
Crowd Sourced Mobile Mapping Services

K.Priyadharshini (AP/CSE) 1, K. Mohanapriya, 2. P. Muthulakshmi, 3. S.Sathya,

1, 2, 3 –Department of Computer Science and Engineering,

Bharathiyar Institute of Engineering for Women, Deviyakurichi-636112.

ABSTRACT

Real-time crowd sourced maps like Waze give timely

updates on traffic, congestion, accidents and points of

interest. In this paper, we tend to demonstrate however

lack of robust location authentication permits creation

of software-based Sybil devices that expose Crowd

sourced map systems to a spread of security and

privacy attacks. Our experiments show that one Sybil

device with restricted resources will cause disturbance

on Waze, news false congestion and accidents and

mechanically rerouting user traffic. More importantly,

we tend to describe techniques to come up with Sybil

devices at scale, making armies of virtual vehicles

capable of remotely following precise movements for

giant user populations whereas avoiding detection. To

defend against Sybil devices, we tend to propose a

brand new approach based on co-location edges; etch

records that attest to the one-time physical co-location

of a combine of devices. Over time , Co-location edges

mix to make giant proximity graphs that attest to

physical interactions between devices, permitting

ascendable Detection of virtual vehicles. We tend to

demonstrate the effectively of this approach exploitation

large-scale simulations, and the way they will be wont to

dramatically scale back the impact of the attacks. we've

educated Waze/Google team of our analysis findings.

Currently, we are inactive collaboration with Waze

team to boost the protection and privacy of their

system.

Index Term-Social networks, Location Authentication,

Location Privacy, Mapping services.

I.INTRODUCTION

Crowd sourcing is indispensable as a period of time

information gathering tool for today’s on-line

services. Reckon example map and navigation

services. each Google Maps and Waze use periodic

GPS readings from mobile devices to infer traffic

speed and congestion levels on streets and highways.

Waze, the foremost fashionable crowd sourced map

service, offers users a lot of ways in which to actively

share info on accidents, police cars, and even

contribute content like piece of writing roads,

landmarks, and native fuel costs. This and the ability

to move with close users created Waze very popular,

with associate calculable fifty million users once it

had been non-inheritable by Google for a according

$1.3 Billion USD in June 2013. Today, Google

integrates hand-picked crowd sourced information

(e.g. accidents) from Waze into its own Maps

application. Unfortunately, systems that accept crowd

sourced information as inherently prone to

mischievous or malicious users seeking to disrupt or

game the system [1]. as an example, business

homeowners can smear competitors by refutation

negative reviews on Yelp or Trip Advisor, and

Foursquare users will forge their physical locations

for discounts [3]. For location-based services, these

attacks as doable as a result of there are not any wide

deployed tools to manifest the placement of mobile

devices. In fact, there are few effective tools these

days to spot whether or not the origin of traffic

requests as real mobile devices or software package

scripts. The goal of our work is to explore the

vulnerability of today’s crowd sourced mobile apps

against Sybil devices, software package scripts that

seem to application servers as “virtual mobile

devices.”1 While one Sybil device will harm mobile

apps through misbehavior, larger teams of Sybil

devices will overwhelm traditional users and

considerably disrupt any crowd sourced mobile app.

In this paper, we tend to determine techniques that

enable malicious attackers to reliably produce giant

populations of Sybil devices victimization software

package. Using the context of the Waze crowd

sourced map service; we illustrate the powerful Sybil

device attack, then develop and evaluate sturdy

defenses against them. While our experiments and

defenses ar designed with Waze (and crowd sourced

maps) in mind, our results generalize to a wide range

of mobile apps. With negligible modifications, our

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

Vol. 9, Issue 6, June 2022

81

techniques may be applied to services starting from

Foursquare and Yelp to Uber, YikYak and Pokemon

Go, permitting attackers to cheaply emulate various

virtual devices with solid locations to Overwhelm

these systems via wrongdoing. wrongdoing will vary

from incorrectly getting coupons on

Foursquare/Yelp, gaming the new user coupon

system in Uber, imposing censorship on YikYak, to

cheating within the game play of Pokemon Go. we

tend to believe our proposed defenses may be

extended to those services in addition. We discuss

broader implications of our add Section nine.

A.SYBIL ATTACKS IN WAZE:

I rack the constant when the context of Waze, our

experiments reveals variety of potential attacks by

Sybil devices. Initial is straightforward event forgery,

wherever devices will generate faux events to the

Waze server, together with congestion, accidents or

police activity which may have an effect on user

routes. Second, we tend to describe techniques to

reverse engineer mobile app genus APIs, so

permitting wrongdoers to form light-weight scripts

that effectively emulate an oversized variety of

virtual vehicles that interact underneath the

management of one attacker. We tend to decision

Sybil devices in Waze “ghost riders.” These Sybil's

will effectively amplify the officiousness of any

attack, and overwhelm contributions from any

legitimate users. Finally, we tend to discover a big

privacy attack wherever ghost riders will wordlessly

and invisibly “follow” and exactly track individual

Waze users throughout their day, exactly mapping

out their movement to figure, stores, hotels, filling

station, and home. We tend to by experimentation

confirmed the accuracy of this attack against our own

vehicles, quantifying the accuracy of the attack

against GPS coordinates. Exaggerated by a military

of ghost riders, Associate in Nursing wrongdoer will

probably thereabouts of lots of users, all with none

risk of detection.

B.DEFENSES:

Prior proposals to handle the placement

authentication downside have restricted

attractiveness, due to reliance on widespread

readying of specialized hardware, either as a part of

physical infrastructure, i.e., cellular base stations, or

as modifications to mobile devices themselves.

