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ABSTRACT 

Real-time crowd sourced maps like Waze give timely 

updates on traffic, congestion, accidents and points of 

interest. In this paper, we tend to demonstrate however 

lack of robust location authentication permits creation 

of software-based Sybil devices that expose Crowd 

sourced map systems to a spread of security and 

privacy attacks. Our experiments show that one Sybil 

device with restricted resources will cause disturbance 

on Waze, news false congestion and accidents and 

mechanically rerouting user traffic. More importantly, 

we tend to describe techniques to come up with Sybil 

devices at scale, making armies of virtual vehicles 

capable of remotely following precise movements for 

giant user populations whereas avoiding detection. To 

defend against Sybil devices, we tend to propose a 

brand new approach based on co-location edges; etch 

records that attest to the one-time physical co-location 

of a combine of devices. Over time , Co-location edges 

mix to make giant proximity graphs that attest to 

physical interactions between devices, permitting 

ascendable Detection of  virtual vehicles. We tend to 

demonstrate the effectively of this approach exploitation 

large-scale simulations, and the way they will be wont to 

dramatically scale back the impact of the attacks. we've 

educated Waze/Google team of our analysis findings. 

Currently, we are inactive collaboration with Waze 

team to boost the protection and privacy of their 

system. 

Index Term-Social networks, Location Authentication, 

Location Privacy, Mapping services. 

I.INTRODUCTION 

Crowd sourcing is indispensable as a period of time 

information gathering tool for today’s on-line 

services. Reckon example map and navigation 

services. each Google Maps and Waze use periodic 

GPS readings from mobile devices to infer traffic 

speed and congestion levels on streets and highways. 

Waze, the foremost fashionable crowd sourced map 

service, offers users a lot of ways in which to actively 

share info on accidents, police cars, and even 

contribute content like piece of writing roads, 

landmarks, and native fuel costs. This and the ability 

to move with close users created Waze very popular, 

with associate calculable fifty million users once it 

had been non-inheritable by Google for a according 

$1.3 Billion USD in June 2013. Today, Google 

integrates hand-picked crowd sourced information 

(e.g. accidents) from Waze into its own Maps 

application. Unfortunately, systems that accept crowd 

sourced information as inherently prone to 

mischievous or malicious users seeking to disrupt or 

game the system [1]. as an example, business 

homeowners can smear competitors by refutation 

negative reviews on Yelp or Trip Advisor, and 

Foursquare users will forge their physical locations 

for discounts [3]. For location-based services, these 

attacks as doable as a result of there are not any wide 

deployed tools to manifest the placement of mobile 

devices. In fact, there are few effective tools these 

days to spot whether or not the origin of traffic 

requests as real mobile devices or software package 

scripts. The goal of our work is to explore the 

vulnerability of today’s crowd sourced mobile apps 

against Sybil devices, software package scripts that 

seem to application servers as “virtual mobile 

devices.”1 While one Sybil device will harm mobile 

apps through misbehavior, larger teams of Sybil 

devices will overwhelm traditional users and 

considerably disrupt any crowd sourced mobile app. 

In this paper, we tend to determine techniques that 

enable malicious attackers to reliably produce giant 

populations of Sybil devices victimization software 

package. Using the context of the Waze crowd 

sourced map service; we illustrate the powerful Sybil 

device attack, then develop and evaluate sturdy 

defenses against them. While our experiments and 

defenses ar designed with Waze (and crowd sourced 

maps) in mind, our results generalize to a wide range 

of mobile apps. With negligible modifications, our 
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techniques may be applied to services starting from 

Foursquare and Yelp to Uber, YikYak and Pokemon 

Go, permitting attackers to cheaply emulate various 

virtual devices with solid locations to Overwhelm 

these systems via wrongdoing. wrongdoing will vary 

from incorrectly getting coupons on 

Foursquare/Yelp, gaming the new user coupon 

system in Uber, imposing censorship on YikYak, to 

cheating within the game play of Pokemon Go. we 

tend to believe our proposed defenses may be 

extended to those services in addition. We discuss 

broader implications of our add Section nine.   

A.SYBIL ATTACKS IN WAZE: 

I rack the constant when the context of Waze, our 

experiments reveals variety of potential attacks by 

Sybil devices. Initial is straightforward event forgery, 

wherever devices will generate faux events to the 

Waze server, together with congestion, accidents or 

police activity which may have an effect on user 

routes. Second, we tend to describe techniques to 

reverse engineer mobile app genus APIs, so 

permitting wrongdoers to form light-weight scripts 

that effectively emulate an oversized variety of 

virtual vehicles that interact underneath the 

management of one attacker. We tend to decision 

Sybil devices in Waze “ghost riders.” These Sybil's 

will effectively amplify the officiousness of any 

attack, and overwhelm contributions from any 

legitimate users. Finally, we tend to discover a big 

privacy attack wherever ghost riders will wordlessly 

and invisibly “follow” and exactly track individual 

Waze users throughout their day, exactly mapping 

out their movement to figure, stores, hotels, filling 

station, and home. We tend to by experimentation 

confirmed the accuracy of this attack against our own 

vehicles, quantifying the accuracy of the attack 

against GPS coordinates. Exaggerated by a military 

of ghost riders, Associate in Nursing wrongdoer will 

probably thereabouts of lots of users, all with none 

risk of detection. 

B.DEFENSES: 

Prior proposals to handle the placement 

authentication downside have restricted 

attractiveness, due to reliance on widespread 

readying of specialized hardware, either as a part of 

physical infrastructure, i.e., cellular base stations, or 

as modifications to mobile devices themselves. 

