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                         ABSTRACT  

         Frequent item set mining is an important 

operation to return all item sets in the transaction 

table, which occur as a subset of at least a specified 

fraction of the transactions. The existing algorithms 

cannot compute frequent item sets on massive data 

efficiently, since they either require multiple-pass 

scans on the table or construct complex data 

structures which normally exceed the available 

memory on massive data. This paper proposes a 

novel precomputation-based frequent item set 

mining (PFIM) algorithm to compute the frequent 

item sets quickly on massive data. PFIM treats the 

transaction table as two parts: the large old table 

storing historical data and the relatively small new 

table storing newly generated data. PFIM first 

preconstructs the quasi-frequent item sets on the old 

table whose supports are above the lower-bound of 

the practical support level. Given the specified 

support threshold, PFIM can quickly return the 

required frequent item sets on the table by utilizing 

the quasi-frequent item sets. Three pruning rules are 

presented to reduce the size of the involved 

candidates. An incremental update strategy is 

devised to efficiently re-construct the quasi-frequent 

item sets when the tables are merged. The extensive 

experimental results, conducted on synthetic and 

real-life data sets, show that PFIM has a significant  

 

advantage over the existing algorithms and runs two 

orders of magnitude faster than the latest 

algorithm. 

INDEX TERMS  

       Frequent item set mining, massive data, PFIM 

algorithm, pruning rule, incremental update. 

INTRODUCTION  

           Frequent item set mining is an important 

operation that has been widely studied in many 

practical applications, such as data mining [1]–[3], 

software bug detection, spatiotemporal data analysis 

and biological analysis. Given a transaction table, in 

which each transaction contains a set of items, 

frequent item set mining returns all sets of items 

whose frequencies (also referred to as support of the 

set of items) in the table are above a given threshold. 

Due to its practical importance, since firstly 

proposed in [6], frequent item set mining has 

received extensive attentions and many algorithms 

are proposed [7]–[9]. The existing frequent item set 

mining algorithms can be classified into two groups: 

candidate-generation-based algorithms [10]–[14] 

and pattern-growth-based algorithms [15]–[17]. The 

candidate-generation-based algorithms first generate 

candidate item sets and these candidates are 
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validated against the transaction table to identify 

frequent item set. The anti-monotone property is 

utilized in candidategeneration-based algorithms to 

prune search space. But the candidate-generation-

based algorithms require multiple-pass table scans 

and this will incur a high I/O cost on massive data. 

The pattern-growth-based algorithms do not 

generate candidates explicitly. They construct the 

special tree-based data structures to keep the 

essential information about the frequent item sets of 

the transaction table. By use of the constructed data 

structures, the frequent item sets can be computed 

efficiently. However, pattern-growth-based 

algorithms have the problem that the constructed 

data structures are complex and usually exceed the 

available memory on massive data. In frequent item 

set mining, the number of the frequent item sets 

normally is sensitive to the value of the support 

threshold. If the support threshold is small, there 

will be a large number of frequent item sets and it is 

difficult for the users to make efficient decisions. On 

the contrary, if the support threshold is large, it is 

possible that no frequent item sets can be discovered 

or the interesting item sets may e missed. The focus 

of this paper is to find a new efficient algorithm to 

compute frequent item sets on massive data quickly. 

One useful trick, which is adopted to speed up the 

execution in the existing algorithms, is to reuse the 

work done in the counting operation of the shorter 

item sets for that of the longer item sets. In this 

paper, we want to utilize this reuse idea to a much 

larger degree. Therefore, the overall data set can be 

divided into two parts: the much larger old data set 

storing the historical data, and the relative small new 

data set storing the newly generated data. Based on 

the description above, this paper devises a new 

PFIM algorithm (Precomputation-based Frequent 

Item set Mining algorithm) on massive data, which 

utilizes the pre-constructed frequent item sets on the 

old data set to return the frequent item sets quickly.  

The extensive experiments are conducted on 

synthetic and real-life data sets. The experimental 

results show that, PFIM outperforms the existing 

algorithms significantly, it runs two orders of 

magnitude faster than the latest algorithm.  

 

The contributions of this paper are listed as follows: 

     • This paper proposes a novel precomputation-

based PFIM algorithm to compute frequent item sets 

on massive data efficiently. 

           • Three pruning rules are proposed in this 

paper to reduce the number of the candidate frequent 

item sets.  

  • An incremental update strategy is devised to re-

construct the quasi-frequent itemsets quickly. 