Instead, we have a tendency to propose a sensible

solution that limits the power of Sybil devices to

amplify the potential harm incurred by any single

wrongdoer. we have a tendency to introduce

collocation edges, genuine records that attest to the

one-time physical proximity of a combine of mobile

devices. The creation of collocation edges is

triggered opportunistically by the mapping service,

e.g., Waze. Over time, collocation edges mix to make

giant proximity graphs, network structures that attest

to physical in tractions between devices. Since ghost

riders cannot physically act with real devices, they

cannot kind direct edges with real devices, solely

indirectly through a little variety of real devices

operated by the wrongdoer. Thus, the perimeters

between associate wrongdoer and therefore the

remainder of the network area unit restricted by the

quantity of real physical devices she has,

notwithstanding what percentage ghost riders area

unit beneath her management. This reduces {the

downside the matter} of detection ghost riders to a

community detection problem on the proximity graph

(The graph is seeded by a little variety of trustworthy

infrastructure locations). Our paper includes these

key contributions:

C.IMPACTS:

• We have a tendency to explore limits and impacts

of single device attacks on Waze, e.g., artificial

congestion and events. • we have a tendency to

describe techniques to form light-weight ghost riders,

virtual vehicles emulated by client-side scripts,

through reverse engineering of the Waze app’s

communication protocol with the server.

• we have a tendency to establish a replacement

privacy attack that enables ghost riders to just about

follow and track individual Waze users in real time,

and describe techniques to supply precise, sturdy

location updates.

• we have a tendency to propose and appraise

defenses against ghost riders, victimization proximity

graphs made with edges representing genuine

collocation events between pairs of devices. Since

collocation will solely occur between pairs of

physical devices, proximity graphs limit the quantity

of edges between real devices and ghost riders, so

analytic teams of ghost riders and creating them

detectable victimization community detection

algorithms .

Before the attack (left), Waze shows the

fastest route for the user. After the attack (right),

the user gets automatically re-routed by the fake

traffic jam.

WAZE BACKGROUND

Waze is the most popular crowd sourced navigation

app on smartphones, with more than 50 million users

when it was acquired by Google in June 2013 [9].

Waze collects GPS values of users’ devices to

estimate real-time traffic. It also allows users to

report onroad events such as accidents, road closures

and police vehicles, as well as editing roads and even

updating local fuel prices. Some features, e.g., user

reported accidents, have been integrated into Google

Maps [10]. Here, we briefly describe the key

functionality in Waze as context for our work.

A. Trip Navigation:

 Waze’s main feature is assist users to find the best

route to their destination and turn-by-turn navigation.

Waze generates aggregated real-time traffic updates

using GPS data from its users, and optimizes user

routes both during trip planning and during

navigation. If and when traffic congestions is

detected, Waze automatically re-routes users towards

an alternative. Crowd sourced User Reports. Waze

users can generate realtime event reports on their

routes to inform others about ongoing incidents.

Events range from accidents to road closures,

hazards, and even police speed traps. Each report can

include a short note with a photo. The event shows up

on the map of users driving towards the reported

location. As users get close, Waze pops up a window

to let the user “say thanks,” or report the event is “not

there.” If multiple users choose “not there”, the event

will be removed. Waze also merges multiple reports

of the same event type at the same location into a

single event.

B. Social Function:

 To increase user engagement, Waze supports simple

social interactions. Users can see avatars and

locations of nearby users. Clicking on a user’s avatar

shows more detailed user information, including

nickname, ranking, and traveling speed. Also, users

can send messages and chat with nearby users. This

social function gives users the sense of a large

community. Users can elevate their rankings in the

community by contributing and receiving “thanks”

from others.

 ATTACKING CROWDSOURCED MAPS

 In this section, we describe basic attacks to

manipulate Waze by generating false road events and

fake traffic congestion. Since Waze relies on real-

time data for trip planning and route selection, these

attacks can influence user’s routing decisions.

Attackers can attack specific users by forging

congestion to force automatic rerouting on their trips.

The attack is possible because Waze has no reliable

authentication on user reported data, such as their

GPS. We first discuss experimental ethics and steps

we took to limit impact on real users. Then, we

describe basic mechanisms and resources needed to

launch attacks, and use controlled experiments on

two attacks to understand their feasibility and limits.

One attack creates fake road events at arbitrary

locations, and the other seeks to generate artificial

traffic hotspots to influence user routing.

A.ETHICS

 Our experiments seek to understand the

feasibility and limits of practical attacks on crowd

sourcing maps like Waze. We are very aware of the

potential impact to real users from any experiments.

We consulted our local IRB and have taken all

possible precautions to ensure that our experiments

do not negatively impact real Waze users. In

particular, we choose experiment locations where

user population density is extremely low (unoccupied

roads), and only perform experiments at low-traffic

hours, e.g., between 2am and 5am. During

experiments, we continuously scan the entire

experiment region and neighboring areas, to ensure

no other Waze users (except our own accounts) are

within miles of the test area. If any Waze users are

detected, we immediately terminate all running

experiments. Our study received the IRB approval

under protocol# COMS-ZH-YA-010-7N. Our work is

further motivated by our view of the risks of inaction

versus risks posed to users by our study. On one

hand, we can and have minimized risk to Waze users

during our study, and we believe our experiments

have not affected any Waze users. On the other hand,

we believe the risk to millions of Waze users from

pervasive location tracking (Section 5) is realistic and

potentially very damaging. We feel that investigating

these attacks and identifying these risks to the broad

community at large was the ethically correct course

of action. Furthermore, full understanding of the

attacks was necessary to design a practical defense.

