
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 11

Improved Credit Based Cost Aware Scheduling

Algorithm in Cloud Environment
Dr. S. Vaaheedha Kfatheen

1
, B. Rekha

2

1
Assistant Professor,

2
Research Scholar in Computer Science

Department of Computer Science, Jamal Mohamed College (Autonomous)

(Affiliated to Bharathidasan University)

Tiruchirappalli 620 020, Tamil Nadu, India
1
svaaheedha73@gmail.com,

2
rekaguru7@gmail.com

Abstract: Cloud computing is developing as an incipient paradigm of immense-scale distributed computing. Cloud

computing is a model for allowing appropriate on demand network access to a shared pool of configurable computing

resources that can be rapidly provisioned as well as unconfined with minimal management power or service provider

interaction. In order to maximize the effectiveness of cloud computing, we require an efficient scheduling algorithm. Task

scheduling is one of the main issues in cloud computing environment. Efficient task scheduling is significant to achieve

minimum makespan, cost-effective execution and increase resource utilization. Here, an Improved Credit Based Hybrid

Algorithm (Max-Min and Min-Min) is proposed for resolving task scheduling problem in the cloud. The objective of the

proposed hybrid algorithm is to attain maximum resource utilization, minimum makespan, and minimum total computation

cost. The modified scheduling technique assigns tasks depending upon the grouping of credits given to the parameters:

Task Length, Task Priority, Deadline of the Task and Cost. These four parameters are joined to obtain the final credit for

the task; this will decrease the chances of same priority occurrence among the two tasks. Based on the highest credits and

length of the task, the tasks will be allotted to the VM with minimum cost using Max-Min or Min-Min. The proposed

algorithm produces an improved schedule that maximizes resource utilization, minimizes makespan and total computation

cost than the existing HAMM, Max-Min and Min-Min algorithms.

Keywords: Cloud computing, Task Scheduling, Max-Min algorithm, Min-Min algorithm, Hybrid algorithm, Cost-aware.

I. INTRODUCTION

 Cloud computing is one of the forms of utility computing

in which the consumer need not own any organisation or

software or platform needed for them. Instead the consumer

can make use of the service provided by the cloud and they

can pay as per usage. Cloud offers dynamic services using

the conception of virtualization and scalability.Cloud can be

defined as an execution environment in flexible fashion

which includes a metered service for multiple diverse

consumers. Some of the services provided by cloud

environment are Software as a service (SaaS), Platform as a

service (PaaS) as well as Infrastructure as a service(IaaS).

Cloud technology is the pioneer in applying commercial

form of using the computer science by public users. The

concept of virtualization is used to share the obtainable

resources among the users who demanded the service.The

cloud offers a high performance by distributing the

workloads among all the obtainable resources efficiently

which decreases the execution time, waiting time and

throughput
[1]

.The distributed computing environments

provide numerous services out of which job scheduling is a

main activity. The performance can be improved by efficient

task scheduling which can also balance the load between the

resources. Scheduling is the process of mapping the jobs

given by users to the best accessible resource so as to reduce

the execution time, waiting time and cost. Scheduling maps

the user jobs based on user requirements and it can be done

at job level or task level.

 The cloud environment comprises huge number of tasks

and computing resources. Identification of appropriate

virtual machine for allocation of resources to complete any

given task is done through the task scheduling algorithms

which plays a significant role in the cloud computing

process. Task scheduling techniques are mainly used to

improvise the makespan & resource utilization and decrease

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 12

the total computation cost which makes many users to prefer

cloud computing widely at affordable cost
 [2]

.

 The concept of cloud scheduling states that mapping

jobs to a range of virtual machines or allocating virtual

machines to use the resources accessible to fulfil user

requirements. The purpose of using scheduling methods in

cloud computing is to improve system throughput and load

balancing, reduce costs, save energy, increase resource

utilization, and reduce processing time. Scheduling manages

CPU and memory accessibility; a good scheduling plan rises

resource utilization. While the task scheduling techniques

are used to discover the order in which tasks or activities

should be completed. It focuses on mapping the user tasks to

the accessible resources.