  • The experimental results show that PFIM has a 

significant advantage over the existing algorithms. 

RELATED WORKS  

 The existing algorithms for frequent itemset mining 

can be divided into two groups mainly: candidate-

generation based algorithms and pattern-growth-based 

algorithms. This section will review the two kinds of 

algorithms respectivel. 

CANDIDATE-GENERATION-BASED 

ALGORITHMS 

 The candidate-generation-based algorithms firstly 

generate the candidates of the frequent item sets, 

then the candidates are validated against the 

transaction table, and the frequent item sets are 

discovered. It uses the downward closure property, 

i.e. any superset of an infrequent itemset must also 

be infrequent, to prune the search space. By a pass 

of scan on the transaction table, it first counts the 

item occurrences to find the frequent 1-itemsets F1. 

Subsequently, the frequent k-item sets in Fk are used 

to generate the candidates Ck+1 of the frequent (k + 



1)-item sets. Another pass of scan is needed to 

compute the supports of candidates in Ck+1 to find 

the frequent (k + 1)-itemsets Fk+1. This process 

iterates similarly until the Fk+1 is empty. Apriori 

algorithm often needs multiple passes over table, it 

will incur a high I/O cost on massive data. Savasere 

et al. [12] propose Partition algorithm to generate 

frequent itemsets by reading the transaction table at 

most two times. 

 The execution of Partition consists of two stages. 

        In the first stage, Partition algorithm divides the 

table into a number of non-overlapping partitions in 

terms of the allocated memory, and the local 

frequent itemsets for each partition are computed. 

All the local frequent itemsets are merged at the end 

of first stage to generate the candidates of frequent 

itemsets.      

        In the second phase, another pass over table is 

performed to acquire the support of the candidates 

and the global frequent item sets can be discovered. 

The useful property adopted in Partition is that, 

every global frequent item sets must be appeared in 

local frequent item sets of at least one partition. 

Partition algorithm utilizes vertical table 

representation of transaction table and the support 

counting is performed by recursive TID (transaction 

identifier) list intersection. In the first phase, 

Partition may generate many false positives, i.e. the 

item sets are frequent locally but not frequent 

globally. Therefore, it needs another table scan to 

remove the false positives.  Depending on the 

allocated memory size, Eclat can recursively 

partition large classes into smaller ones until each 

class can be maintained entirely in the memory. 

Then, each class is processed independently in the 

breath-first fashion to compute the frequent itemsets. 

Eclat processes the sublattices sequentially one by 

one and does not need post-processing overhead as 

Partition algorithms.  Each node in PPC-tree is 

associated with pre-post code via the pre-order and 

post-order traversal on the PPC-tree. Each frequent 

item can be represented by a node-list, i.e. the list of 

Pre-Post code consisting pre-order code, post-order 

code and the count of nodes registering the frequent 

item. PPV fully uses candidate generation to 

discover frequent itemsets, i.e. the node-lists of the 

candidate itemsets of length (k + 1) are generated by 

intersecting node-lists of frequent itemsets of length 

k, then the frequent itemsets can be reported. PPV 

can achieve a high execution efficiency since (1) the 

node-list is more compact than the vertical structure, 

(2) the support counting is transformed into the 

intersection of node-lists, (3) the ancestor-

descendant relationship of two nodes can be verified 

efficiently by their pre-post codes.   

      Three key advantages of negFIN are: 

           (1) employing bitwise operator to generate 

new sets of nodes 

           (2) reducing the time complexity of 

discovering frequent itemsets to O(n) 

          (3) using a promotion method to prune the 

search space in set-enumeration. 

         PATTERN-GROWTH-BASED 

ALGORITHMS           

         Pattern-growth-based algorithms do not 

generate candidate itemsets explicitly but compress 

the required information for frequent itemsets in 

specific data structure. The frequent itemsets can 

be acquired quickly with the notion of projected 

databases, a subset of the original transaction 

database relevant to the enumeration node.  The 

examination process of a node refers to the support 

counting of the candidate extension of the node. 

During the search, the projected transaction sets 

are maintained for some of the nodes on the path 

from the root to the node P currently being 



extended. Normally, the projected transaction sets 

only contain the relevant part of the transaction 

database for counting the support at the node P. 

the lower levels of the lexicographic tree, a 

specialized counting technique called bucketing is 

used to substantially improve the counting time. 