Instead, we have a tendency to propose a sensible 

solution that limits the power of Sybil devices to 

amplify the potential harm incurred by any single 

wrongdoer. we have a tendency to introduce 

collocation edges, genuine records that attest to the 

one-time physical proximity of a combine of mobile 

devices. The creation of collocation edges is 

triggered opportunistically by the mapping service, 

e.g., Waze. Over time, collocation edges mix to make 

giant proximity graphs, network structures that attest 

to physical in tractions between devices. Since ghost 

riders cannot physically act with real devices, they 

cannot kind direct edges with real devices, solely 

indirectly through a little variety of real devices 

operated by the wrongdoer. Thus, the perimeters 

between associate wrongdoer and therefore the 

remainder of the network area unit restricted by the 

quantity of real physical devices she has, 

notwithstanding what percentage ghost riders area 

unit beneath her management. This reduces {the 

downside the matter} of detection ghost riders to a 

community detection problem on the proximity graph 

(The graph is seeded by a little variety of trustworthy 

infrastructure locations). Our paper includes these 

key contributions: 

C.IMPACTS: 

• We have a tendency to explore limits and impacts 

of single device attacks on Waze, e.g., artificial 

congestion and events. • we have a tendency to 

describe techniques to form light-weight ghost riders, 

virtual vehicles emulated by client-side scripts, 

through reverse engineering of the Waze app’s 

communication protocol with the server. 

• we have a tendency to establish a replacement 

privacy attack that enables ghost riders to just about 

follow and track individual Waze users in real time, 

and describe techniques to supply precise, sturdy 

location updates. 

• we have a tendency to propose and appraise 

defenses against ghost riders, victimization proximity 

graphs made with edges representing genuine 

collocation events between pairs of devices. Since 

collocation will solely occur between pairs of 

physical devices, proximity graphs limit the quantity 

of edges between real devices and ghost riders, so 



analytic teams of ghost riders and creating them 

detectable victimization community detection 

algorithms . 

 

Before the attack (left), Waze shows the 

fastest route for the user. After the attack (right), 

the user gets automatically re-routed by the fake 

traffic jam.  

WAZE BACKGROUND  

Waze is the most popular crowd sourced navigation 

app on smartphones, with more than 50 million users 

when it was acquired by Google in June 2013 [9]. 

Waze collects GPS values of users’ devices to 

estimate real-time traffic. It also allows users to 

report onroad events such as accidents, road closures 

and police vehicles, as well as editing roads and even 

updating local fuel prices. Some features, e.g., user 

reported accidents, have been integrated into Google 

Maps [10]. Here, we briefly describe the key 

functionality in Waze as context for our work.  

A. Trip Navigation: 

 Waze’s main feature is assist users to find the best 

route to their destination and turn-by-turn navigation. 

Waze generates aggregated real-time traffic updates 

using GPS data from its users, and optimizes user 

routes both during trip planning and during 

navigation. If and when traffic congestions is 

detected, Waze automatically re-routes users towards 

an alternative. Crowd sourced User Reports. Waze 

users can generate realtime event reports on their 

routes to inform others about ongoing incidents. 

Events range from accidents to road closures, 

hazards, and even police speed traps. Each report can 

include a short note with a photo. The event shows up 

on the map of users driving towards the reported 

location. As users get close, Waze pops up a window 

to let the user “say thanks,” or report the event is “not 

there.” If multiple users choose “not there”, the event 

will be removed. Waze also merges multiple reports 

of the same event type at the same location into a 

single event.  

B. Social Function: 

 To increase user engagement, Waze supports simple 

social interactions. Users can see avatars and 

locations of nearby users. Clicking on a user’s avatar 

shows more detailed user information, including 

nickname, ranking, and traveling speed. Also, users 

can send messages and chat with nearby users. This 

social function gives users the sense of a large 

community. Users can elevate their rankings in the 

community by contributing and receiving “thanks” 

from others.  

 ATTACKING CROWDSOURCED MAPS 

 In this section, we describe basic attacks to 

manipulate Waze by generating false road events and 

fake traffic congestion. Since Waze relies on real-

time data for trip planning and route selection, these 

attacks can influence user’s routing decisions. 

Attackers can attack specific users by forging 

congestion to force automatic rerouting on their trips. 

The attack is possible because Waze has no reliable 

authentication on user reported data, such as their 

GPS. We first discuss experimental ethics and steps 

we took to limit impact on real users. Then, we 

describe basic mechanisms and resources needed to 

launch attacks, and use controlled experiments on 

two attacks to understand their feasibility and limits. 

One attack creates fake road events at arbitrary 

locations, and the other seeks to generate artificial 

traffic hotspots to influence user routing.  

A.ETHICS 

 Our experiments seek to understand the 

feasibility and limits of practical attacks on crowd 

sourcing maps like Waze. We are very aware of the 

potential impact to real users from any experiments. 

We consulted our local IRB and have taken all 

possible precautions to ensure that our experiments 

do not negatively impact real Waze users. In 



particular, we choose experiment locations where 

user population density is extremely low (unoccupied 

roads), and only perform experiments at low-traffic 

hours, e.g., between 2am and 5am. During 

experiments, we continuously scan the entire 

experiment region and neighboring areas, to ensure 

no other Waze users (except our own accounts) are 

within miles of the test area. If any Waze users are 

detected, we immediately terminate all running 

experiments. Our study received the IRB approval 

under protocol# COMS-ZH-YA-010-7N. Our work is 

further motivated by our view of the risks of inaction 

versus risks posed to users by our study. On one 

hand, we can and have minimized risk to Waze users 

during our study, and we believe our experiments 

have not affected any Waze users. On the other hand, 

we believe the risk to millions of Waze users from 

pervasive location tracking (Section 5) is realistic and 

potentially very damaging. We feel that investigating 

these attacks and identifying these risks to the broad 

community at large was the ethically correct course 

of action. Furthermore, full understanding of the 

attacks was necessary to design a practical defense. 