II. TASK SCHEDULING

 Task scheduling is the key challenge for the service

provider in cloud Computing. One of the main key concepts

in the task scheduling is to allot tasks to the available virtual

machines so that certain machines do not overload or else

under load
[3]

.To do this, load balancing plays a vital role in

the scheduling problem. Using a suitable load balancing

method can decrease response time and increase resource

utilization.

 From the view of customers, a proper scheduling

algorithm should run their demanded tasks in the shortest

volume of time on the virtual machine. On the other hand,

the service provider needs a type of scheduler, which can

exploit resource usage while growing customer satisfaction.

This increases the service provider`s need to select a

appropriate method to schedule tasks. Regarding the task

scheduling problem, numerous solutions have been

proposed, and each targets to satisfy one or numerous

constraints considered by the users and service providers.

 Task scheduling plays an important role of affecting

quality of services on the Cloud Computing. It targets to

select appropriate and available resources to execute jobs or

to allot computer machines to jobs in such a method that the

completion time is abridged as possible. In a task scheduling

algorithm, a list of jobs is made by assigning priority to each

job on the basis of dissimilar parameters. Jobs are then

nominated based on their priorities and allocated to

accessible resources that gratify a pre-determined target

function.

 One of the majorgoals of the task scheduling process is

a decrease in makespan of applications
[4]

. Makespan

represents the difference time among starting and ending an

arrangement of tasks. Thus, algorithms that allot the tasks to

the obtainable resources and decrease makespan are needed.

Load balancing targets to balance the load of the whole

system by transferring additional tasks from an overloaded

virtual machine (VM) to a suitable under loaded VM. In

Cloud Computing, the task scheduling process is known as

an NP-complete problem. In this type of problem, the

essential time to manage the solution differs depending on

the size of the problem.

III. EXISTING HEURISTIC ALGORITHM

Heuristic algorithms are types and applications of the

batch mode which process the task at a given time as

batches. The heuristic algorithms depends on Makespan

(also called overall completion time) of the schedule. The

proposed algorithm is compared with the existing heuristic

algorithms: Min-Min, Max-Min and Hybrid Algorithm of

Min-Min & Max-Min (HAMM) which are discussed below:

A) Min-Min Algorithm

 The Min-Min algorithm initiates with a set of tasks that

are yet to be scheduled on the resources. It calculates the

completion time of each task present in the set. It then picks

the task with minimum completion time and allots it with a

resource that is expected to complete the allotted task faster.

The process described above is repeatedly executed till

every task is assigned with resource
[5]

. Min-Min algorithm

gave priority to tasks with minimum completion time. when

task with minimum completion time are much more in

number then the total response time of the system will be

increased which is the major drawback in Min-Min

algorithm
[6]

.

B) Max-Min Algorithm

 The Max-Min algorithm first calculates the completion

time of each task present in the set and then selects the task

with the maximum expected completion time and assigns

that task to the resource with a minimum overall execution

time
[7]

. Max-Min algorithm gave priority to task with

maximum completion time. However, its disadvantage is

that, it sometimes leaves the short tasks unattended or waited

for so long time when we have much more numbers of tasks

with maximum completion time
[8]

.

C) Hybrid Algorithm of Min-Min and Max-Min (HAMM)

 HAMM is a hybrid of two heuristic algorithms: Min-

Min and Max-Min which is proposed to overcome the

drawbacks and to utilize the advantages of both the Min-Min

and Max-Min algorithms. The HAMM scheduling process

starts with calculating the average of Task’s Length (TL) for

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 13

all tasks in the Meta-Task (MT) queue. After calculating the

AvgTL, two empty counters are formed, (a) Minimum Task

Length Counter (TLCmin) for counting all tasks which have

Task length lesser than or else equivalent to the AvgTL, and

(b) Maximum Task Length Counter (TLCmax) for counting

all tasks which have Task length better than the AvgTL.

