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Abstract—Video content is created, stored, and consumed 

at an extremely fast pace in the modern world. Databases and 

warehouses currently store a very large amount of video data. 

This data is raw and unstructured in nature and thus would 

greatly benefit from a service that could read, understand, 

analyze and describe the data. In this paper, we study the 

services currently being provided for video data as well as the 

models that are trained for the purpose of video captioning. 

We also present an architecture and workflow dedicated 

towards creating a scalable, cost-effective, and efficient video 

description service. Our proposed workflow uses modern cloud 

services and pipelines to provide machine-generated video 

descriptions to allow indexing, enable smart video feeds and 

improve accessibility of any video that is hosted on the web, a 

local device or coming in as a stream. In order to increase 

accessibility, we also incorporate translation and text-to-speech 

services to provide regional language access and audio 

descriptions for the visually impaired. This workflow employs 

the pre-trained Bi-modal Transformer (BMT) [13] neural 

network model in order to generate video captions and also 

assess its performance in real-world use-cases. 

Keywords—Accessibility, Audio Descriptions, Cloud 

Computing, Machine Learning, Video Captioning 

I. INTRODUCTION 

Image Processing tasks with the use of sophisticated 
neural networks has been one of the areas of study in 
Artificial Intelligence and Machine Learning in recent years 
that has yielded immensely promising results. Multiple 
applications such as object detection, labelling, action 
recognition, etc. have been made possible and are currently 
in widespread use. The ability to generate descriptions of 
video content is highly valuable for automated tasks such as 
labelling and tagging videos. Automated tagging and 
indexing of videos could help improve the results displayed 
by a video search engine as well as help generate summaries 
of thousands of hours of video content. Moreover, it could 

help visually impaired people to have better experience 
while accessing, interacting and consuming rich content on 
the web. 

Of the numerous applications mentioned above, many 
have proven useful to the physically challenged or ones with 
special needs. Currently, YouTube and other streaming 
platforms use speech-to text algorithms on the audio to 
identify spoken words as well as sound effects to generate 
captions in real-time [1]. In an era of powerful processing 
on the cloud, extensive fiber network connections and 
tremendous amounts of online content consumption, 
accessibility is a major factor in determining the reach of a 
business as it addresses the most basic requirements of a 
significant segment of the worlds’ population. 

With advancements in the field of Image Captioning, 
there has been growing interest in generating video 
descriptions using deep learning technologies. Large 
datasets which contain video and their corresponding human 
generated captions, such as the ActivityNet [11] dataset 
have made it possible to train captioning and description 
generating models on large quantities of video data. The 
most popular example of this is the dense video captioning 
task [12] which aims to generate temporal captions based on 
video features. Multiple models have been trained to 
achieve this, which employ transformation, bi-directional 
evaluation, and other innovative methods. Bi-modal 
Transformer is one of the more advanced models trained to 
perform dense video captioning. The bi-modal transformer 
takes into account both the video and audio track of the 
input to generate richer descriptions. It makes use of a 
proposal generator model to detect events and a caption 
generator model to generate time-stamped descriptions of 
the events occurring in the video. We employ this model as 
the engine of our proposed application and architect a cloud-



based workflow around that which is scalable, efficient and 
accessible to the general audience. 

II. RELATED WORK 

We survey existing solutions and how Machine Learning 

models are deployed in the cloud. In this section. We also 

provide background information about existing systems/ 

platforms which provide machine learning inference as a 

service. 

A. Growth of Cloud Computing 

Compute power has been getting cheaper and cheaper in 

the last decade, to the point where it’s more convenient to 

use ad-hoc virtual machines to do compute-intensive tasks 

than buy, manage, and maintain physical machines. 

Developers have taken advantage of the cloud to train and 

optimize models online [5]. They also design data pipelines 

to continuously train and optimize their models which are 

served to real-world applications, all from the cloud. This 

enables low-latency inference at scale. The trained models 

are served over a REST API enabling a number of different 

clients like web and mobile apps to consume them. 

B. ML-as-a-Service for Video 

We compare the offerings by the three most prominent 

cloud service providers, namely Google Cloud Platform 

(GCP), Microsoft Azure and Amazon Web Services (AWS) 

in Table I. Google provides two AI-based Video services, 

namely AutoML Video Intelligence and Video Intelligence 

API as a part of their Google Cloud Platform offerings. The 

AutoML Video Intelligence service provides the user with a 

graphical interface and has two main tasks: classification 

and object tracking. It can classify the various parts of a 

video based on user-defined labels. Object tracking includes 

detection of objects and tracking them through the video. 

The Video Intelligence API provides all of these features 

and more, with extra features such as explicit content 

detection, optical character recognition, closed captioning, 

recognizing specific objects such as faces, logos, celebrities, 

tracking, auto-labelling, OCR, etc. Both of these products 

support streaming video data and can be used to send in live 

video feeds for analytics. 

Microsoft with their Azure Media Services provides a 

Video Indexer, which outputs a JSON that includes data 

such as labels, faces, shots, written text, brands, sentiments, 

celebrities, etc. They also provide a web-based graphical 

console using which the user can interact with this data and 

create a sophisticated media workflow. 