B.BASIC ATTACK: 

 Generating Fake Events Launching attacks 

against crowd sourced maps like Waze requires three 

steps: automate input to mobile devices that run the 

Waze app; control the device GPS and simulate 

device movements (e.g., car driving); obtain access to 

multiple devices. All three are easily achieved using 

widely available mobile device emulators. Most 

mobile emulators run a full OS (e.g., Android, iOS) 

down to the kernel level, and simulate hardware 

features such as camera, SDCard and GPS. We 

choose the GenyMotion Android emulator [11] for its 

performance and reliability. Attackers can 

automatically control the GenyMotion emulator via 

Monkeyrunnerd scripts [12]. They can generate user 

actions such as clicking buttons and typing text, and 

feed pre-designed GPS sequences to the emulator 

(through a command line interface) to simulate 

location positioning and device movement. By 

controlling the timing of the GPS updates, they can 

simulate any “movement speed” of the simulated 

devices. Using these tools, attackers can generate 

fake events (or alerts) at a given location by setting 

fake GPS on their virtual devices. This includes any 

events supported by Waze, including accidents, 

police, hazards, and road closures. We find that a 

single emulator can generate any event at arbitrary 

locations on the map. We validate these using 

experiments on a variety of unoccupied roads, 

including highways, local and rural roads (50+ 

locations, 3 repeated tests each). Note that our 

experiments only involve data in the Waze system, 

and do not affect real road vehicles not running the 

Waze app. Thus “unoccupied” means no vehicles on 

the road with mobile devices actively running the 

Waze app. After creation, the fake event stays on the 

map for about 30 minutes. Any Waze user can report 

that an event was “not there.” We find it takes two 

consecutive “not there’s” (without any “thanks” in 

between) to delete the event. Thus an attacker can 

ensure an event persists by occasionally “driving” 

other virtual devices to the region and “thanking” the 

original attacker for the event report.  

C. CONGESTION AND TRAFFIC ROUTING  

A more serious attack targets Waze’s real-

time trip routing function. Since route selection in 

Waze relies on predicted trip time, attackers can 

influence routes by creating “fake” traffic hotspots at 

specific locations. This can be done by configuring a 

group of virtual vehicles to travel slowly on a chosen 

road segment. We use controlled experiments to 

answer two questions. First, under what conditions 

can attackers successfully create traffic hotspots? 

Second, how long can an artificial traffic hotspot 

last? We select three low-traffic roads in the state of 

Texas that are representative of three popular road 

types based on their speed limit—Highway (65 mph), 

Local (45 mph) and Residential (25 mph). To avoid 

real users, we choose roads in low population rural 

areas, and run tests at hours with the lowest traffic 

volumes (usually 3-5AM). We constantly scan for 

real users in or nearby the experimental region, and 

reset/terminate experiments if users come close to an 

area with ongoing experiments. Across all our 

experiments, only 2 tests were terminated due to 

detected presence of real users nearby. Finally, we 

have examined different road types and hours of the 

day to ensure they do not introduce bias into our 

results. Creating Traffic Hotspots. Our experiment 

shows that it only takes one slow moving car to 

create traffic congestion, when there are no real Waze 



users around. Waze displays a red overlay on the 

road to indicate traffic congestion (Figure1, right) 

Different road types have different congestion 

thresholds, with thresholds strongly correlated to the 

speed limit. The congestion thresholds for Highway, 

Local and Residential roads are 40mph, 20mph and 

15mph, respectively. To understand if this is 

generalizable, we repeat our tests on other 

unoccupied roads in different states and countries. 

We picked 18 roads in five states in the US (CO, 

MO, NM, UT, MS ) and British Columbia, Canada. 

In each region, we select three roads with different 

speed limits (highway, local and residential). We find 

consistent results: a single virtual vehicle can always 

generate a traffic hotspot; and the congestion 

thresholds were consistent across different roads of 

the same speed limit. 

D. OUTVOTING REAL USERS.  

Generating traffic hotspot in practical 

scenarios faces a challenge from real Waze users who 

drive at normal (non-congested) speeds: attacker’s 

virtual vehicles must “convince” the server there’s a 

stream of slow speed traffic on the road even as real 

users tell the server otherwise. We need to understand 

how Waze aggregated multiple inputs to estimate 

traffic speed. We perform an experiment to infer this 

aggregation function used by Waze. We create two 

groups of virtual vehicles: Ns slowdriving cars with 

speed Ss, and Nf fast-driving cars with speed Sf; and 

they all pass the target location at the same time. We 

study the congestion reported by Waze to infer the 

aggregation function. Note that the server-estimated 

traffic speed is visible on the map only if we formed 

a traffic hotspot. We achieve this by setting the speed 

tuple (Ss, Sf) to (10mph, 30mph) for Highway, (5, 

15) for Local and (5, 10) for Residential. As shown in 

Figure 2, when we vary the ratio of slow cars over 

fast cars (Ns: Nf), the Waze server produces different 

final traffic speeds. We observe that Waze does not 

simply compute an “average” speed over all the cars. 

Instead, it uses a weighted average with higher 

weight on the majority cars’ speed. We infer an 

aggregation function as follows: 

Swaze = Smax · max(Ns, Nf ) + Savg · 

min(Ns, Nf ) Ns + Nf where Savg = SsNs+Sf Nf 

Ns+Nf , 

 Smax is the speed of the group with Nmax 

cars. As shown in, our function can predict Waze’s 

aggregate traffic speed accurately, for all different 

types of roads in our test. For validation purposes, we 

run another set of experiments by raising Sf above 

the hotspot thresholds (65mph, 30mph and 20mph 

respectively for the three roads). We can still form 

traffic hotspots by using more slow-driving cars (Ns 

> Nf), and our function can still predict the traffic 

speed on Waze accurately.  

