
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 8, Special Issue 1, August 2021

167

 ML-based Solutions for Designing an End-to-End

Video Describing Service

 Ameya Khale

Dept. of Computer Engineering

St. John College of Engineering and

Management

Palghar, Maharashtra, India
ameyak@sjcem.edu.in

Roshan Gupta

Dept. of Computer Engineering

St. John College of Engineering and

Management

Palghar, Maharashtra, India

roshan@sjcem.edu.in

Kanishk Singh

Dept. of Computer Engineering

St. John College of Engineering and

Management

Palghar, Maharashtra, India

kanishks@sjcem.edu.in

Aditi Raut

Dept. of Computer Engineering

St. John College of Engineering and

Management

Palghar, Maharashtra, India

aditir@sjcem.edu.in

Abstract—Video content is created, stored, and consumed

at an extremely fast pace in the modern world. Databases and

warehouses currently store a very large amount of video data.

This data is raw and unstructured in nature and thus would

greatly benefit from a service that could read, understand,

analyze and describe the data. In this paper, we study the

services currently being provided for video data as well as the

models that are trained for the purpose of video captioning.

We also present an architecture and workflow dedicated

towards creating a scalable, cost-effective, and efficient video

description service. Our proposed workflow uses modern cloud

services and pipelines to provide machine-generated video

descriptions to allow indexing, enable smart video feeds and

improve accessibility of any video that is hosted on the web, a

local device or coming in as a stream. In order to increase

accessibility, we also incorporate translation and text-to-speech

services to provide regional language access and audio

descriptions for the visually impaired. This workflow employs

the pre-trained Bi-modal Transformer (BMT) [13] neural

network model in order to generate video captions and also

assess its performance in real-world use-cases.

Keywords—Accessibility, Audio Descriptions, Cloud

Computing, Machine Learning, Video Captioning

I. INTRODUCTION

Image Processing tasks with the use of sophisticated
neural networks has been one of the areas of study in
Artificial Intelligence and Machine Learning in recent years
that has yielded immensely promising results. Multiple
applications such as object detection, labelling, action
recognition, etc. have been made possible and are currently
in widespread use. The ability to generate descriptions of
video content is highly valuable for automated tasks such as
labelling and tagging videos. Automated tagging and
indexing of videos could help improve the results displayed
by a video search engine as well as help generate summaries
of thousands of hours of video content. Moreover, it could

help visually impaired people to have better experience
while accessing, interacting and consuming rich content on
the web.

Of the numerous applications mentioned above, many
have proven useful to the physically challenged or ones with
special needs. Currently, YouTube and other streaming
platforms use speech-to text algorithms on the audio to
identify spoken words as well as sound effects to generate
captions in real-time [1]. In an era of powerful processing
on the cloud, extensive fiber network connections and
tremendous amounts of online content consumption,
accessibility is a major factor in determining the reach of a
business as it addresses the most basic requirements of a
significant segment of the worlds’ population.

With advancements in the field of Image Captioning,
there has been growing interest in generating video
descriptions using deep learning technologies. Large
datasets which contain video and their corresponding human
generated captions, such as the ActivityNet [11] dataset
have made it possible to train captioning and description
generating models on large quantities of video data. The
most popular example of this is the dense video captioning
task [12] which aims to generate temporal captions based on
video features. Multiple models have been trained to
achieve this, which employ transformation, bi-directional
evaluation, and other innovative methods. Bi-modal
Transformer is one of the more advanced models trained to
perform dense video captioning. The bi-modal transformer
takes into account both the video and audio track of the
input to generate richer descriptions. It makes use of a
proposal generator model to detect events and a caption
generator model to generate time-stamped descriptions of
the events occurring in the video. We employ this model as
the engine of our proposed application and architect a cloud-

based workflow around that which is scalable, efficient and
accessible to the general audience.

II. RELATED WORK

We survey existing solutions and how Machine Learning

models are deployed in the cloud. In this section. We also

provide background information about existing systems/

platforms which provide machine learning inference as a

service.

A. Growth of Cloud Computing

Compute power has been getting cheaper and cheaper in

the last decade, to the point where it’s more convenient to

use ad-hoc virtual machines to do compute-intensive tasks

than buy, manage, and maintain physical machines.

Developers have taken advantage of the cloud to train and

optimize models online [5]. They also design data pipelines

to continuously train and optimize their models which are

served to real-world applications, all from the cloud. This

enables low-latency inference at scale. The trained models

are served over a REST API enabling a number of different

clients like web and mobile apps to consume them.