AWS’s Amazon Rekognition Video service has a similar 

feature set which includes detection of objects, activities, 

scenes, text, faces, celebrities, inappropriate content, etc. 

Rekognition Video is also able to perform these tasks on an 

incoming stream, similar to Google. 

These services are satisfactory for most common use-

cases such as live-streaming, content moderation and 

delivery, analytics, etc. However, they may not be able to 

satisfy certain specific consumer requirements such as 

detailed descriptions of the actions and events that occur in 

the video. In-depth descriptions can be extremely beneficial 

for making audio-visual content accessible on the internet, 

video indexing and search based on events, summarizing 

long length detecting malicious activities on surveillance 

cameras, etc. Rekognition can be paired with Amazon 

Transcribe to generate captions and transcripts in real-time 

for streaming video. 

III. PROPOSED SYSTEM 

 In this section, we outline our approach, discuss the 
model we have selected and how our system, illustrated in 
Fig. 2 will work once deployed to the cloud. 

A. Bi-modal Transformer 

Bi-Modal Transformer is a model which can utilize data 

from both the visual as well as audio tracks in order to 

generate a list of captions for the video. These captions are 

temporal and thus suitable for chronologically describing 

and by extension summarizing the video. 

TABLE I. COMPARISON OF FEATURES PROVIDED BY CLOUD 
PLATFORMS FOR VIDEO INTELLIGENCE 

 

Feature 

Cloud Service Provider 

GCP Azure AWS 

Graphical Interface or Dashboard Yes Yes Yes 

Labelling Yes Yes Yes 

Object Detection Yes Yes Yes 

Object Tracking Yes Yes Yes 

Person Detection Yes Yes Yes 

Person Tracking No No Yes 

Closed Captions Yes Yes Yes 

Native Live Stream Analysis Yes No Yes 

Event/Activity Description No No No 

Video summarization No No No 

Native Multi-lingual support for labels and 

objects 

No No No 

The model requires audio features as extracted by a 

VGGish model, video features as extracted using a pre-

trained Inflated 3D model and Stanford NLP’s pre-trained 

GloVe model for word corpus. 

The ability of the model to accept both audio and video 

data enables it to create more rich, descriptive captions as it 

is able to take as input more data than a traditional model 

that only uses the visual elements. 

The use of GloVe enables the model to have a large 

corpus of natural language words with their corresponding 

vector representations. This ensures that the caption 

sentence generated aptly captures the event or activity it 

describes. 

B. Queues 

The queue backend used in our system is Redis. Redis is 

an open source, in-memory data structure store, used as a 

database, cache, and message broker [6]. python-rq  is a 

simple Python library for queueing jobs and processing 



them in the background with workers [7]. It utilizes Redis as 

a backend. 

After the video is received by the server, it is enqueued 

into the feature queue. The feature extraction workers are 

continuously polling this queue. As soon as a new video is 

enqueued, the processes start the feature extraction task. If 

the feature extraction worker is busy with another video, the 

moment it becomes free, it polls the queue and starts 

processing the next video in the queue.  

Fig. 1.  Cloud-based architecture of the proposed video describing service

C. Backend Server 

Our proposed solution employs a combination of 2 

server instances to carry out the end-to-end video captioning 

task. The first server faces the client, and hosts BMT, our 

trained proposal and caption generator model as well. On 

initial request, it accepts the video and language choice from 

the request body and stores the video to the shared directory.

It then passes the video file name and language choice to 

the second server, the feature generation ser

returns a job ID. This job ID is then returned to the user who 

uploaded the video. 

 After features are generated, the captions for the video 

are generated by the second server, i.e. the caption 

generating server, and it uses the captions to gene

file containing the timestamped captions, and an MP3 file 

containing captions in a synthesized voice, in a language of 

the user’s choice. 

The feature extracting and caption generating servers are 

built using Flask. Flask is a microframework writte

Python which enables the creation of web applications.  

Flask aims to keep the core simple but extensible, and does 

not include a database abstraction layer, form validation or 

any other components for which pre-existing libraries exist 

[8]. It allows us to build simple as well as complex web 

them in the background with workers [7]. It utilizes Redis as 

After the video is received by the server, it is enqueued 

into the feature queue. The feature extraction workers are 

ng this queue. As soon as a new video is 

enqueued, the processes start the feature extraction task. If 

the feature extraction worker is busy with another video, the 

moment it becomes free, it polls the queue and starts 

After features have been extracted, the server enqueues a 

description generation job into the description queue, and 

provides the paths to the feature files to the job. Like the 

feature extraction workers, the captions workers also poll 

the queue and start generating the captions.

Queues help deal with the large number of incoming 

files and allow asynchronous processing of data. This 

improves the scalability of the application.
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applications and leaves the decision of selecting third

libraries to the developer. 

