F. Roddick, ‘‘Association

mining,’’ ACM Comput. Surv., vol. 38, no. 2, p. 5,

Christo Ananth, Mona, Kamali, Kausalya,

Muthulakshmi, P.Arthy, “Efficient Cost Correction

of Faulty Overlay nodes”, International Journal of

Advanced Research in Management, Architecture,

Technology and Engineering (IJARMATE), Volume

28.

[3] H. Wang, W. Wang, J. Yang, and P. S. Yu,

‘‘Clustering by pattern similarity in large data sets,’’

in Proc. ACM SIGMOD Int. Conf. Manage. Data,

Christo Ananth, S.Mathu Muhila,

Priyadharshini, G.Sudha, P.Venkateswari,

H.Vishali, “A New Energy Efficient Routing

Scheme for Data Gathering “,International Journal

Of Advanced Research Trends In Engineering And

Technology (IJARTET), Vol. 2, Issue 10, October

o Ananth, Denslin Brabin, Sriramulu

Bojjagani, “Blockchain based security framework

for sharing digital images using reversible data

hiding and encryption”, Multimedia Tools and

Applications, Springer US, Volume 81,Issue 6,

March 2022,pp. 1-18.

[6] R. Agrawal, T. Imielinski, and A. Swami,

‘‘Database mining: A performance perspective,’’

IEEE Trans. Knowl. Data Eng., vol. 5, no. 6, pp.

914–925, Dec. 1993.

 [7] C. C. Aggarwal, Data Mining: The Textbook.

Cham, Switzerland: Springer, 2015.

106