B. ML-as-a-Service for Video

We compare the offerings by the three most prominent

cloud service providers, namely Google Cloud Platform

(GCP), Microsoft Azure and Amazon Web Services (AWS)

in Table I. Google provides two AI-based Video services,

namely AutoML Video Intelligence and Video Intelligence

API as a part of their Google Cloud Platform offerings. The

AutoML Video Intelligence service provides the user with a

graphical interface and has two main tasks: classification

and object tracking. It can classify the various parts of a

video based on user-defined labels. Object tracking includes

detection of objects and tracking them through the video.

The Video Intelligence API provides all of these features

and more, with extra features such as explicit content

detection, optical character recognition, closed captioning,

recognizing specific objects such as faces, logos, celebrities,

tracking, auto-labelling, OCR, etc. Both of these products

support streaming video data and can be used to send in live

video feeds for analytics.

Microsoft with their Azure Media Services provides a

Video Indexer, which outputs a JSON that includes data

such as labels, faces, shots, written text, brands, sentiments,

celebrities, etc. They also provide a web-based graphical

console using which the user can interact with this data and

create a sophisticated media workflow.

AWS’s Amazon Rekognition Video service has a similar

feature set which includes detection of objects, activities,

scenes, text, faces, celebrities, inappropriate content, etc.

Rekognition Video is also able to perform these tasks on an

incoming stream, similar to Google.

These services are satisfactory for most common use-

cases such as live-streaming, content moderation and

delivery, analytics, etc. However, they may not be able to

satisfy certain specific consumer requirements such as

detailed descriptions of the actions and events that occur in

the video. In-depth descriptions can be extremely beneficial

for making audio-visual content accessible on the internet,

video indexing and search based on events, summarizing

long length detecting malicious activities on surveillance

cameras, etc. Rekognition can be paired with Amazon

Transcribe to generate captions and transcripts in real-time

for streaming video.

III. PROPOSED SYSTEM

 In this section, we outline our approach, discuss the
model we have selected and how our system, illustrated in
Fig. 2 will work once deployed to the cloud.

A. Bi-modal Transformer

Bi-Modal Transformer is a model which can utilize data

from both the visual as well as audio tracks in order to

generate a list of captions for the video. These captions are

temporal and thus suitable for chronologically describing

and by extension summarizing the video.

TABLE I. COMPARISON OF FEATURES PROVIDED BY CLOUD
PLATFORMS FOR VIDEO INTELLIGENCE

Feature

Cloud Service Provider

GCP Azure AWS

Graphical Interface or Dashboard Yes Yes Yes

Labelling Yes Yes Yes

Object Detection Yes Yes Yes

Object Tracking Yes Yes Yes

Person Detection Yes Yes Yes

Person Tracking No No Yes

Closed Captions Yes Yes Yes

Native Live Stream Analysis Yes No Yes

Event/Activity Description No No No

Video summarization No No No

Native Multi-lingual support for labels and

objects

No No No

The model requires audio features as extracted by a

VGGish model, video features as extracted using a pre-

trained Inflated 3D model and Stanford NLP’s pre-trained

GloVe model for word corpus.

The ability of the model to accept both audio and video

data enables it to create more rich, descriptive captions as it

is able to take as input more data than a traditional model

that only uses the visual elements.

The use of GloVe enables the model to have a large

corpus of natural language words with their corresponding

vector representations. This ensures that the caption

sentence generated aptly captures the event or activity it

describes.

B. Queues

The queue backend used in our system is Redis. Redis is

an open source, in-memory data structure store, used as a

database, cache, and message broker [6]. python-rq is a

simple Python library for queueing jobs and processing

them in the background with workers [7]. It utilizes Redis as

a backend.

After the video is received by the server, it is enqueued

into the feature queue. The feature extraction workers are

continuously polling this queue. As soon as a new video is

enqueued, the processes start the feature extraction task. If

the feature extraction worker is busy with another video, the

moment it becomes free, it polls the queue and starts

processing the next video in the queue.

Fig. 1. Cloud-based architecture of the proposed video describing service

C. Backend Server

Our proposed solution employs a combination of 2

server instances to carry out the end-to-end video captioning

task. The first server faces the client, and hosts BMT, our

trained proposal and caption generator model as well. On

initial request, it accepts the video and language choice from

the request body and stores the video to the shared directory.

It then passes the video file name and language choice to

the second server, the feature generation ser

returns a job ID. This job ID is then returned to the user who

uploaded the video.

 After features are generated, the captions for the video

are generated by the second server, i.e. the caption

generating server, and it uses the captions to gene

file containing the timestamped captions, and an MP3 file

containing captions in a synthesized voice, in a language of

the user’s choice.