B.BASIC ATTACK:

 Generating Fake Events Launching attacks

against crowd sourced maps like Waze requires three

steps: automate input to mobile devices that run the

Waze app; control the device GPS and simulate

device movements (e.g., car driving); obtain access to

multiple devices. All three are easily achieved using

widely available mobile device emulators. Most

mobile emulators run a full OS (e.g., Android, iOS)

down to the kernel level, and simulate hardware

features such as camera, SDCard and GPS. We

choose the GenyMotion Android emulator [11] for its

performance and reliability. Attackers can

automatically control the GenyMotion emulator via

Monkeyrunnerd scripts [12]. They can generate user

actions such as clicking buttons and typing text, and

feed pre-designed GPS sequences to the emulator

(through a command line interface) to simulate

location positioning and device movement. By

controlling the timing of the GPS updates, they can

simulate any “movement speed” of the simulated

devices. Using these tools, attackers can generate

fake events (or alerts) at a given location by setting

fake GPS on their virtual devices. This includes any

events supported by Waze, including accidents,

police, hazards, and road closures. We find that a

single emulator can generate any event at arbitrary

locations on the map. We validate these using

experiments on a variety of unoccupied roads,

including highways, local and rural roads (50+

locations, 3 repeated tests each). Note that our

experiments only involve data in the Waze system,

and do not affect real road vehicles not running the

Waze app. Thus “unoccupied” means no vehicles on

the road with mobile devices actively running the

Waze app. After creation, the fake event stays on the

map for about 30 minutes. Any Waze user can report

that an event was “not there.” We find it takes two

consecutive “not there’s” (without any “thanks” in

between) to delete the event. Thus an attacker can

ensure an event persists by occasionally “driving”

other virtual devices to the region and “thanking” the

original attacker for the event report.

C. CONGESTION AND TRAFFIC ROUTING

A more serious attack targets Waze’s real-

time trip routing function. Since route selection in

Waze relies on predicted trip time, attackers can

influence routes by creating “fake” traffic hotspots at

specific locations. This can be done by configuring a

group of virtual vehicles to travel slowly on a chosen

road segment. We use controlled experiments to

answer two questions. First, under what conditions

can attackers successfully create traffic hotspots?

Second, how long can an artificial traffic hotspot

last? We select three low-traffic roads in the state of

Texas that are representative of three popular road

types based on their speed limit—Highway (65 mph),

Local (45 mph) and Residential (25 mph). To avoid

real users, we choose roads in low population rural

areas, and run tests at hours with the lowest traffic

volumes (usually 3-5AM). We constantly scan for

real users in or nearby the experimental region, and

reset/terminate experiments if users come close to an

area with ongoing experiments. Across all our

experiments, only 2 tests were terminated due to

detected presence of real users nearby. Finally, we

have examined different road types and hours of the

day to ensure they do not introduce bias into our

results. Creating Traffic Hotspots. Our experiment

shows that it only takes one slow moving car to

create traffic congestion, when there are no real Waze

users around. Waze displays a red overlay on the

road to indicate traffic congestion (Figure1, right)

Different road types have different congestion

thresholds, with thresholds strongly correlated to the

speed limit. The congestion thresholds for Highway,

Local and Residential roads are 40mph, 20mph and

15mph, respectively. To understand if this is

generalizable, we repeat our tests on other

unoccupied roads in different states and countries.

We picked 18 roads in five states in the US (CO,

MO, NM, UT, MS) and British Columbia, Canada.

In each region, we select three roads with different

speed limits (highway, local and residential). We find

consistent results: a single virtual vehicle can always

generate a traffic hotspot; and the congestion

thresholds were consistent across different roads of

the same speed limit.

D. OUTVOTING REAL USERS.

Generating traffic hotspot in practical

scenarios faces a challenge from real Waze users who

drive at normal (non-congested) speeds: attacker’s

virtual vehicles must “convince” the server there’s a

stream of slow speed traffic on the road even as real

users tell the server otherwise. We need to understand

how Waze aggregated multiple inputs to estimate

traffic speed. We perform an experiment to infer this

aggregation function used by Waze. We create two

groups of virtual vehicles: Ns slowdriving cars with

speed Ss, and Nf fast-driving cars with speed Sf; and

they all pass the target location at the same time. We

study the congestion reported by Waze to infer the

aggregation function. Note that the server-estimated

traffic speed is visible on the map only if we formed

a traffic hotspot. We achieve this by setting the speed

tuple (Ss, Sf) to (10mph, 30mph) for Highway, (5,

15) for Local and (5, 10) for Residential. As shown in

Figure 2, when we vary the ratio of slow cars over

fast cars (Ns: Nf), the Waze server produces different

final traffic speeds. We observe that Waze does not

simply compute an “average” speed over all the cars.

Instead, it uses a weighted average with higher

weight on the majority cars’ speed. We infer an

aggregation function as follows:

Swaze = Smax · max(Ns, Nf) + Savg ·

min(Ns, Nf) Ns + Nf where Savg = SsNs+Sf Nf

Ns+Nf ,

 Smax is the speed of the group with Nmax

cars. As shown in, our function can predict Waze’s

aggregate traffic speed accurately, for all different

types of roads in our test. For validation purposes, we

run another set of experiments by raising Sf above

the hotspot thresholds (65mph, 30mph and 20mph

respectively for the three roads). We can still form

traffic hotspots by using more slow-driving cars (Ns

> Nf), and our function can still predict the traffic

speed on Waze accurately.

E.LONG-LASTING TRAFFIC CONGESTION.

A traffic hotspot will last for 25-30 minutes

if no other cars drive by. Once aggregate speed

normalizes, the congestion event is dismissed within

2-5 minutes. To create a long-lasting virtual traffic

jam, attackers can simply keep sending slow-driving

cars to the congestion area to resist the input from

real users. We validate this using a simple, 50-

minute long experiment where 3 virtual vehicles

create a persistent congestion by driving slowly

through an area, and then looping back every 10

minutes. Meanwhile, 2 other virtual cars emulate

legitimate drivers that pass by at high speed every 10

minutes. We find the traffic hotspot persists for the

entire experiment period.