E.LONG-LASTING TRAFFIC CONGESTION.  

A traffic hotspot will last for 25-30 minutes 

if no other cars drive by. Once aggregate speed 

normalizes, the congestion event is dismissed within 

2-5 minutes. To create a long-lasting virtual traffic 

jam, attackers can simply keep sending slow-driving 

cars to the congestion area to resist the input from 

real users. We validate this using a simple, 50- 

minute long experiment where 3 virtual vehicles 

create a persistent congestion by driving slowly 

through an area, and then looping back every 10 

minutes. Meanwhile, 2 other virtual cars emulate 

legitimate drivers that pass by at high speed every 10 

minutes. We find the traffic hotspot persists for the 

entire experiment period. 

F. IMPACT ON END USERS. 

 Waze uses real-time traffic data to optimize 

routes during trip planning. Waze estimates the end-

toend trip time and recommends the fastest route. 

Once on the road, Waze continuously estimates the 

travel time, and automatically reroutes if the current 

route becomes congested. An attacker can launch 

physical attacks by placing fake traffic hotspots on 

the user’s original route. While congestion alone does 

not trigger rerouting, Waze reroutes the user to a 

detour when the estimated travel time through the 

detour is shorter than the current congested route. We 

also note that Waze data is used by Google Maps, 

and therefore can potentially impact their 1+ billion 

users [13]. Our experiment shows that artificial 

congestion do not appear on Google Maps, but fake 

events generated on Waze are displayed on Google 

Maps without verification, including “accidents”, 

“construction” and “objects on road”. Finally, event 

updates are synchronized on both services, with a 2-



minute delay and persist for a similar period of time 

(e.g., 30 minutes).  

  

Using  a HTTPS  proxy as man-in-the-middle to 

intercept traffic between Waze client and server.  

SYBIL ATTACKS 

So far, we have shown that attackers using 

emulators can create “virtual vehicles” that 

manipulate the Waze map. An attacker can generate 

much higher impact using a large group of virtual 

vehicles (or Sybil’s) under control. In this section, we 

describe techniques to produce light-weight virtual 

vehicles in Waze, and explore the scalability of the 

group-based attacks. We refer to large groups of 

virtual vehicles as “ghost riders” for two reasons. 

First, they are easy to create en masse, and can travel 

in packs to outvote real users to generate more 

complex events, e.g., persistent traffic congestion. 

Second, as we show in §5, they can make themselves 

invisible to nearby vehicles. 

 A.CREATING SYBIL DEVICES 

 We start by looking at the limits of the 

large-scale Sybil attacks on Waze. First, we note user 

accounts do not pose a challenge to attackers, since 

account registration can be fully automated. We 

found that a single-threaded Monkey runner script 

could automatically register 1000 new accounts in a 

day. The limiting factor is the scalability of vehicle 

emulation. Even though emulators like GenyMotion 

are relatively lightweight, each instance still takes 

significant computational resources. For example, a 

MacBookPro with 8G of RAM supports only 10 

simultaneous emulator instances. For this, we explore 

a more scalable approach to client emulation that can 

increase the number of supported virtual vehicles by 

orders of magnitude. Specifically, we reverse 

engineer the communication APIs used by the app, 

and replace emulators with simple Python scripts that 

mimic API calls.  

B.REVERSE ENGINEERING WAZE APIS.  

The Waze app uses HTTPS to communicate 

with the server, so API details cannot be directly 

observed by capturing network traffic (TLS/SSL 

encrypted). However, an attacker can still intercept 

HTTPS traffic, by setting up a proxy [14] between 

her phone and Waze server as a man-inthe-middle 

attack [15], [16]. As shown in Figure 3, an attacker 

needs to pre-install the proxy server’s root Certificate 

Authorities (CA) to her own phone as a “trusted CA.” 

This allows the proxy to present self-signed 

certificates to the phone claiming to be the Waze 

server. The Waze app on the phone will trust the 

proxy (since the certificate is signed by a “trusted 

CA”), and establish HTTPS connections with the 

proxy using proxy’s public key. On the proxy side, 

the attacker can decrypt the traffic using proxy’s 

private key, and then forward traffic from the phone 

to Waze server through a separate TLS/SSL channel. 

The proxy then observes traffic to the Waze servers 

and extracts the API calls from plain text traffic. 

Hiding API calls using traffic encryption is 

fundamentally challenging, because the attacker has 

control over most of the components in the 

communication process, including phone, the app 

binary, and the proxy. A known countermeasure is 

certificate pinning [17], which embeds a copy of the 

server certificate within the app. When the app makes 

HTTPS requests, it validates the server-provided 

certificate with its known copy before establishing 

connections. However, dedicated attackers can 

extract and replace the embedded certificate by 

disassembling the app binary or attaching the app to a 

debugger [18], [19]. Once we obtain the knowledge 

of Waze APIs, we can build extrimly lightweight 

Waze clients using python scripts, allocating one 

thread for each client. Within each thread, we login to 

the app using a separate account, and maintain a live 

session by sending periodic GPS coordinates to the 

Waze server.  

C.POTENTIAL DEFENSES AGAINST SYBIL 

DEVICES  

While attackers can easily create lightweight 

Sybil devices, it is nontrivial for services providers to 



effectively detect and defend against them. Below we 

discuss possible ways to reliably authenticate mobile 

devices, and highlight the key challenges to do so. 

Email Verification. A straight-forward approach is to 

authenticate a mobile device via an email account. 

However, attackers may create fake email accounts 

automatically or purchase them in bulks from black-

markets [20]. This approach has limited effect. 