The feature extracting and caption generating servers are

built using Flask. Flask is a microframework writte

Python which enables the creation of web applications.

Flask aims to keep the core simple but extensible, and does

not include a database abstraction layer, form validation or

any other components for which pre-existing libraries exist

[8]. It allows us to build simple as well as complex web

them in the background with workers [7]. It utilizes Redis as

After the video is received by the server, it is enqueued

into the feature queue. The feature extraction workers are

ng this queue. As soon as a new video is

enqueued, the processes start the feature extraction task. If

the feature extraction worker is busy with another video, the

moment it becomes free, it polls the queue and starts

After features have been extracted, the server enqueues a

description generation job into the description queue, and

provides the paths to the feature files to the job. Like the

feature extraction workers, the captions workers also poll

the queue and start generating the captions.

Queues help deal with the large number of incoming

files and allow asynchronous processing of data. This

improves the scalability of the application.

f the proposed video describing service

Our proposed solution employs a combination of 2

end video captioning

task. The first server faces the client, and hosts BMT, our

enerator model as well. On

initial request, it accepts the video and language choice from

the request body and stores the video to the shared directory.

It then passes the video file name and language choice to

the second server, the feature generation server, which

returns a job ID. This job ID is then returned to the user who

After features are generated, the captions for the video

are generated by the second server, i.e. the caption

generating server, and it uses the captions to generate VTT

file containing the timestamped captions, and an MP3 file

containing captions in a synthesized voice, in a language of

The feature extracting and caption generating servers are

built using Flask. Flask is a microframework written in

Python which enables the creation of web applications.

Flask aims to keep the core simple but extensible, and does

not include a database abstraction layer, form validation or

existing libraries exist

us to build simple as well as complex web

applications and leaves the decision of selecting third

libraries to the developer.

1. Feature Extracting Servers

They are composed of Video and Audio Worker

processes. The bi-modal transformer takes video feat

in the form of I3D features. I3D is a convolutional

neural network model for video classification trained on

the Kinetics dataset [9]. We use a PyTorch

implementation of I3D to generate the I3D features for

the video input. The BMT model also require

features. These features are generated using VGGish.

VGGish is a pre-trained Convolutional Neural Network

from Google [10]. The architecture of this network is

inspired by the famous VGG networks used for image

classification. We use a Tensorflow i

VGGish to generate audio features.

The feature extraction server accesses the video from

the shared directory. After generating the features, they

store them back in the shared directory.

2. Caption Generating Server

The caption generator loads the pre

and caption generating models into memory when the

system starts.

After features have been extracted, the server enqueues a

description generation job into the description queue, and

provides the paths to the feature files to the job. Like the

feature extraction workers, the captions workers also poll

tart generating the captions.

Queues help deal with the large number of incoming

files and allow asynchronous processing of data. This

improves the scalability of the application.

applications and leaves the decision of selecting third-party

They are composed of Video and Audio Worker

modal transformer takes video features

in the form of I3D features. I3D is a convolutional

neural network model for video classification trained on

the Kinetics dataset [9]. We use a PyTorch

implementation of I3D to generate the I3D features for

the video input. The BMT model also requires audio

features. These features are generated using VGGish.

trained Convolutional Neural Network

from Google [10]. The architecture of this network is

inspired by the famous VGG networks used for image

classification. We use a Tensorflow implementation of

VGGish to generate audio features.

The feature extraction server accesses the video from

the shared directory. After generating the features, they

store them back in the shared directory.

ds the pre-trained proposal

and caption generating models into memory when the

After feature generation, the caption generation

server loads the features generated previously and

generates the VTT file and the audio file of the captions

in the choice of user’s language, which is generated by

the Google TTS service. The paths of the VTT file and

the audio file are then returned as a JSON response to

the client which is polling the server for status of the

captioning job.

D. Client

Fig. 2. A user has uploaded a video and selected the Hindi language. Th

player, and also the audio descriptions in Hindi, which plays when the user presses the speaker icon in the UI.

This language can then be used by the backend to

translate the captions to, and also generate text

it. The text-to-speech audio can then be played by the client.

This allows a potential use of such a system to work as an

accessibility mechanism for those who are unable to

consume the video content visually.

In case the backend fails to generate captions, the

‘status’ field of the response reads ‘failed’, notifying the

client that the job has ended in failure, and the client can

notify the user through an error message and sound

notification.

IV. RESULTS AND FUTURE SCOPE

 We have created a React [14] application to demonstrate

the working of this system. React is a JavaScript library to

create dynamic user interfaces.