F. IMPACT ON END USERS.

 Waze uses real-time traffic data to optimize

routes during trip planning. Waze estimates the end-

toend trip time and recommends the fastest route.

Once on the road, Waze continuously estimates the

travel time, and automatically reroutes if the current

route becomes congested. An attacker can launch

physical attacks by placing fake traffic hotspots on

the user’s original route. While congestion alone does

not trigger rerouting, Waze reroutes the user to a

detour when the estimated travel time through the

detour is shorter than the current congested route. We

also note that Waze data is used by Google Maps,

and therefore can potentially impact their 1+ billion

users [13]. Our experiment shows that artificial

congestion do not appear on Google Maps, but fake

events generated on Waze are displayed on Google

Maps without verification, including “accidents”,

“construction” and “objects on road”. Finally, event

updates are synchronized on both services, with a 2-

minute delay and persist for a similar period of time

(e.g., 30 minutes).

Using a HTTPS proxy as man-in-the-middle to

intercept traffic between Waze client and server.

SYBIL ATTACKS

So far, we have shown that attackers using

emulators can create “virtual vehicles” that

manipulate the Waze map. An attacker can generate

much higher impact using a large group of virtual

vehicles (or Sybil’s) under control. In this section, we

describe techniques to produce light-weight virtual

vehicles in Waze, and explore the scalability of the

group-based attacks. We refer to large groups of

virtual vehicles as “ghost riders” for two reasons.

First, they are easy to create en masse, and can travel

in packs to outvote real users to generate more

complex events, e.g., persistent traffic congestion.

Second, as we show in §5, they can make themselves

invisible to nearby vehicles.

 A.CREATING SYBIL DEVICES

 We start by looking at the limits of the

large-scale Sybil attacks on Waze. First, we note user

accounts do not pose a challenge to attackers, since

account registration can be fully automated. We

found that a single-threaded Monkey runner script

could automatically register 1000 new accounts in a

day. The limiting factor is the scalability of vehicle

emulation. Even though emulators like GenyMotion

are relatively lightweight, each instance still takes

significant computational resources. For example, a

MacBookPro with 8G of RAM supports only 10

simultaneous emulator instances. For this, we explore

a more scalable approach to client emulation that can

increase the number of supported virtual vehicles by

orders of magnitude. Specifically, we reverse

engineer the communication APIs used by the app,

and replace emulators with simple Python scripts that

mimic API calls.

B.REVERSE ENGINEERING WAZE APIS.

The Waze app uses HTTPS to communicate

with the server, so API details cannot be directly

observed by capturing network traffic (TLS/SSL

encrypted). However, an attacker can still intercept

HTTPS traffic, by setting up a proxy [14] between

her phone and Waze server as a man-inthe-middle

attack [15], [16]. As shown in Figure 3, an attacker

needs to pre-install the proxy server’s root Certificate

Authorities (CA) to her own phone as a “trusted CA.”

This allows the proxy to present self-signed

certificates to the phone claiming to be the Waze

server. The Waze app on the phone will trust the

proxy (since the certificate is signed by a “trusted

CA”), and establish HTTPS connections with the

proxy using proxy’s public key. On the proxy side,

the attacker can decrypt the traffic using proxy’s

private key, and then forward traffic from the phone

to Waze server through a separate TLS/SSL channel.

The proxy then observes traffic to the Waze servers

and extracts the API calls from plain text traffic.

Hiding API calls using traffic encryption is

fundamentally challenging, because the attacker has

control over most of the components in the

communication process, including phone, the app

binary, and the proxy. A known countermeasure is

certificate pinning [17], which embeds a copy of the

server certificate within the app. When the app makes

HTTPS requests, it validates the server-provided

certificate with its known copy before establishing

connections. However, dedicated attackers can

extract and replace the embedded certificate by

disassembling the app binary or attaching the app to a

debugger [18], [19]. Once we obtain the knowledge

of Waze APIs, we can build extrimly lightweight

Waze clients using python scripts, allocating one

thread for each client. Within each thread, we login to

the app using a separate account, and maintain a live

session by sending periodic GPS coordinates to the

Waze server.

C.POTENTIAL DEFENSES AGAINST SYBIL

DEVICES

While attackers can easily create lightweight

Sybil devices, it is nontrivial for services providers to

effectively detect and defend against them. Below we

discuss possible ways to reliably authenticate mobile

devices, and highlight the key challenges to do so.

Email Verification. A straight-forward approach is to

authenticate a mobile device via an email account.

However, attackers may create fake email accounts

automatically or purchase them in bulks from black-

markets [20]. This approach has limited effect.

1. SMS VERIFICATION.

 Two-factor Authentication can be used to

verify phone numbers. The latest Waze app already

requires SMS verification during account

registration. However, attackers can bypass this using

disposable phone numbers or temporal SMS services

[21].

2. CAPTCHA

Service providers can use CAPTCHAs to

test whether a phone is operated by a human user or a

computer script. This approach has key limitations

too. First, solving CAPTCHAs on smart phones can

be distracting and annoying to legitimate users.

Second, attackers can leverage crowd sourced

CAPTCHA farms to solve CAPTCHAs in real time

[22].

3. IMEI VALIDATION

 Service providers may also consider

validating the unique identifier of the phone such as

IMEI. But the challenge is there are already public

IMEI databases [23] or fake IMEI generators [24]

that can help attackers to spoof the identifier.

 4. DEVICE FINGERPRINTING

Researchers have proposed to use motion

sensors to fingerprint smart phones [25]. The idea is

that Smartphone sensors such as accelerometers and

gyroscopes usually have anomalies in their signals

due to manufacturing imperfections. Such signal

anomalies can be used to uniquely fingerprint the

phone. However, a more recent result shows that

fingerprinting accuracy would drop quickly for a

large number of devices (e.g., 100K) [26]. This

technique is still not reliable enough to authenticate

mobile devices.