Han et al. [16] propose a FP-tree-based FP

algorithm to mine the complete set of frequent 

patterns by pattern fragment growth. FP

(frequent-pattern tree) is a compact prefix

trie structure to store the essential information 

about frequent patterns. In each transaction, only 

frequent length-1 items, which are sorted with the 

descending order of support, are used to construct 

the FP-tree. Then the FP-growth algorithm works 

on FP-tree rather than on the original database to 

mine frequent patterns. FP-growth algorithm starts 

with a frequent length-1 pattern (initial suffix 

pattern), and the set of frequent items co

with the suffix pattern is extracted as conditional

pattern base, which is then constructed as 

conditional FP-tree. With the current suff

and the conditional FP-tree, if the conditional FP

tree is not empty, FP-growth performs mining 

recursively. A special data structure, FP

devised. Given an itemset of m items, FP

(m − 1) × (m − 1) matrix, where each element 

the matrix corresponds to the counter of an ordered 

pair of items. By the special data structure, a new 

FPgrowth* is proposed, which can reduce the 

traversal time on FP-tree and speed up the FP

growth method significantly. 

 PRELIMINARIES  

              Given a transaction table T of n 

transactions, each of transactions is a subset of the 

universe of items U = {i1, i2, . . . , id }. Here, the 

itemset is a subset of U and a k-

itemset with k items. A unique transaction 

identifier TID is associated with every transaction. 

extended. Normally, the projected transaction sets 

ain the relevant part of the transaction 

the node P.  At 

the lower levels of the lexicographic tree, a 

specialized counting technique called bucketing is 

used to substantially improve the counting time. 

based FP-growth 

algorithm to mine the complete set of frequent 

patterns by pattern fragment growth. FP-tree 

pattern tree) is a compact prefix-based 

trie structure to store the essential information 

ch transaction, only 

1 items, which are sorted with the 

descending order of support, are used to construct 

growth algorithm works 

tree rather than on the original database to 

algorithm starts 

1 pattern (initial suffix 

pattern), and the set of frequent items co-occurring 

with the suffix pattern is extracted as conditional-

pattern base, which is then constructed as 

tree. With the current suffix pattern 

tree, if the conditional FP-

growth performs mining 

recursively. A special data structure, FP-array, is 

devised. Given an itemset of m items, FP-array is a 

− 1) × (m − 1) matrix, where each element of 

the matrix corresponds to the counter of an ordered 

pair of items. By the special data structure, a new 

FPgrowth* is proposed, which can reduce the 

tree and speed up the FP-

Given a transaction table T of n 

transactions, each of transactions is a subset of the 

universe of items U = {i1, i2, . . . , id }. Here, the 

-itemset is an 

itemset with k items. A unique transaction 

ated with every transaction. 

Given an itemset IS, itssupport sup(T , IS) is 

defined as the fraction of transa

subset, i.e. sup(T , IS) = |{t|IS 

Obviously, the support measures the correlation of 

the items. For an itemset IS, its greater support 

value means that the items of IS occur together 

more frequently in T. Definition 1 (Frequent 

Itemset Mining): Given a transaction table T and a 

specified support threshold minsup, frequent 

itemset mining determines all itemsets who

supports are no less than minsup. 

ions in T which  

 

PFIM ALGORITHM  

       INTUITIVE IDEA  

This part describes intuitive idea of PFIM algorithm. 

Generally, the number of frequent itemsets is very 

Given an itemset IS, itssupport sup(T , IS) is 

ined as the fraction of transa contain IS as a 

subset, i.e. sup(T , IS) = |{t|IS ⊆ t, t ∈ T }| n 

Obviously, the support measures the correlation of 

IS, its greater support 

value means that the items of IS occur together 

more frequently in T. Definition 1 (Frequent 

Itemset Mining): Given a transaction table T and a 

specified support threshold minsup, frequent 

itemset mining determines all itemsets whose 

supports are no less than minsup. 

 

This part describes intuitive idea of PFIM algorithm. 

Generally, the number of frequent itemsets is very 



sensitive to the value of minsup. If the value of 

minsup is too small, the number of frequent itemsets 

will be so large that the users can become 

overwhelmed with too many results and it is 

difficult for users to find the really useful 

information from them. Therefore, in this paper, we 

assume that there exists a lower-bound for the value 

of minsup in practical applications. The lower-

bound is denoted by ω in this paper. The value of ω 

can be determined by some domain experts, or the 

lowest value of the support used in the past frequent 

itemset mining. On massive data, the existing 

algorithms often cannot meet the users’ requirement, 

they either need to scan the table multiple times, or 

need a complex data structure and a high memory 

consumption. This is the motivation of this paper, 

i.e. we want to devise a highly efficient algorithm to 

mine the frequent itemsets on massive data quickly. 