1. Feature Extracting Servers 

They are composed of Video and Audio Worker 

processes. The bi-modal transformer takes video feat

in the form of I3D features. I3D is a  convolutional 

neural network model for video classification trained on 

the Kinetics dataset [9]. We use a PyTorch 

implementation of I3D to generate the I3D features for 

the video input. The BMT model also require

features. These features are generated using VGGish. 

VGGish is a pre-trained Convolutional Neural Network 
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After feature generation, the caption generation 

server loads the features generated previously and 

generates the VTT file and the audio file of the captions 

in the choice of user’s language, which is generated by 

the Google TTS service. The paths of the VTT file and 

the audio file are then returned as a JSON response to 

the client which is polling the server for status of the 

captioning job. 

D. Client 

Fig. 2.  A user has uploaded a video and selected the Hindi language. Th

player, and also the audio descriptions in Hindi, which plays when the user presses the speaker icon in the UI.

 

This language can then be used by the backend to 

translate the captions to, and also generate text

it. The text-to-speech audio can then be played by the client. 

This allows a potential use of such a system to work as an 

accessibility mechanism for those who are unable to 

consume the video content visually. 

In case the backend fails to generate captions, the 

‘status’ field of the response reads ‘failed’, notifying the 

client that the job has ended in failure, and the client can 

notify the user through an error message and sound 

notification. 

IV. RESULTS AND FUTURE SCOPE

 We have created a React [14] application to demonstrate 

the working of this system. React is a JavaScript library to 

create dynamic user interfaces.  

After feature generation, the caption generation 

server loads the features generated previously and 

generates the VTT file and the audio file of the captions 

he choice of user’s language, which is generated by 

the Google TTS service. The paths of the VTT file and 

the audio file are then returned as a JSON response to 

the client which is polling the server for status of the 

The service is headless in nature, i.e., it is not limited to 

one client and can communicate with any program acting as 

the client. The client uploads the video to the Primary 

Server, which returns a job ID to the client. The client then 

continuously polls the Primary Server for status of the 

captioning job. Along with the video, the client also has the 

option to send a language, as visible in the demo client in 

Fig. 2. 

Fig. 2.  A user has uploaded a video and selected the Hindi language. The application fetches the VTT captions for it, which are shown to be embedded in the 

player, and also the audio descriptions in Hindi, which plays when the user presses the speaker icon in the UI.

This language can then be used by the backend to 

the captions to, and also generate text-to-speech for 

speech audio can then be played by the client. 

This allows a potential use of such a system to work as an 

accessibility mechanism for those who are unable to 

In case the backend fails to generate captions, the 

‘status’ field of the response reads ‘failed’, notifying the 

client that the job has ended in failure, and the client can 

notify the user through an error message and sound 
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We have created a React [14] application to demonstrate 

the working of this system. React is a JavaScript library to 

Fig. 3.  Structure of video description for a single event given by the BMT 

model. The start and end fields denote starting and ending timestamps in 

seconds. 

 

Using React allowed us to create an application that is 

minimal and automate tasks such as sending network 

requests when the user has selected a video and a language. 

This reduced the number of steps required from the user’s 

side, making it easier for those using screen readers, etc. to 

access it and thus more accessible. 

 The application allows the user to upload a video from 

their local machine. As soon as the video is selected, it is

also uploaded to the backend where it starts getting 

processed. Once the descriptions are successfully generated 

the backend transforms the JSON output from the model 

into the Web Video Text Tracks Format (VTT), and if a 

language is specified by the user, it also creates audio 

descriptions for the descriptions in the specified language. 

Figure 3 shows a sample JSON output of a single event by 

the BMT model. These are returned to the client, which 

dynamically adds the VTT descriptions to the video track 

and enables a button to play the audio descriptions.

 

 VTT is the recommended standard set by the W3C for 

serving closed captions over the web. VTT is compatible 
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VTT is the recommended standard set by the W3C for 

serving closed captions over the web. VTT is compatible 



with a large number of screen readers which are utilized by 

people with visual impairments. 

 

 The implementation can be made more cloud native by 

using a microservice architecture and taking advantage of 

managed offerings from cloud providers like AWS. The 

feature and caption generation servers could be independent 

microservices, using a blob storage service like AWS S3 to 

store and share video files and their corresponding feature 

files. These microservices will listen to their respective 

queues, which could be AWS SQS instances. Additionally, 

these microservices can use a database like DynamoDB to 

store state of the jobs, ensuring that captions generate after 

features for it have been generated. 

V. CONCLUSION 

 In this paper we conducted a comparative study on the 

existing machine learning based services offered for video. 

We discussed the various use-cases of these services and the 

areas where they could possibly fall short, namely video 

descriptions and summarization. We discussed the dense 

video captioning task, the models that can perform it and 

also employed the BMT model into a proposed cloud-based 

workflow for a video description generating service. We 

concluded that the technology is still in its infancy and that 

we should see many improvements with newer research and 

models which would improve the overall performance of the 

system in terms of video description accuracy. There are yet 

many areas in which the end-to-end system could improve, 

but overall shows promise with a lot of potential in real-

world applications. 
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