1. SMS VERIFICATION. 

 Two-factor Authentication can be used to 

verify phone numbers. The latest Waze app already 

requires SMS verification during account 

registration. However, attackers can bypass this using 

disposable phone numbers or temporal SMS services 

[21]. 

2. CAPTCHA 

Service providers can use CAPTCHAs to 

test whether a phone is operated by a human user or a 

computer script. This approach has key limitations 

too. First, solving CAPTCHAs on smart phones can 

be distracting and annoying to legitimate users. 

Second, attackers can leverage crowd sourced 

CAPTCHA farms to solve CAPTCHAs in real time 

[22].  

3. IMEI VALIDATION 

 Service providers may also consider 

validating the unique identifier of the phone such as 

IMEI. But the challenge is there are already public 

IMEI databases [23] or fake IMEI generators [24] 

that can help attackers to spoof the identifier. 

 4. DEVICE FINGERPRINTING 

Researchers have proposed to use motion 

sensors to fingerprint smart phones [25]. The idea is 

that Smartphone sensors such as accelerometers and 

gyroscopes usually have anomalies in their signals 

due to manufacturing imperfections. Such signal 

anomalies can be used to uniquely fingerprint the 

phone. However, a more recent result shows that 

fingerprinting accuracy would drop quickly for a 

large number of devices (e.g., 100K) [26]. This 

technique is still not reliable enough to authenticate 

mobile devices. 

5. IP VERIFICATION 

Finally, service providers can also check if 

the device’s IP is an actual mobile IP (or a suspicious 

web proxy). However, attacker can overcome this by 

routing their traffic through a cellular data plan. We 

find that authenticating individual mobile devices is 

very challenging. As long as attackers have full 

controls on the client side, they could (easily) forge 

the data needed for authentication. In the later section 

(§6), we will describe our method to detect groups of 

Sybil devices.  

D.SCALABILITY OF GHOST RIDERS  

Ghost riders are fully functional Waze 

clients and they are highly scalable. Each ghost rider 

is scripted not only to report GPS to Waze server, but 

also report fake events using the API. We run 1000 

virtual vehicles on a single Linux Dell Server (Quad 

Core, 2GB RAM), and find that at steady state, 1000 

virtual devices only introduces a small overhead: 

11% of memory usage, 2% of CPU and 420 Kbps 

bandwidth. In practice, attackers can easily run tens 

of thousands of virtual devices on a commodity 

server. Finally, we experimentally confirm the 

practical efficacy and scalability of ghost riders. We 

chose a secluded highway in rural Texas, and used 

1000 virtual vehicles (hosted on a single server and 

single IP) to generate a highly congested traffic 

hotspot. We perform our experiment in the middle of 

the night after repeated scans showed no Waze users 

within miles of our test area. We positioned 1000 

ghost riders one after another, and drove them slowly 

at 15 mph along the highway, looping them back 

every 15 minutes for an entire hour. The congestion 

shows up on Waze 5 minutes after our test began, and 

stayed on the map during the entire test period. No 

problems were observed during our test, and tests to 

generate fake events (accidents etc.) also succeeded.  

 USER TRACKING ATTACK  

Next, we describe a powerful new attack on 

user privacy, where virtual vehicles can track Waze 

users continuously without risking detection 

themselves. By exploiting a key social functionality 

in Waze, attackers can remotely follow (or stalk) any 

individual user in real time. This is possible with 

single device emulation, but greatly amplified with 



the help of large groups of ghost riders, possibly 

tracking large user populations simultaneously and 

putting user (location) privacy at great risk. We start 

by examining the feasibility (and key enablers) of 

this attack. We then present a simple but highly 

effective tracking algorithm that follows individual 

users in real time, which we have validated using real 

life experiments (with ourselves as the targets). The 

only way for Waze users to avoid tracking is to go 

“invisible” in Waze. However, doing so forfeits the 

ability to generate reports or message other users. 

Waze also resets the invisible setting every time the 

app is opened [27].  

A.FEASIBILITY OF USER TRACKING  

A key feature in Waze allows users to 

socialize with others on the road. Each user sees on 

her screen icons representing the locations of nearby 

users, and can chat or message with them through the 

app. Leveraging this feature, an attacker can pinpoint 

any target who has the Waze app running on her 

phone. By constantly “refreshing” the app screen 

(issuing an update query to the server), an attacker 

can query the victim’s GPS location from Waze in 

real time. To understand this capability, we perform 

detailed measurements on Waze to evaluate the 

efficiency and precision of user tracking.  

B.TRACKING VIA USER QUERIES 

A Waze client periodically requests updates 

in her nearby area, by issuing an update query with 

its GPS coordinates and a rectangular “search area.” 

This search area can be set to any location on the 

map, and does not depend on the requester’s own 

location. The server returns a list of users located in 

the area, including user ID, nickname, account 

creation time, GPS coordinates and the GPS 

timestamp. Thus an attacker can find and “follow” a 

target user by first locating them at any given 

location (work, home) and then continuously 

following them by issuing update queries centered on 

the target vehicle location, all automated by scripts.  

C.OVERCOMING DOWN SAMPLING.  

The user query approach faces a down 

sampling challenge, because Waze responds to each 

query with an “incomplete” set of users, i.e., up to 20 

users per query regardless of the search area size. 

This down sampled result is necessary to prevent 

flooding the app screen with too many user icons, but 

it also limits an attacker’s ability to follow a moving 

target. We find that this down sampling can be 

overcome by simply repeatedly querying the system 

until the target is found. We perform query 

measurements on four test areas (of different sizes 

between 3 × 4 mile2 and 24 × 32 mile2) in the 

downtown area of Los Angeles (City A, with 10 

million residents as of 2015). For each area, we issue 

400 queries within 10 seconds, and examine the 

number of unique users returned by all the queries. 