Followed by, choosing task Ti from MT queue and relate its

length with average of all task length; if TLi < AvgTL, the

counter TLCmin will be improved with one degree, or else

the counter TLCmax will be improved with one. This

process reprises until all the tasks in MT have been

compared. After comparing the counters, the task scheduling

takes place. If TLCmin >= TLCmax, the HAMM scheduler

chooses Max-Min which allots longest length task. If

TLCmin <= TLCmax, the HAMM scheduler selects Min-

Min which allots smallest length task. The HAMM

algorithm offers better in most of optimization parameters;

minimum makespan, best utilization of resources,

proficiently balancing of workloads among resources,

improve average waiting time, and best concurrent execution

among small & long length tasks
[9]

.The major drawback in

HAMM algorithm is that the scheduling process is done by

considering the maximum and minimum task length counter.

If the minimum task length counter >= maximum task length

counter, then the scheduler selects Max-Min algorithm

which allots longer length tasks; otherwise the scheduler

selects Min-Min algorithm which allots smallest length

tasks. This may lead to improved wait time due to task

length counter is being checked for every task before

assigning the suitable algorithm.

IV. PROPOSED METHODOLOGY

 In the proposed scheduling technique,task’s priority is

allotted depending upon combination of credits given to

parameters like Task Length, Task Priority, Deadline of the

Task and Cost. This technique decreases the chances of

same priority existence among the two tasks. To enhance the

problems faced during scheduling, proposed algorithm uses

the concept of load balancing with credit based scheduling

algorithm. System load is accomplished by Load balancing

method which calculates the load on each virtual machine

and transfers the loads based on demand and supply values

of overloaded and available machines. Also Scheduling

process in the proposed algorithm focuses on VM cost and

task execution cost, as it focuses on cost aware scheduling.

 Proposed methodology of Improved Credit Based Cost

Aware Scheduling Algorithm (ICCASA) has three steps:

A. Calculating credit values for the four parameters

B. Calculating Total Credit of the Task(i)

C. Scheduling Tasks using Hybrid Algorithm

A) Calculating credit values for the four parameters

(i) Task Length:

The credit system based on task length will operate as

follows: (a) to find the length of every task Tlen(i) (b) to

calculate the average of tasks length avglen(c)to calculate

variance in length with respect to avglen. Credits are allotted

to each task after determining the variance in task lengths of

each task. Here equation (1) is used for finding the variance

in task length with respect to average task length. This data

is useful when tasks are organized in an array of growing

order of task length (as lowest to highest). The proposed

ICCASA algorithm takes every task from the middle instead

of taking task with larger length and smaller length.

| TLD(i) = avglen- Tlen(i) | …(1)

where TLD(i) is the task length difference of task i, computed

by taking the absolute variance of the average of task length

and task length of the i
th

 task.

(ii) Task Priority:

 Every task has dissimilar priorities which are allotted to

each task and in some cases the priority can be the same for

one or more tasks. In general scheduling algorithms based

on task priority has the difficult of treating tasks with same

priority. In the proposed approach, this problem will not rise

since the task priority is allotted based on the total credits

obtained from the credits of four parameters where

dissimilar priority are allotted to dissimilar tasks.

 C_Priority(Ti) = prior_(Ti)/division_factor ...(2)

 Credit value of the priority of task (Ti) is calculated as

priority of the task Ti divided by the division factor as shown

in the above equation (2). The value of the division_factor is

determined based on number of digits in highest value

priority. If the highest value priority is two digits then the

division_factor is 100, if the highest value priority is three

digits then the division_factor is 1000 and rises in multiples

of 10 as the number of highest value priority is incremented.

(iii) Deadline of the Task:

 Target time frame indicating the time constraint of the

submitted task is the deadline. In real time applications tasks

come with a deadline intended for completion of the task.

 C_Deadline(Ti) = C_Length(Ti) * C_Priority(Ti)

 / MAX(VMMIPS) ...(3)

 Deadline Credits of the task is calculated in two steps.

(1) Maximum Capability of the VM is recognized depending

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 14

on the MIPS of the VM List which is accessible for the task

execution, (2) then, the Deadline Credits is calculated as the

product of Credit of Task Length and Credit of Task Priority

is divided by Maximum Capability of the VM as shown in

the above equation (3).