Some of the existing algorithms, such as FP-tree-

based methods 

or vertical-representation-based methods, reuse the 

work that has already been done previously in the 

current frequent itemset mining, so they can 

discover frequent itemsets faster. But, when the 

current frequent itemset mining is done, their works 

are lost and the next mining still needs to be 

executed from scratch. On massive data 

applications, data usually is stored in read/append-

only mode [19]. Therefore, the overall transaction 

table T can be divided into two parts: the large old 

transaction table TO and the relative small new 

transaction table T1, i.e. T = TO∪T1. Usually T1 

keeps the accumulated new transactions. When the 

size of T1 reaches to some level, for example, 5% of 

the size of TO, the data in T1 will be merged into 

TO. Since the size of TO is much larger than that of 

T1, we have enough confidence that the time 

interval of two consecutive merging operations 

should be long enough. During the time interval 

between two consecutive merging, TO remains 

unchanged and only T1 updates frequently. Under 

such circumstances, given the frequent itemset 

mining with varying support thresholds, why not we 

keep the precomputed itemsets whose support 

values in TO are no less than ω and only compute 

the required frequent itemsets considering the 

existence of T1. In this way, the work done for TO 

can be reused for all the frequent itemset mining in a 

long enough time. This is the motivation why we 

develop PFIM algorithm. In the rest of this section, 

we first show the precomputation operation in 

Section IV-B, then introduce PFIM algorithm 

detailedly in Section IV-C and Section IV-D. The 

update operation of the pre-constructed itemsets are 

presented in Section IV-E, and some issues are 

discussed in Section IV-F. 

A. PRE-COMPUTATION OPERATION 

 This part describes the pre-computation 

operation to generate the required itemsets on the 

large old transaction table TO whose supports are no 

less than ω. The required itemsets here are referred 

to as quasi-frequent itemsets, distinguishing from 

the frequent itemsets with the support threshold 

minsup specified by users. Let tno be the number of 

transactions in TO and tn1 be the number of 

transactions in T1. Since the size of TO is much 

large, usually exceeds the size of the allocated 

memory. Therefore, the process of pre-computing 

the quasifrequent itemsets consists of two stages: 

candidate generation and result refinement. In the 

stage of candidate generation, we retrieve the 

transactions in TO sequentially and maintain the 

retrieved transactions in an in-memory buffer BUF, 

whose size is set according to the size of the 

allocated memory. If BUF is full, we can compute 

the local quasi-frequent itemsets in BUF by the 

current vertical frequent itemset mining algorithms. 

The quasi-frequent itemsets corresponding to current 

BUF are kept in a file. Then we empty BUF and 

continue the sequential scan for the next iteration. 



The process is similarly executed until all 

transactions in TO is retrieved and all local quasi

frequent itemsets are generated. [5] emphasized that 

Security is an important issue in current and next

generation networks. Blockchain will be an 

appropriate technology for securely sharing 

information in next-generation networks. Digital 

images are the prime medium attacked by cyber 

attackers. In this paper, a blockchain based security 

framework is proposed for sharing digital imag

a multi user environment. 

 

  

 

 

B. BASIC PROCESS  

Given the support threshold minsup, this part 

introduces the basic process that PFIM discovers the 

frequent itemsets on T = TO ∪ T1. 

   1)THE SPECIAL CASE  

       First, we discuss a special case. If T1 is empty, 

i.e. tn1 = 0, the processing of PFIM is simple. It just 

needs to read the quasi-frequent itemsets in Fqf 

sequentially. ∀t ∈ Fqf , let t be the current element 

retrieved in Fqf . If t.SUP ≥ dtno × min

reported as a frequent itemset. Since the elements in 

Fqf are arranged in descending order of SUP, if 

t.SUP < dtno × minsupe, it can be guaranteed that all 

The process is similarly executed until all 

transactions in TO is retrieved and all local quasi-

] emphasized that 

Security is an important issue in current and next-

chain will be an 

appropriate technology for securely sharing 

generation networks. Digital 

images are the prime medium attacked by cyber 

attackers. In this paper, a blockchain based security 

framework is proposed for sharing digital images in 

 