5. IP VERIFICATION

Finally, service providers can also check if

the device’s IP is an actual mobile IP (or a suspicious

web proxy). However, attacker can overcome this by

routing their traffic through a cellular data plan. We

find that authenticating individual mobile devices is

very challenging. As long as attackers have full

controls on the client side, they could (easily) forge

the data needed for authentication. In the later section

(§6), we will describe our method to detect groups of

Sybil devices.

D.SCALABILITY OF GHOST RIDERS

Ghost riders are fully functional Waze

clients and they are highly scalable. Each ghost rider

is scripted not only to report GPS to Waze server, but

also report fake events using the API. We run 1000

virtual vehicles on a single Linux Dell Server (Quad

Core, 2GB RAM), and find that at steady state, 1000

virtual devices only introduces a small overhead:

11% of memory usage, 2% of CPU and 420 Kbps

bandwidth. In practice, attackers can easily run tens

of thousands of virtual devices on a commodity

server. Finally, we experimentally confirm the

practical efficacy and scalability of ghost riders. We

chose a secluded highway in rural Texas, and used

1000 virtual vehicles (hosted on a single server and

single IP) to generate a highly congested traffic

hotspot. We perform our experiment in the middle of

the night after repeated scans showed no Waze users

within miles of our test area. We positioned 1000

ghost riders one after another, and drove them slowly

at 15 mph along the highway, looping them back

every 15 minutes for an entire hour. The congestion

shows up on Waze 5 minutes after our test began, and

stayed on the map during the entire test period. No

problems were observed during our test, and tests to

generate fake events (accidents etc.) also succeeded.

 USER TRACKING ATTACK

Next, we describe a powerful new attack on

user privacy, where virtual vehicles can track Waze

users continuously without risking detection

themselves. By exploiting a key social functionality

in Waze, attackers can remotely follow (or stalk) any

individual user in real time. This is possible with

single device emulation, but greatly amplified with

the help of large groups of ghost riders, possibly

tracking large user populations simultaneously and

putting user (location) privacy at great risk. We start

by examining the feasibility (and key enablers) of

this attack. We then present a simple but highly

effective tracking algorithm that follows individual

users in real time, which we have validated using real

life experiments (with ourselves as the targets). The

only way for Waze users to avoid tracking is to go

“invisible” in Waze. However, doing so forfeits the

ability to generate reports or message other users.

Waze also resets the invisible setting every time the

app is opened [27].

A.FEASIBILITY OF USER TRACKING

A key feature in Waze allows users to

socialize with others on the road. Each user sees on

her screen icons representing the locations of nearby

users, and can chat or message with them through the

app. Leveraging this feature, an attacker can pinpoint

any target who has the Waze app running on her

phone. By constantly “refreshing” the app screen

(issuing an update query to the server), an attacker

can query the victim’s GPS location from Waze in

real time. To understand this capability, we perform

detailed measurements on Waze to evaluate the

efficiency and precision of user tracking.

B.TRACKING VIA USER QUERIES

A Waze client periodically requests updates

in her nearby area, by issuing an update query with

its GPS coordinates and a rectangular “search area.”

This search area can be set to any location on the

map, and does not depend on the requester’s own

location. The server returns a list of users located in

the area, including user ID, nickname, account

creation time, GPS coordinates and the GPS

timestamp. Thus an attacker can find and “follow” a

target user by first locating them at any given

location (work, home) and then continuously

following them by issuing update queries centered on

the target vehicle location, all automated by scripts.

C.OVERCOMING DOWN SAMPLING.

The user query approach faces a down

sampling challenge, because Waze responds to each

query with an “incomplete” set of users, i.e., up to 20

users per query regardless of the search area size.

This down sampled result is necessary to prevent

flooding the app screen with too many user icons, but

it also limits an attacker’s ability to follow a moving

target. We find that this down sampling can be

overcome by simply repeatedly querying the system

until the target is found. We perform query

measurements on four test areas (of different sizes

between 3 × 4 mile2 and 24 × 32 mile2) in the

downtown area of Los Angeles (City A, with 10

million residents as of 2015). For each area, we issue

400 queries within 10 seconds, and examine the

number of unique users returned by all the queries.

Results in Figure 4 show that the number of unique

users reported converges after 150-250 queries for

the three small search areas (≤ 12 × 16 mile2). For

the area of size 24×32 mile2, more than 400 queries

are required to reach convergence.

D.TRACKING USERS OVER TIME

Our analysis found that each active Waze

app updates its GPS coordinates to the server every 2

minutes, regardless of whether the user is mobile or

stationary. Even when running in the background, the

Waze app reports GPS values every 5 minutes. As

long as the Waze app is open (even running in the

background), the user’s location is continuously

reported to Waze and potential attackers. Clearly, a

more conservative approach to managing location

data would be helpful here. We note that attackers

can perform long-term tracking on a target user (e.g.,

over months). The attacker needs a persistent ID

associated to the target. The “user ID” field in the

metadata is insufficient, because it is a random

“session” ID assigned upon user login and is released

when the user kills the app. However, the “account

creation time” can serve as a persistent ID, because a)

it remains the same across the user’s different login

sessions, and b) it is precise down to the second, and

is sufficiently to uniquely identify single users in the

same geographic area. While Waze can remove the

“account creation time” field from metadata, a

persistent attacker can overcome this by analyzing

the victim’s mobility pattern. For example, the

attacker can identify a set of locations where the

victim has visited frequently or stayed during the past

session, mapping to home or workplace. Then the

attacker can assign a ghost rider to constantly

monitor those areas, and reidentify the target once her

icon shows up in a monitored location, e.g., home.

E.STEALTH MODE.