(iv) Cost of the Task:

 Cost of Task is the amount that has to be paid for

consuming the resources &utilities. Cost of a task can be

calculated as the sum of the two products (i) Cost per

Memory Size & VMRAM and (ii) Cost per Storage &VMsize

as shown in equation (4)

 C_Cost(Ti) = (DataCenter_CostperMemory*VMRAM) +

 DataCenter_CostperStorage*VMsize) …(4)

B) Calculating Total Credit of the Task(i)

 Four credits are calculated distinctly. Final step in the

algorithm is to find out the entire credit based on task length

and task priority.

Tot_Credit(Ti) = C_Length(Ti) + C_Priority(Ti) +

C_Deadline(Ti) + C_Cost(Ti) …(5)

 Tot_Credit(Ti) is the total credit of Task i which is

calculated by using the above equation(5). In the above

equation C_Length(Ti) is the credit based on task length,

C_Priority(Ti) is the credit based on priority, C_Deadline(Ti)

is the credit based on deadline and C_Cost(Ti) is the credit

based on cost. Then the tasks are arranged on descending

order (from highest to lowest) based on Tot_Credit(Ti).

Lastly, task having highest credit will be scheduled first.

C) Scheduling Task using Hybrid Algorithm (Min-Min

and Max-Min)

 Improved Credit Based Cost Aware Scheduling

Algorithm (ICCASA) calculates cost of CPU, RAM,

storage, bandwidth to certify cost effective VM is allotted

for tasks accordingly. In this approach tasks are scheduled

based on the priority of the task; where the task priority is

allotted by using the total credit value attained from the four

parameters: task length, task priority, deadline of the task

and cost of the task. The task are sorted in descending order

on the basis ofhighest to lowest total credit value and then

prioritized. The task having highest total credit value gets

highest priority. After prioritizing the task, the scheduling

process takes place.

 In ICCASA, a hybrid algorithm is used in allotting the

task on accessible cost effective VM. Here, Min-Min and

Max-Min are the algorithms used as a hybrid algorithm. In

general, Min-Min strategy is used to implement small tasks

before large tasks and Max-Min strategy is applied to evade

the delays in large tasks execution.In proposed algorithm’s

scheduling process, the task with highest credit will be

allotted to a VM with minimum execution time & minimum

execution cost using Min-Min algorithm. Next in line, task

with second highest credit will be allotted to a VM with

minimum execution time & minimum execution cost using

Max-Min algorithm till the task set is empty. By using Min-

Min and Max-Min algorithm alternatively; the proposed

algorithm utilizes the benefits and overwhelm the limitations

in both the Min-Min and Max-Min algorithms. The proposed

scheduling algorithm focuses on resource utilization,

makespan, load balancing and total execution cost, which

produce better outcome than the existing scheduling

algorithms.

Figure 1. Work Flow of the Proposed ICCASAAlgorithm

Algorithm: Improved Credit Based Cost Aware Scheduling

Algorithm (ICCASA)

Stage 1: Calculate credit value & Assign Priority to the task based

on Credits

For all submitted tasks in the set Ti in task set T

 // Calculate Credit for Task Length

 TLD(i)= Absolute_difference(avglen – Tlen(i))

 val1= highestlen / 5;

Start

Calculate Credit for all Task Ti in the Task Set T

Based on the parameters: Task length, Priority,

Deadline and Cost

Assign calculated credits to its corresponding task

Sort the Task Ti in descending order based on

credit and then update Task set T

Calculate Completion Time of Tasks Ti

on Resources Rj

C_Timeij = ETij+ Rj

Allocates Tasks Ti on Resources Rjwhich give

minimum MCT Using Min-Min & Max-Min

algorithms alternatively

End

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 15

 val2= highestlen / 4;

 val3=val2+val1;

 val4=val3+val2;

 If TLD(i) ≤ val1 then set C_Length=5 to Ti

 else if val1< TLD(i)≤ val2 then set C_Length=4 to Ti

 else if val2< TLD(i) ≤ val3 then set C_Length=3 to Ti

 else if val3< TLD(i) ≤ val4then set C_Length=2 to Ti

 else val4> TLD(i)then set C_Length=1 to Ti

// Calculate Credit for Task Prioirity

 Find out task Ti with h_priority

Choose division_factor based on number of digit in h_prioity

C_Priority(Ti) = prior_(Ti)/division_factor

// Calculate Credit for Deadline

 Find out the MAX(VMMIPS)