Given the support threshold minsup, this part 

introduces the basic process that PFIM discovers the 

First, we discuss a special case. If T1 is empty, 

i.e. tn1 = 0, the processing of PFIM is simple. It just 

frequent itemsets in Fqf 

Fqf , let t be the current element 

 dtno × minsupe, t.IS is 

reported as a frequent itemset. Since the elements in 

Fqf are arranged in descending order of SUP, if 

t.SUP < dtno × minsupe, it can be guaranteed that all 

frequent itemsets are discovered and the sequential 

scan on Fqf terminates 

2) THE GENERAL CASE  

      Of course, usually, T1 is not empty. Due to the 

existence of new transactions, we may find new 

frequent itemsets from T1 and TO which are not 

contained in Fqf . In the rest of this part, we describe 

the processing of PFIM given that T1 is n

An itemset is frequent, if there are at least dn × 

minsupe transactions in T containing it, where n = 

tno+tn1 and T = TO ∪T1. 

 

PRUNING OPERATION 

 In terms of the description in Section IV

C, PFIM can reuse the pre-computation result of TO 

and reduce the execution cost significantly. In this 

part, we discuss how to improve PFIM further to 

speed up its execution by pruning operation. 1) 

PRUNING IN STEP 2 One main part of the cost in 

PFIM is to compute the support counts of the 

itemsets of STCAD in T1, i.e. step 3 in Section IV

C.2. Therefore, if we can reduce the number of 

itemsets in STCAD in step 2, the counting cost in T1 

can be decreased. In Section IV

it satisfies: dn × minsupe − mas1 

minsupe That is, we use the maximum count mas1 

of the single item in T1 to determine the support 

count range of the possible frequent itemsets. 

Obviously, if we can narrow down the sup

range, the size of STCAD can be reduced. As 

described in the process of step 2, PFIM can 

determine directly whether the quasi

itemsets in Fqf are frequent itemsets. 

step 2, PFIM maintains the possible frequent 

itemsets in STCAD. Before entering the step 3, we 

wonder whether the size of STCAD can be 

decreased further. But, it should be noted that, the 

reason to prune the itemsets in STCAD is that the 

execution cost in step 3 can be high if STCAD 

frequent itemsets are discovered and the sequential 

 

Of course, usually, T1 is not empty. Due to the 

existence of new transactions, we may find new 

frequent itemsets from T1 and TO which are not 

contained in Fqf . In the rest of this part, we describe 

the processing of PFIM given that T1 is not empty. 

An itemset is frequent, if there are at least dn × 

minsupe transactions in T containing it, where n = 

In terms of the description in Section IV-

computation result of TO 

and reduce the execution cost significantly. In this 

part, we discuss how to improve PFIM further to 

speed up its execution by pruning operation. 1) 

EP 2 One main part of the cost in 

PFIM is to compute the support counts of the 

itemsets of STCAD in T1, i.e. step 3 in Section IV-

C.2. Therefore, if we can reduce the number of 

itemsets in STCAD in step 2, the counting cost in T1 

on IV-C.2, ∀t ∈ STCAD, 

− mas1 ≤ t.SUP < dn × 

minsupe That is, we use the maximum count mas1 

of the single item in T1 to determine the support 

count range of the possible frequent itemsets. 

Obviously, if we can narrow down the support count 

range, the size of STCAD can be reduced. As 

described in the process of step 2, PFIM can 

determine directly whether the quasi-frequent 1-

Fqf are frequent itemsets.  At the end of 

step 2, PFIM maintains the possible frequent 

in STCAD. Before entering the step 3, we 

wonder whether the size of STCAD can be 

decreased further. But, it should be noted that, the 

reason to prune the itemsets in STCAD is that the 

execution cost in step 3 can be high if STCAD 



contains many itemsets, the cost of pruning 

operation should keep low also. Otherwise, the 

overall cost in step 2 and step 3 can still be large, 

which can affect the high efficiency of PFIM. In 

order to prune itemsets in STCAD as many as 

possible with a low cost, PFIM first chooses two 

items of each quasifrequent itemset in STCAD 

which have the smallest support counts in cnt1. ∀t ∈ 

STCAD, we keep an item pair (it,1, it,2) in t.IS in 

PIP (Pruning Item Pair), (it,1, it,2) are two items 

with the smallest support counts in cnt1 among all 

items in t.IS and it,1 ≺ it,2. PFIM computes the 

support counts of the item pairs in PIP in the similar 

operation as step 3 in Section IV-C.2. 