 We note that attackers remain invisible to

their targets, because queries on any specific

geographic area can be done by Sybil’s operating

“remotely,” i.e. claiming to be in a differment city,

state or country. Attackers can enable their

“invisible” option to hide from other nearby users.

Finally, disabling these features still does not make

the attacker visible. Waze only updates each user’s

“nearby” screen every 2 minutes (while sending its

own GPS update to the servers). Thus a tracker can

“pop into” the target’s region, query for the target,

and then move out of the target’s observable range,

all before the target can update and detect it.

F.REAL-TIME INDIVIDUAL USER TRACKING

To build a detailed trace of a target user’s

movements, an attacker first bootstraps by identifying

the target’s icon on the map. This can be done by

identifying the target’s icon while confirming her

physical presence at a time and location. The attacker

centers its search area on the victim’s location, and

issues a large number of queries (using Sybil

accounts) until it captures the next GPS report from

the target. If the target is moving, the attacker moves

the search area along the target’s direction of

movement and repeats the process to get updates.

EXPERIMENTS

 To evaluate its effectiveness, we performed

experiments by tracking one of our own Android

Smartphone’s and one of our virtual devices.

Tracking was effective in both cases, but we

experimented more with tracking our virtual device,

since we could have it travel to any location. Using

the OSRM tool [28], we generate detailed GPS traces

of two driving trips, one in downtown area of Los

Angeles (City A), and one along the interstate

highway-101 (Highway B). The target device uses a

realistic driving speed based on average traffic speeds

estimated by Google Maps during the experiment.

The attacker used 20 virtual devices to query Waze

simultaneously in a rectangular search area of size 6

× 8 mile2 . This should be sufficient to track the GPS

update of a fast-driving car (up to 160 mph). Both

experiments were during morning hours, and we

logged both the network traffic of the target phone

and query data retrieved by the attacker.

DEFENSES

 In this section, we propose defense

mechanisms to significantly limit the magnitude and

impact of these attacks. While individual devices can

inflict limited damage, an attacker’s ability to control

a large number of virtual vehicles at low cost elevates

the severity of the attack in both quantity and quality.

Our priority, then, is to restrict the number of ghost

riders available to each attacker, thus increasing the

cost per “vehicle” and reducing potential damage.

The most intuitive approach is performing strong

location authentication, so that attackers must use

real devices physically located at the actual locations

reported. This would make ghost riders as expensive

to operate as real devices. Unfortunately, existing

methods for location authentication do not extend

well to our context. Some proposals solely rely on

trusted infrastructures (e.g., wireless access points) to

verify the physical presence of devices in close

proximity [29], [30]. However, this requires large

scale retrofitting of cellular cell towers or installation

of new hardware, neither of which is practical at

large geographic scales. Others propose to embed

tamperproof location hardware on mobile devices

[31], [32], which incurs high cost per user, and is

only effective if enforced across all devices. For our

purposes, we need a scalable approach that works

with current hardware, without incurring costs on

mobile users or the map service (Waze).

A. SYBIL DETECTION VIA PROXIMITY GRAPH

 Instead of optimizing per-device location

authentication, our proposed defense is a Sybil

detection mechanism based on the novel concept of

proximity graph. Specifically, we leverage physical

proximity between real devices to create collocation

edges, which act as secure attestations of shared

physical presence. In a proximity graph, nodes are

Waze devices (uniquely identified by an account

username and password on the server side). They

perform secure peer-to-peer location authentication

with the Waze app running in the background. An

edge is established if the proximity authentication is

successful. Because Sybil devices are scripted

software, they are highly unlikely to come into

physical proximity with real devices. A Sybil device

can only form collocation edges with other Sybil

devices (with coordination by the attacker) or the

attacker’s own physical devices. The resulting graph

should have only very few (or no) edges between

virtual devices and real users (other than the

attacker). Leveraging prior work on Sybil detection

in social networks, groups of Sybil’s can be

characterized by the few “attack edges” connecting

them to the rest of the graph, making them

identifiable through community-detection algorithms

[33]. We use a very small number of trusted nodes

only to bootstrap trust in the graph. We assume a

small number of infrastructure access points are

known to Waze servers, e.g., hotels and public Wi-Fi

networks associated with physical locations stored in

IPlocation databases (used for Geolocation by Apple

and Google). Any Waze device that communicates

with the Waze server under their IPs (and reports a

GPS location consistent with the IP) automatically

creates a new collocation edge to the trusted node.

B. PEER-BASED PROXIMITY AUTHENTICATION

 To build the proximity graph, we first need

a reliable method to verify the physical collocation of

mobile devices. We cannot rely on GPS reports since

attackers can forge arbitrary GPS coordinates, or

Bluetooth based device ranging [34] because the

coverage is too short (Tracking via User Queries. A

Waze client periodically requests updates in her

nearby area, by issuing an update query with its GPS

coordinates and a rectangular “search area.” This

search area can be set to any location on the map, and

does not depend on the requester’s own location. The

server returns a list of users located in the area,

including user ID, nickname, account creation time,

GPS coordinates and the GPS timestamp. Thus an

attacker can find and “follow” a target user by first

locating them at any given location (work, home) and

then continuously following them by issuing update

queries centered on the target vehicle location, all

automated by scripts. Overcoming Down sampling.

The user query approach faces a down sampling

challenge, because Waze responds to each query with

an “incomplete” set of users, i.e., up to 20 users per

query regardless of the search area size. This

downsampled result is necessary to prevent flooding

the app screen with too many user icons, but it also

limits an attacker’s ability to follow a moving target.