 C_Deadline(Ti) = C_Length(Ti) * C_Priority(Ti) /

 MAX(VMMIPS)

// Calculate Credit for Cost

 C_Cost(Ti) = (DataCenter_CostperMemory * VMRAM) +

 DataCenter_CostperStorage * VMsize)

// Calculate Total Credit for Cost

 Tot_Credit(Ti) = C_Length(Ti) + C_Priority(Ti) +

 C_Deadline(Ti) + C_Cost(Ti)

 Assign Tot_Credit(Ti) for all task

Stage 2: Sort the task based on Credit value

 Sort Ti in descending order based on Tot_Credit(Ti)

 Update task set T with sorted Ti

 End For

Stage 3: Calculate Completion Time

 For all tasks (Ti) in the Task set (T)

 For all resources (Rj)

 Compute C_Timeij = ETij+ Rj

 End For

 End For

Stage 4: Task scheduling using Min-Min & Max-Min alternatively

 Loop until all tasks Ti in the task set (T) are mapped.

 For every task Ti in MT queue

a) Choose Ti with Min(C_Timeij)&Rj with minimum cost

Allocate Ti to the Rj that gives the MCT using Min-Min

 Delete the task Ti from the T.

b) Choose Ti with Max(C_Timeij)&Rjwith minimum cost
Allocate Ti to the Rj that gives the MCT using Max-Min

 Delete the task Ti from the T.

c) Choose Ti with Min(C_Timeij)&Rj with minimum cost
Allocate Ti to the Rj that gives the MCT using Min-Min

 Delete the task Ti from the T.

// Allocate task using Min-Min and Max-Min alternatively till
the task set T is empty

End for

PERFORMANCE PARAMETERS IN ICCASA

The performance of result is assessed according to the below

parameters:

a) Makespan (MS): Makespan is defined as the time

necessary for completing all the tasks. If the makespan is

less, the load balancing also better in result. Makespan is

calculated by using equation (6).

MS = Max (C_Timeij) …(6)

Where C_Timeij is the completion time of tasks on resource

b) Load Balancing (LB): Load Balancing is the distribution

of workloads among all cloud resources in effective and

balanced manner. Load Balancing should be high, for

effectual and best task scheduling algorithm. Load in virtual

machine is calculated by using equation (7).

c) Response time (RT): Response time is the time, a system

needs for reacting to start a particular task. Lesser the

response time produces greater performance of the system.

The response time is calculated by using the equation (8)

 RT = actual_CPUTime – Exec_Start_time ...(8)

d) Cost:Total processing cost of the task comprises CPU,

RAM, Bandwidth, storage & total cost of all resources are

calculated by using equations (9), (10), (11) & (12).

The total cost of all resources can be attained by using

equation (13).

Total cost= Cost(CPU) + Cost(RAM)

 + Cost(BW) + Cost(ST) ...(13)

e) Memory Cost: Cost related with the memory utilization of

a task can be calculated by using equation (14).

 CostPerMem = VMgetRam + CostPerMem * VMgetSize ...(14)

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 16

f) Total Computational Cost:The overall computation cost

is calculated by using equation (15).

 Total_CostComp= (CloudletLength/VMMips *VMNumberOfPes)

 * (CostPerMem * VMgetRam + CostPerMem * VM:getSize)...(15)

g) Resource Utilization (RU):Resource Utilization is the

usage of resources in the system. If load balancing is

maximum means resource utilization is maximized. The rate

of resource utilization is calculated by using equation (16).

RUj = ƩTi(tend(i) – tstart(i)) ...(16)

where, tend(i)is the finishing time and tstart(i) is the start time of

task Ti on resource rj

h) Average of Resource Utilization (ARU):Average

resource utilization is the sum of Resource utilization rate of

all resource by total number of resources. The average

resource utilization is calculated by using equation (17).