Results in Figure 4 show that the number of unique 

users reported converges after 150-250 queries for 

the three small search areas (≤ 12 × 16 mile2). For 

the area of size 24×32 mile2, more than 400 queries 

are required to reach convergence.  

D.TRACKING USERS OVER TIME 

Our analysis found that each active Waze 

app updates its GPS coordinates to the server every 2 

minutes, regardless of whether the user is mobile or 

stationary. Even when running in the background, the 

Waze app reports GPS values every 5 minutes. As 

long as the Waze app is open (even running in the 

background), the user’s location is continuously 

reported to Waze and potential attackers. Clearly, a 

more conservative approach to managing location 

data would be helpful here. We note that attackers 

can perform long-term tracking on a target user (e.g., 

over months). The attacker needs a persistent ID 

associated to the target. The “user ID” field in the 

metadata is insufficient, because it is a random 

“session” ID assigned upon user login and is released 

when the user kills the app. However, the “account 

creation time” can serve as a persistent ID, because a) 

it remains the same across the user’s different login 

sessions, and b) it is precise down to the second, and 

is sufficiently to uniquely identify single users in the 

same geographic area. While Waze can remove the 

“account creation time” field from metadata, a 

persistent attacker can overcome this by analyzing 

the victim’s mobility pattern. For example, the 

attacker can identify a set of locations where the 

victim has visited frequently or stayed during the past 

session, mapping to home or workplace. Then the 

attacker can assign a ghost rider to constantly 



monitor those areas, and reidentify the target once her 

icon shows up in a monitored location, e.g., home. 

 

 

E.STEALTH MODE. 

 We note that attackers remain invisible to 

their targets, because queries on any specific 

geographic area can be done by Sybil’s operating 

“remotely,” i.e. claiming to be in a differment city, 

state or country. Attackers can enable their 

“invisible” option to hide from other nearby users. 

Finally, disabling these features still does not make 

the attacker visible. Waze only updates each user’s 

“nearby” screen every 2 minutes (while sending its 

own GPS update to the servers). Thus a tracker can 

“pop into” the target’s region, query for the target, 

and then move out of the target’s observable range, 

all before the target can update and detect it.  

F.REAL-TIME INDIVIDUAL USER TRACKING  

To build a detailed trace of a target user’s 

movements, an attacker first bootstraps by identifying 

the target’s icon on the map. This can be done by 

identifying the target’s icon while confirming her 

physical presence at a time and location. The attacker 

centers its search area on the victim’s location, and 

issues a large number of queries (using Sybil 

accounts) until it captures the next GPS report from 

the target. If the target is moving, the attacker moves 

the search area along the target’s direction of 

movement and repeats the process to get updates.  

EXPERIMENTS 

 To evaluate its effectiveness, we performed 

experiments by tracking one of our own Android 

Smartphone’s and one of our virtual devices. 

Tracking was effective in both cases, but we 

experimented more with tracking our virtual device, 

since we could have it travel to any location. Using 

the OSRM tool [28], we generate detailed GPS traces 

of two driving trips, one in downtown area of Los 

Angeles (City A), and one along the interstate 

highway-101 (Highway B). The target device uses a 

realistic driving speed based on average traffic speeds 

estimated by Google Maps during the experiment. 

The attacker used 20 virtual devices to query Waze 

simultaneously in a rectangular search area of size 6 

× 8 mile2 . This should be sufficient to track the GPS 

update of a fast-driving car (up to 160 mph). Both 

experiments were during morning hours, and we 

logged both the network traffic of the target phone 

and query data retrieved by the attacker.  

DEFENSES 

 In this section, we propose defense 

mechanisms to significantly limit the magnitude and 

impact of these attacks. While individual devices can 

inflict limited damage, an attacker’s ability to control 

a large number of virtual vehicles at low cost elevates 

the severity of the attack in both quantity and quality. 

Our priority, then, is to restrict the number of ghost 

riders available to each attacker, thus increasing the 

cost per “vehicle” and reducing potential damage. 

The most intuitive approach is performing strong 

location authentication, so that attackers must use 

real devices physically located at the actual locations 

reported. This would make ghost riders as expensive 

to operate as real devices. Unfortunately, existing 

methods for location authentication do not extend 

well to our context. Some proposals solely rely on 

trusted infrastructures (e.g., wireless access points) to 

verify the physical presence of devices in close 

proximity [29], [30]. However, this requires large 

scale retrofitting of cellular cell towers or installation 

of new hardware, neither of which is practical at 

large geographic scales. Others propose to embed 

tamperproof location hardware on mobile devices 

[31], [32], which incurs high cost per user, and is 

only effective if enforced across all devices. For our 

purposes, we need a scalable approach that works 

with current hardware, without incurring costs on 

mobile users or the map service (Waze).  



A. SYBIL DETECTION VIA PROXIMITY GRAPH 

 Instead of optimizing per-device location 

authentication, our proposed defense is a Sybil 

detection mechanism based on the novel concept of 

proximity graph. Specifically, we leverage physical 

proximity between real devices to create collocation 

edges, which act as secure attestations of shared 

physical presence. In a proximity graph, nodes are 

Waze devices (uniquely identified by an account 

username and password on the server side). They 

perform secure peer-to-peer location authentication 

with the Waze app running in the background. An 

edge is established if the proximity authentication is 

successful. Because Sybil devices are scripted 

software, they are highly unlikely to come into 

physical proximity with real devices. A Sybil device 

can only form collocation edges with other Sybil 

devices (with coordination by the attacker) or the 

attacker’s own physical devices. The resulting graph 

should have only very few (or no) edges between 

virtual devices and real users (other than the 

attacker). Leveraging prior work on Sybil detection 

in social networks, groups of Sybil’s can be 

characterized by the few “attack edges” connecting 

them to the rest of the graph, making them 

identifiable through community-detection algorithms 

[33]. We use a very small number of trusted nodes 

only to bootstrap trust in the graph. We assume a 

small number of infrastructure access points are 

known to Waze servers, e.g., hotels and public Wi-Fi 

networks associated with physical locations stored in 

IPlocation databases (used for Geolocation by Apple 

and Google). Any Waze device that communicates 

with the Waze server under their IPs (and reports a 

GPS location consistent with the IP) automatically 

creates a new collocation edge to the trusted node.  