We find that this down sampling can be overcome by

simply repeatedly querying the system until the target

is found. We perform query measurements on four

test areas (of different sizes between 3 × 4 mile2 and

24 × 32 mile2) in the downtown area of Los Angeles

(City A, with 10 million residents as of 2015). For

each area, we issue 400 queries within 10 seconds,

and examine the number of unique users returned by

all the queries. Results show that the number of

unique users reported converges after 150-250

queries for the three small search areas (≤ 12 × 16

mile2). For the area of size 24×32 mile2 , more than

400 queries are required to reach convergence. [6]

discussed about a method, In vehicular ad hoc

networks (VANETs), because of the nonexistence of

end-to-end connections, it is essential that nodes take

advantage of connection opportunities to forward

messages to make end-to-end messaging possible. [8]

discussed about a system, In this proposal, a neural

network approach is proposed for energy

conservation routing in a wireless sensor network.

Our designed neural network system has been

successfully applied to our scheme of energy

conservation. Neural network is applied to predict

Most Significant Node and selecting the Group Head

amongst the association of sensor nodes in the

network.

C. TRACKING USERS OVER TIME

Our analysis found that each active Waze

app updates its GPS coordinates to the server every 2

minutes, regardless of whether the user is mobile or

stationary. Even when running in the background, the

Waze app reports GPS values every 5 minutes. As

long as the Waze app is open (even running in the

background), the user’s location is continuously

reported to Waze and potential attackers. Clearly, a

more conservative approach to managing location

data would be helpful here. We note that attackers

can perform long-term tracking on a target user (e.g.,

over months). The attacker needs a persistent ID

associated to the target. The “user ID” field in the

metadata is insufficient, because it is a random

“session” ID assigned upon user login and is released

when the user kills the app. However, the “account

creation time” can serve as a persistent ID, because a)

it remains the same across the user’s different login

sessions, and b) it is precise down to the second, and

is sufficiently to uniquely identify single users in the

same geographic area. While Waze can remove the

“account creation time” field from metadata, a

persistent attacker can overcome this by analyzing

the victim’s mobility pattern. For example, the

attacker can identify a set of locations where the

victim has visited frequently or stayed during the past

session, mapping to home or workplace. Then the

attacker can assign a ghost rider to constantly

monitor those areas, and reidentify the target once her

icon shows up in a monitored location, e.g., home.

Stealth Mode. We note that attackers remain invisible

to their targets, because queries on any specific

geographic area can be done by Sybil’s operating

“remotely,” i.e. claiming to be in a different city,

state or country. Attackers can enable their

“invisible” option to hide from other nearby users.

Finally, disabling these features still does not make

the attacker visible. Waze only updates each user’s

“nearby” screen every 2 minutes (while sending its

own GPS update to the servers). Thus a tracker can

“pop into” the target’s region, query for the target,

and then move out of the target’s observable range,

all before the target can update and detect it.

PEER-BASED PROXIMITY

AUTHENTICATION

To build the proximity graph, we first need a

reliable method to verify the physical collocation of

mobile devices. We cannot rely on GPS reports since

attackers can forge arbitrary GPS coordinates, or

Bluetooth based device ranging [34] because the

coverage is too short (<10 meters) for vehicles.

Instead, we conside a challenge-based proximity

authentication method, which leverages the limited

transmission range of Wi-Fi radios.

• Wi-Fi Tethering Challenge.

• Constructing Proximity Graphs.

GRAPH-BASED SYBIL DETECTION

We apply graph-based Sybil detection algorithms to

detect Sybil’s in Waze proximity graph. Graph-based

Sybil detectors [33], [36]– [42] were originally

proposed in social networks. They all rely on the key

assumption that Sybil’s have difficulty to form edges

with real users, which results in a sparse cut between

the Sybil and nonSybil regions in the social graph.

Because of the limited number of “attack edges”

between Sybil’s and non-Sybil’s, a random walk

from non-Sybil region has a higher landing

probability to land on a non-Sybil node than a Sybil

node. Although this assumption may not always hold

in online social networks [43], it holds well for the

proximity graph. In online social networks, Sybil’s

may build “attack edges” by befriending with real

users (e.g., using attractive female photos) [43].

However, in a proximity graph, building an attack

edge requires physical collocations. With the Wi-Fi

authentication, it’s difficult to build attack edges

using software simulations alone in a massive,

automated manner (e.g., for tens of thousands of

Sybil devices). In addition, the authentication is done

in the background without human involvement,

which further eliminates the chance for Sybil’s to

trick real users to add edges.

COUNTERMEASURE EVALUATION

We use simulations to evaluate the effectiveness of

our proposed defense. We focus on evaluating the

feasibility and cost for attackerrs to maintain a large

number of Sybil’s after the Sybil detection is in

place. We quantify the cost by the number of attack

edges a Sybil must establish with real users. In

practice, this translates into the effort taken to

physically drive around and use physical devices

(with Wi-Fi radios) per Sybil to complete proximity

authentication. In the following, we first describe our

simulation setup, and then present the key findings

and their implications on Waze.

II.RESULTS

 Our evaluation primarily focuses on Sybil Rank, and

we briefly discuss the results of Sybil SCAR in the

end.

 ACCURACY OF SYBIL DETECTION

We assume the attacker seeks to embed 1000 Sybil’s

into the proximity graph. We use either single- or

multi-gateway approaches to build attack edges on

the proximity graph by connecting Sybil’s to

randomly chosen normal users. We then add edges

between Sybil nodes, following the power-law

distribution and producing an average weighted

degree of either 5 or 10 (to emulate different Sybil

sub graph density). We randomly select 10 trusted

nodes to bootstrap trust for Sybil Rank and run it on

the proximity graph. We repeat each experiment 50

times.