 ARU = ƩRUj/ N …(17)

where, RUjis the Resource utilization rate of all resource, N

is the Total number of resources

V. EXPERIMENTAL RESULT

 Cloud computing environment consists of several

heterogeneous resources called data centers, which include a

number of hosts having numerous characteristics. Each host

has a number of VMs with many configurations (CPU,

memory, bandwidth and storage). User sends the requests to

resources through service provider. Service provider serves

these requests with effective algorithms and executes tasks

in virtual machines using scheduling algorithms that are

accessible on resources. The proposed algorithm has been

executed in Java using CloudSim 3.0.3 as a Cloud

Simulator. It helps to arrange numerous cloud applications

and let’s creating datacenters, virtual machines and other

facilities which can be quickly generated as per need with

utmost ease. The simulation is done under the subsequent

conditions. Following three tables, Table 1,2&3 defines the

simulation conditions.Basic configuration is stated below

Table 1.

Table 1. Basic configuration

Number of Datacenters 2

Number of cloudlets 10

Number of brokers 1

Number of hosts under each

datacenter
2

 Each data center consists of numerous hosts. Every host

has its own configuration. Here same configuration is

applied for all hosts. Host configuration is stated in below

Table 2.

Table 2. Host configuration

RAM (in MB) 16384

Bandwidth (in mbps) 10000

Storage (MB) 1000000

MIPS (Lines of Codes) 1000

Number of VM 3

 Host in the datacenter contains numerous virtual

machines. Every virtual machine has its own configuration.

Here similar configuration is applied for each VMs. Virtual

machine configuration is stated below Table 3.

Table 3. VM Configuration

Number of Cores 3

Size (MB) 10000

MIPS (Lines of Codes) 1000

RAM (in MB) 1024

Bandwidth (in mbps) 1000

 The performance of the proposed algorithm is evaluated

according to the following parameters:

a) Makespan: From the Table 4 and Figure 2, the simulation

result of the proposed ICCASA algorithm is better than the

existing HAMM, Max-min and Min-Min algorithms in term

of makespan parameter.

Figure 2. Simulation Result in terms of Makespan

b) Average Resource Utilization: The average of resource

utilization (ARU) of the proposed ICCASA algorithm is

shown in the Table4 and Figure 3; where the proposed

(ICCASA) and the existing Max-Min, HAMM achieved

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 17

same degree in terms average of resource utilization for the

illustrated example.

Figure 3. Simulation Result in terms of Average Resource

Utilization

c) Load balancing: From the Table4 and Figure 4, the

proposed (ICCASA) algorithm and the existing HAMM,

Max-Min achieved same degree in terms load balancing for

the illustrated example.

Figure 4. Simulation Result in terms of Load Balancing

d) Total computation cost: The total computation cost and

total virtual machine cost is shown in Table 5 and Figure 5.

Figure 5. Simulation Result in terms of Cost

Table 4. Simulation results compared with existing algorithms

Parameters

Task Scheduling Algorithms

Min-

Min

Max-

Min
HAMM

ICCASA

(Proposed)

Makespan 45.87 45.27 44.74 33.666

Average

Resource

Utilization

0.99 1.00 1.00 1.00

Load Balancing 0.99 1.00 1.00 1.00

Table 5. Simulation results in terms of cost in ICCASA

Total Virtual Machine Cost (per unit) 0.15145

Total Computation Cost (per unit) 0.06058

 From the above simulation results, the proposed

ICCASA Algorithm is better than the existing HAMM,

Max-Min and Min-Min algorithms.

VI. CONCLUSION

 One of the main concern in cloud computing is task

scheduling of incoming user’s tasks among the cloud

resources to achieve better performance of cloud system. In

this research work, Improved Credit Based Cost Aware

Scheduling Algorithm (ICCASA) is proposed which uses the

advantages of both the Min-Min and Max-Min algorithms

by applying it consecutively. The proposed model fixes

priority to the task based on credits, before task scheduling.

Here, task priority is assigned by using a multiple credits

based priority system that considers four parameters: Task

length, Task priority, Deadline of the task and Cost of the

task, which overcomes the same priority issue during task

scheduling. The proposed algorithm is implemented on

CloudSim 3.0.3, a Cloud Simulation Tool. Simulation result

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 8, Issue 12, December 2021

 All Rights Reserved © 2021 IJARTET 18

achieves maximum resource utilization, efficient load

balancing, minimum makespan and minimum total

execution cost when compared to the existing algorithms.