B. PEER-BASED PROXIMITY AUTHENTICATION 

 To build the proximity graph, we first need 

a reliable method to verify the physical collocation of 

mobile devices. We cannot rely on GPS reports since 

attackers can forge arbitrary GPS coordinates, or 

Bluetooth based device ranging [34] because the 

coverage is too short (Tracking via User Queries. A 

Waze client periodically requests updates in her 

nearby area, by issuing an update query with its GPS 

coordinates and a rectangular “search area.” This 

search area can be set to any location on the map, and 

does not depend on the requester’s own location. The 

server returns a list of users located in the area, 

including user ID, nickname, account creation time, 

GPS coordinates and the GPS timestamp. Thus an 

attacker can find and “follow” a target user by first 

locating them at any given location (work, home) and 

then continuously following them by issuing update 

queries centered on the target vehicle location, all 

automated by scripts. Overcoming Down sampling. 

The user query approach faces a down sampling 

challenge, because Waze responds to each query with 

an “incomplete” set of users, i.e., up to 20 users per 

query regardless of the search area size. This 

downsampled result is necessary to prevent flooding 

the app screen with too many user icons, but it also 

limits an attacker’s ability to follow a moving target. 

We find that this down sampling can be overcome by 

simply repeatedly querying the system until the target 

is found. We perform query measurements on four 

test areas (of different sizes between 3 × 4 mile2 and 

24 × 32 mile2) in the downtown area of Los Angeles 

(City A, with 10 million residents as of 2015). For 

each area, we issue 400 queries within 10 seconds, 

and examine the number of unique users returned by 

all the queries. Results show that the number of 

unique users reported converges after 150-250 

queries for the three small search areas (≤ 12 × 16 

mile2). For the area of size 24×32 mile2 , more than 

400 queries are required to reach convergence. [6] 

discussed about a method, In vehicular ad hoc 

networks (VANETs), because of the nonexistence of 

end-to-end connections, it is essential that nodes take 

advantage of connection opportunities to forward 

messages to make end-to-end messaging possible. [8] 

discussed about a system, In this proposal, a neural 

network approach is proposed for energy 

conservation routing in a wireless sensor network. 

Our designed neural network system has been 

successfully applied to our scheme of energy 

conservation. Neural network is applied to predict 

Most Significant Node and selecting the Group Head 

amongst the association of sensor nodes in the 

network. 

C. TRACKING USERS OVER TIME  

Our analysis found that each active Waze 

app updates its GPS coordinates to the server every 2 



minutes, regardless of whether the user is mobile or 

stationary. Even when running in the background, the 

Waze app reports GPS values every 5 minutes. As 

long as the Waze app is open (even running in the 

background), the user’s location is continuously 

reported to Waze and potential attackers. Clearly, a 

more conservative approach to managing location 

data would be helpful here. We note that attackers 

can perform long-term tracking on a target user (e.g., 

over months). The attacker needs a persistent ID 

associated to the target. The “user ID” field in the 

metadata is insufficient, because it is a random 

“session” ID assigned upon user login and is released 

when the user kills the app. However, the “account 

creation time” can serve as a persistent ID, because a) 

it remains the same across the user’s different login 

sessions, and b) it is precise down to the second, and 

is sufficiently to uniquely identify single users in the 

same geographic area. While Waze can remove the 

“account creation time” field from metadata, a 

persistent attacker can overcome this by analyzing 

the victim’s mobility pattern. For example, the 

attacker can identify a set of locations where the 

victim has visited frequently or stayed during the past 

session, mapping to home or workplace. Then the 

attacker can assign a ghost rider to constantly 

monitor those areas, and reidentify the target once her 

icon shows up in a monitored location, e.g., home. 

Stealth Mode. We note that attackers remain invisible 

to their targets, because queries on any specific 

geographic area can be done by Sybil’s operating 

“remotely,” i.e. claiming to be in a different city, 

state or country. Attackers can enable their 

“invisible” option to hide from other nearby users. 

Finally, disabling these features still does not make 

the attacker visible. Waze only updates each user’s 

“nearby” screen every 2 minutes (while sending its 

own GPS update to the servers). Thus a tracker can 

“pop into” the target’s region, query for the target, 

and then move out of the target’s observable range, 

all before the target can update and detect it.  

PEER-BASED PROXIMITY 

AUTHENTICATION 

To build the proximity graph, we first need a 

reliable method to verify the physical collocation of 

mobile devices. We cannot rely on GPS reports since 

attackers can forge arbitrary GPS coordinates, or 

Bluetooth based device ranging [34] because the 

coverage is too short (<10 meters) for vehicles. 

Instead, we conside a challenge-based proximity 

authentication method, which leverages the limited 

transmission range of Wi-Fi radios. 

• Wi-Fi Tethering Challenge. 

• Constructing Proximity Graphs. 

 

GRAPH-BASED SYBIL DETECTION 

We apply graph-based Sybil detection algorithms to 

detect Sybil’s in Waze proximity graph. Graph-based 

Sybil detectors [33], [36]– [42] were originally 

proposed in social networks. They all rely on the key 

assumption that Sybil’s have difficulty to form edges 

with real users, which results in a sparse cut between 

the Sybil and nonSybil regions in the social graph. 