BROADER IMPLICATIONS

 While our experiments and defenses have focused

strictly on Waze, our results are applicable to a wider

range of mobile applications that rely on geolocation

for user-contributed content and metadata. Examples

include location based check-in services (Foursquare,

Yelp), mobile navigation systems (Waze, Moovit),

crowd sourced taxi services (Uber, Lyft), mobile

dating apps (Tinder, Bumble), anonymous mobile

communities (Yik Yak, Whisper) and location-based

gaming apps (Pokemon Go). These systems face two

common challenges exposing them to potential

attacks. First, our efforts show that it is difficult for

app developers to build a truly secure channel

between the app and the server. There are numerous

avenues for an attacker to reverseengineer and mimic

an app’s API calls, thereby creating “cheap” virtual

devices and launching Sybil attack . [4] discussed

about a system,the effective incentive scheme is

proposed to stimulate the forwarding cooperation of

nodes in VANETs. In a coalitional game model,

every relevant node cooperates in forwarding

messages as required by the routing protocol. This

scheme is extended with constrained storage space. A

lightweight approach is also proposed to stimulate the

cooperation..

RELATED WORK

SECURITY IN LOCATION-BASED SERVICES

Location-based services face various threats, ranging

from rogue users reporting fake GPS, [53], to

malicious parties compromising user privacy [54]. A

related study on Waze [55] demonstrated that small-

scale attacks can create traffic jams or track user

icons, with up to 15 mobile emulators. Our work

differs in two key aspects. First, we show that it’s

possible to reverse engineer its APIs, enabling light-

weight Sybil devices (simple scripts) to replace full-

stack emulators. This increase the scale of potential

attacks by orders of magnitude, to thousands of Waze

clients per commodity laptop. The impact of

thousands of virtual vehicles is qualitatively different

from 10-15 mobile simulators. Second, as possible

defenses, [2] discussed about creating Obstacles to

Screened networks. In today’s technological world,

millions of individuals are subject to privacy threats.

Companies are hired not only to watch what you visit

online, but to infiltrate the information and send

advertising based on your browsing history. In

contrast, we propose a novel proximity graph

approach to detect and constrain the impact of virtual

devices. Researchers have proposed to preserve user

location privacy against map services such as Waze

and Google. Earlier studies apply location cloaking

by adding noise to the GPS reports [56]. Recent work

use zero-knowledge [57] and differential privacy [58]

to preserve the location privacy of individual users.

Our work differs by focusing on the attacks against

the map services

III.CONCLUSION

 We describe our efforts to identify and study a range

of attacks on crowd sourced map services. We

identify a range of single and multi-user attacks, and

describe techniques to build and control groups of

virtual vehicles (ghost riders) to amplify these

attacks. Our work shows that today’s mapping

services are highly vulnerable to software agents

controlled by malicious users, and both the stability

of these services and the privacy of millions of users

are at stake. While our study and experiments focus

on the Waze system, we believe the large majority of

our results can be generalized to crowd sourced apps

as a group. We propose and validate a suite of

techniques that help services build proximity graphs

and use them to effectively detect Sybil devices.

Throughout this work, we have taken active steps to

isolate our experiments and prevent any negative

consequence on real Waze users. We also proactively

informed Waze team of theses attacks, and worked

with them to mitigate the threat.

REFERENCE

[1] N. Stefano itch, A. Alshamsi, M. Cebrian, and I. Rahwan,

“Error and attack tolerance of collective problem solving:

The darpa shredder challenge,” EPJ Data Science, vol. 3, no.

1, pp. 1–27, 2014.

[2] Christo Ananth, P.Muppidathi, S.Muthuselvi,

P.Mathumitha, M.Mohaideen Fathima, M.Muthulakshmi,

“Creating Obstacles to Screened networks”, International

Journal of Advanced Research in Biology, Ecology, Science

and Technology (IJARBEST), Volume 1,Issue 4,July 2015,

pp:10-14.

[3] Z. Zhang, L. Zhou, X. Zhao, G. Wang, Y. Su, M.

Metzger, H. Zheng, and B. Y. Zhao, “On the validity of

geosocial mobility traces,” in Proc.of HotNets, 2013.

[4] Christo Ananth, M.Muthamil Jothi, A.Nancy, V.Manjula,

R.Muthu Veni, S.Kavya, “Efficient message forwarding in

MANETs”, International Journal of Advanced Research in

Management, Architecture, Technology and Engineering

(IJARMATE), Volume 1,Issue 1, August 2015,pp:6-9.

[5] S. Cheng, “Uber’s terrifying “ghost drivers” are freaking

out passengers in china,” Quartz, September 2016.

[6] Christo Ananth, Kavya.S., Karthika.K., Lakshmi

Priya.G., Mary Varsha Peter, Priya.M., “CGT Method of

Message forwarding”, International Journal of Advanced

Research in Management, Architecture, Technology and

Engineering (IJARMATE), Volume 1, Issue 1, August

2015,pp:10-15.

[7] M. Wehner, “How to cheat at Pokémon go and catch any

Pokémon you want without leaving your couch,” Daily Dot,

July 2016.

[8] Christo Ananth, A.Nasrin Banu, M.Manju, S.Nilofer,

S.Mageshwari, A.Peratchi Selvi, “Efficient Energy

Management Routing in WSN”, International Journal of

Advanced Research in Management, Architecture,

Technology and Engineering (IJARMATE), Volume 1, Issue

1, August 2015,pp:16-19.

[9] V. Goel, “Maps that live and breathe with data,” The New

York Times, June 2013.

[10] Google, “Google maps and Waze, outsmarting traffic

together,” Google Official Blog, June 2013.

[11]“GenyMotionEmulator,”http://www.genymotion.com.

[12]“Monkeyrunner,”https://developer.android.com/studio/te

st/monkeyrunner/index.html.

[13] B. Reed, “Google maps becomes Google’s second 1

billion-download hit,” Yahoo! News, June 2014.

[14] “Charles Proxy,” http://www.charlesproxy.com.

[15] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L.

Khan, “Smvhunter: Large scale, automated detection of

ssl/tls man-in-the-middle vulnerabilities in android apps,” in

Proc. of NDSS, 2014.

93