      UPDATE OPERATION  

            As the description above, the new 

transactions are accumulated in T1. When the size of 

T1 reaches a certain threshold, for example, 5% of 

the size of TO, the transactions in T1 and TO are 

merged. At this point, the quasi-frequent itemsets in 

Fqf needs to be updated also. Of course, re-

construction totally is one choice, i.e. re-compute 

the quasi-frequent itemsets with the support 

threshold ω on T = TO ∪ T1 from scratch. But the 

total re-construction can be expensive. Therefore, in 

this paper, we propose an incremental update 

strategy, which utilizes the existing information 

computed already to speed up the update operation. 

[2] discussed about a method, Optimality results are 

presented for an end-to-end inference approach to 

correct(i.e., diagnose and repair) probabilistic 

network faults at minimum expected cost. One 

motivating application of using this end-to-end 

inference approach is an externally managed overlay 

network, where we cannot directly access and 

monitor nodes that are independently operated by 

different administrative domains, but instead we 

must infer failures via end to-end measurements. [4] 

discussed about a method, Sensor network consists 

of low cost battery powered nodes which is limited 

in power. Hence power efficient methods are needed 

for data gathering and aggregation in order to 

achieve prolonged network life. However, there are 

several energy efficient routing protocols in the 

literature; quiet of them are centralized approaches, 

that is low energy conservation. 

DISCUSSIONS 

     This paper assumes that there exists a lower-

bound ω for the value of minsup in practical 

applications. The value of ω is determined by the 

domain experts or the lowest value of the used 

support levels. However, some user may submit a 

frequent itemset mining with the specified minsup 

which is lower than ω. Although this case should be 

quite unusual (too many frequent itemsets can be 

generated), we still hope that PFIM can deal with 

this case. Total re-computation on T = TO ∪ T1 is 

one choice. But this choice should be expensive and 

it neglects the pre-computation result of the existing 

Fqf . A proper alternative is to reuse the 

precomputation result. Fqf maintains the quasi-

frequent itemsets whose support counts in TO are no 

less than dω × tnoe. We first compute the frequent 

itemsets on TO with support level minsup (here 

minsup < ω). 

PERFORMANCE EVALUATION 

     A. EXPERIMENTAL SETTINGS 

          To evaluate the performance of PFIM, we 

implement it in Java with jdk-8u20-windows-x64. 

The experiments are executed on LENOVO 

ThinkCentre M8400 (Intel (R) Core(TM) i7-3770 

CPU @ 3.40GHz (8 CPUs) + 32G memory + 64 bit 

windows 7). The used data set is stored in Seagate 

Expansion STBV3000300 (3TB). In the 

experiments, the performance of PFIM is evaluated 

against Apriori [20] and negFIN [25]. The reason to 

select the two algorithms for performance evaluation 

is that, (1) Apriori is a classic level-wise algorithm 

and thus we select it as the baseline algorithm, (2) 

negFIN is the latest algorithm and it shows a 



performance advantage over the other main frequent 

itemset mining algorithms [25].

PRE-COMPUTATION OPERATION AND 

UPDATE OPERATION 

        In this part, we report the execution times of 

precomputation operation and the update operation.

As depicted in Figure 8(a), given that tn1/tno = 0.03, 

we illustrate the pre-computation cost of PFIM with 

the varying values of tno. The pre-computation time 

of PFIM increases quickly with the greater value of 

tno. At tno = 100×106 , the pre-computation 

322337.466s. For one hand, this indicates that 

frequent itemset mining algorithms require a rather 

long execution time to compute frequent itemsets if 

the value of minsup is small. For the other hand, the 

pre-computation operation is expensive on m

data. But it should be noted that the pre

only is executed once from scratch and then the 

incremental update can be performed.  

 

 

performance advantage over the other main frequent 

itemset mining algorithms [25].
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In this part, we report the execution times of 

precomputation operation and the update operation. 

As depicted in Figure 8(a), given that tn1/tno = 0.03, 

computation cost of PFIM with 

computation time 

of PFIM increases quickly with the greater value of 

computation time is 

322337.466s. For one hand, this indicates that 

frequent itemset mining algorithms require a rather 

long execution time to compute frequent itemsets if 

the value of minsup is small. For the other hand, the 

computation operation is expensive on massive 

data. But it should be noted that the pre-computation 

only is executed once from scratch and then the 
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