Because of the limited number of “attack edges” 

between Sybil’s and non-Sybil’s, a random walk 

from non-Sybil region has a higher landing 

probability to land on a non-Sybil node than a Sybil 

node. Although this assumption may not always hold 

in online social networks [43], it holds well for the 

proximity graph. In online social networks, Sybil’s 

may build “attack edges” by befriending with real 

users (e.g., using attractive female photos) [43]. 

However, in a proximity graph, building an attack 

edge requires physical collocations. With the Wi-Fi 

authentication, it’s difficult to build attack edges 

using software simulations alone in a massive, 

automated manner (e.g., for tens of thousands of 

Sybil devices). In addition, the authentication is done 

in the background without human involvement, 

which further eliminates the chance for Sybil’s to 

trick real users to add edges. 

COUNTERMEASURE EVALUATION 

We use simulations to evaluate the effectiveness of 

our proposed defense. We focus on evaluating the 

feasibility and cost for attackerrs to maintain a large 

number of Sybil’s after the Sybil detection is in 

place. We quantify the cost by the number of attack 

edges a Sybil must establish with real users. In 

practice, this translates into the effort taken to 

physically drive around and use physical devices 

(with Wi-Fi radios) per Sybil to complete proximity 

authentication. In the following, we first describe our 



simulation setup, and then present the key findings 

and their implications on Waze.  

II.RESULTS 

 Our evaluation primarily focuses on Sybil Rank, and 

we briefly discuss the results of Sybil SCAR in the 

end. 

 ACCURACY OF SYBIL DETECTION  

We assume the attacker seeks to embed 1000 Sybil’s 

into the proximity graph. We use either single- or 

multi-gateway approaches to build attack edges on 

the proximity graph by connecting Sybil’s to 

randomly chosen normal users. We then add edges 

between Sybil nodes, following the power-law 

distribution and producing an average weighted 

degree of either 5 or 10 (to emulate different Sybil 

sub graph density). We randomly select 10 trusted 

nodes to bootstrap trust for Sybil Rank and run it on 

the proximity graph. We repeat each experiment 50 

times. 

BROADER IMPLICATIONS 

 While our experiments and defenses have focused 

strictly on Waze, our results are applicable to a wider 

range of mobile applications that rely on geolocation 

for user-contributed content and metadata. Examples 

include location based check-in services (Foursquare, 

Yelp), mobile navigation systems (Waze, Moovit), 

crowd sourced taxi services (Uber, Lyft), mobile 

dating apps (Tinder, Bumble), anonymous mobile 

communities (Yik Yak, Whisper) and location-based 

gaming apps (Pokemon Go). These systems face two 

common challenges exposing them to potential 

attacks. First, our efforts show that it is difficult for 

app developers to build a truly secure channel 

between the app and the server. There are numerous 

avenues for an attacker to reverseengineer and mimic 

an app’s API calls, thereby creating “cheap” virtual 

devices and launching Sybil attack . [4] discussed 

about a system,the effective incentive scheme is 

proposed to stimulate the forwarding cooperation of 

nodes in VANETs. In a coalitional game model, 

every relevant node cooperates in forwarding 

messages as required by the routing protocol. This 

scheme is extended with constrained storage space. A 

lightweight approach is also proposed to stimulate the 

cooperation..  

RELATED WORK  

SECURITY IN LOCATION-BASED SERVICES 

Location-based services face various threats, ranging 

from rogue users reporting fake GPS, [53], to 

malicious parties compromising user privacy [54]. A 

related study on Waze [55] demonstrated that small-

scale attacks can create traffic jams or track user 

icons, with up to 15 mobile emulators. Our work 

differs in two key aspects. First, we show that it’s 

possible to reverse engineer its APIs, enabling light-

weight Sybil devices (simple scripts) to replace full-

stack emulators. This increase the scale of potential 

attacks by orders of magnitude, to thousands of Waze 

clients per commodity laptop. The impact of 

thousands of virtual vehicles is qualitatively different 

from 10-15 mobile simulators. Second, as possible 

defenses, [2] discussed about creating Obstacles to 

Screened networks. In today’s technological world, 

millions of individuals are subject to privacy threats. 

Companies are hired not only to watch what you visit 

online, but to infiltrate the information and send 

advertising based on your browsing history. In 

contrast, we propose a novel proximity graph 

approach to detect and constrain the impact of virtual 

devices. Researchers have proposed to preserve user 

location privacy against map services such as Waze 

and Google. Earlier studies apply location cloaking 

by adding noise to the GPS reports [56]. Recent work 

use zero-knowledge [57] and differential privacy [58] 

to preserve the location privacy of individual users. 

Our work differs by focusing on the attacks against 

the map services 

III.CONCLUSION 

 We describe our efforts to identify and study a range 

of attacks on crowd sourced map services. We 

identify a range of single and multi-user attacks, and 

describe techniques to build and control groups of 

virtual vehicles (ghost riders) to amplify these 

attacks. Our work shows that today’s mapping 

services are highly vulnerable to software agents 

controlled by malicious users, and both the stability 

of these services and the privacy of millions of users 

are at stake. While our study and experiments focus 



on the Waze system, we believe the large majority of 

our results can be generalized to crowd sourced apps 

as a group. We propose and validate a suite of 

techniques that help services build proximity graphs 

and use them to effectively detect Sybil devices. 

Throughout this work, we have taken active steps to 

isolate our experiments and prevent any negative 

consequence on real Waze users. We also proactively 

informed Waze team of theses attacks, and worked 

with them to mitigate the threat. 
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