The study can be further extended by applying some other

heuristic algorithm on actual cloud computing environment

and considering additional factors & parameters.

REFERENCES

[1] S. Vaaheedha Kfatheen, “Mean-Min task scheduling algorithm for

cloud environment”, Malaya Journal of Matematik (MJM), Vol. 9,

No. 1, 2021.

[2] Pradeep Krishnadoss, Gobalakrishnan Natesan and Javid Ali,

“CCSA: Hybrid Cuckoo Crow Search Algorithm for Task

Scheduling in Cloud Computing”, International Journal of Intelligent
Engineering and Systems, Vol. 14, No. 4, May 2021.

[3] Fatemeh Ebadifard, Seyed Morteza Babamir and Sedighe Barani, “A

Dynamic Task Scheduling Algorithm Improved by Load Balancing
in Cloud Computing”, 6th International Conference on Web

Research, June 2020.

[4] Raja Masadeh, Ahmad Sharieh and Basel A. Mahafzah, “Humpback
Whale Optimization Algorithm Based on Vocal Behavior for Task

Scheduling in Cloud Computing”, International Journal of Advanced

Science and Technology, Vol. 13, Issue. 3, 2019.

[5] Pandaba Pradhan, Prafulla Ku. Behera and B. N. B. Ray, “Efficient

Min Min Algorithm for Resource Allocation in Cloud Computing”,

International Journal for Research in Engineering Application &
Management (IJREAM), Vol. 06, Issue. 08, November 2020.

[6] J. Y. Maipan-uku, A. Abdulganiyu, A. Abdulkadir and A. Mishra,

“An Extended Min-Min Scheduling Algorithm in Cloud
Computing”, 2nd International Conference on Information and

Communication Technology and Its Applications, pp. 472-476,

September 2018.

[7] Tran Cong Hung, Phan Thanh Hy and Le Ngoc Hieu and Nguyen

Xuan Phi, “MMSIA: Improved Max-Min Scheduling Algorithm for

Load Balancing on Cloud Computing”, Proceedings of the 3rd
international conference on machine learning and soft computing,

January 2019.

[8] Shilpa Kodli and Sujata Terdal, “Hybrid Max-Min Genetic
Algorithm for Load Balancing and Task Scheduling in Cloud

Environment”, International Journal of Intelligent Engineering and

Systems, Vol. 14, No. 1, 2021.

[9] Ibrahim A. Thiyeb and Sharaf A. Alhomdy, “HAMM: A Hybrid

Algorithm of Min-Min and Max-Min Task Scheduling Algorithms in

Cloud Computing”, International Journal of Recent Technology and
Engineering (IJRTE), Vol. 9, Issue. 4, November 2020.

[10] Khaldun Ibraheem Arif, “A Hybrid Min Min& Round Robin

Approach for Task Scheduling in Cloud Computing”, International
Journal of Control and Automation Vol. 13, No. 1, 2020.

[11] P Praveen Kumar and V Kanchana Devi, “Efficient load balancing

by optimized flexi max-min algorithm”, National Science,
Engineering and Technology Conference (NCSET), 2020.

[12] T. Manoranjitham and Dupati Srikar, “Efficient Task Scheduling for
Quality of Service in Cloud Computing Network”, International

Journal of Recent Technology and Engineering (IJRTE), Vol. 8,

Issue. 5, January 2020.

[13] D. I. George Amalarethinam and S. Kavitha, “Rescheduling

Enhanced Min-Min (REMM) Algorithm for Meta-task Scheduling in

Cloud Computing”, Springer, pp. 895–902, January 2019.

[14] Syed Arshad Ali, Samiya Khan and Mansaf Alam, “Resource-Aware

Min-Min (RAMM) Algorithm for Resource Allocation in Cloud

Computing Environment”, International Journal of Recent
Technology and Engineering (IJRTE), Vol. 8, Issue. 3, September

2019.

[15] Fale Mantim Innocent, Sitlong Nengak Iliya and Ramson Emmanuel
Nannim, “An Optimized Flexi Max-Min Scheduling Algorithm for

Efficient Load Balancing on a Cloud”, International Journal of

Scientific & Engineering Research, Vol. 9, Issue. 7, July 2018.