After feature generation, the caption generation

server loads the features generated previously and

generates the VTT file and the audio file of the captions

he choice of user’s language, which is generated by

the Google TTS service. The paths of the VTT file and

the audio file are then returned as a JSON response to

the client which is polling the server for status of the

The service is headless in nature, i.e., it is not limited to

one client and can communicate with any program acting as

the client. The client uploads the video to the Primary

Server, which returns a job ID to the client. The client then

continuously polls the Primary Server for status of the

captioning job. Along with the video, the client also has the

option to send a language, as visible in the demo client in

Fig. 2.

Fig. 2. A user has uploaded a video and selected the Hindi language. The application fetches the VTT captions for it, which are shown to be embedded in the

player, and also the audio descriptions in Hindi, which plays when the user presses the speaker icon in the UI.

This language can then be used by the backend to

the captions to, and also generate text-to-speech for

speech audio can then be played by the client.

This allows a potential use of such a system to work as an

accessibility mechanism for those who are unable to

In case the backend fails to generate captions, the

‘status’ field of the response reads ‘failed’, notifying the

client that the job has ended in failure, and the client can

notify the user through an error message and sound

COPE

We have created a React [14] application to demonstrate

the working of this system. React is a JavaScript library to

Fig. 3. Structure of video description for a single event given by the BMT

model. The start and end fields denote starting and ending timestamps in

seconds.

Using React allowed us to create an application that is

minimal and automate tasks such as sending network

requests when the user has selected a video and a language.

This reduced the number of steps required from the user’s

side, making it easier for those using screen readers, etc. to

access it and thus more accessible.

 The application allows the user to upload a video from

their local machine. As soon as the video is selected, it is

also uploaded to the backend where it starts getting

processed. Once the descriptions are successfully generated

the backend transforms the JSON output from the model

into the Web Video Text Tracks Format (VTT), and if a

language is specified by the user, it also creates audio

descriptions for the descriptions in the specified language.

Figure 3 shows a sample JSON output of a single event by

the BMT model. These are returned to the client, which

dynamically adds the VTT descriptions to the video track

and enables a button to play the audio descriptions.

 VTT is the recommended standard set by the W3C for

serving closed captions over the web. VTT is compatible

The service is headless in nature, i.e., it is not limited to

one client and can communicate with any program acting as

the client. The client uploads the video to the Primary

Server, which returns a job ID to the client. The client then

the Primary Server for status of the

captioning job. Along with the video, the client also has the

option to send a language, as visible in the demo client in

Fig. 2.

e application fetches the VTT captions for it, which are shown to be embedded in the

player, and also the audio descriptions in Hindi, which plays when the user presses the speaker icon in the UI.

Fig. 3. Structure of video description for a single event given by the BMT

tart and end fields denote starting and ending timestamps in

Using React allowed us to create an application that is

minimal and automate tasks such as sending network

requests when the user has selected a video and a language.

number of steps required from the user’s

side, making it easier for those using screen readers, etc. to

The application allows the user to upload a video from

their local machine. As soon as the video is selected, it is

also uploaded to the backend where it starts getting

processed. Once the descriptions are successfully generated

the backend transforms the JSON output from the model

into the Web Video Text Tracks Format (VTT), and if a

, it also creates audio

descriptions for the descriptions in the specified language.

Figure 3 shows a sample JSON output of a single event by

the BMT model. These are returned to the client, which

dynamically adds the VTT descriptions to the video track

d enables a button to play the audio descriptions.

VTT is the recommended standard set by the W3C for

serving closed captions over the web. VTT is compatible

with a large number of screen readers which are utilized by

people with visual impairments.

 The implementation can be made more cloud native by

using a microservice architecture and taking advantage of

managed offerings from cloud providers like AWS. The

feature and caption generation servers could be independent

microservices, using a blob storage service like AWS S3 to

store and share video files and their corresponding feature

files. These microservices will listen to their respective

queues, which could be AWS SQS instances. Additionally,

these microservices can use a database like DynamoDB to

store state of the jobs, ensuring that captions generate after

features for it have been generated.

V. CONCLUSION

 In this paper we conducted a comparative study on the

existing machine learning based services offered for video.

We discussed the various use-cases of these services and the

areas where they could possibly fall short, namely video

descriptions and summarization. We discussed the dense

video captioning task, the models that can perform it and

also employed the BMT model into a proposed cloud-based

workflow for a video description generating service. We

concluded that the technology is still in its infancy and that

we should see many improvements with newer research and

models which would improve the overall performance of the

system in terms of video description accuracy. There are yet

many areas in which the end-to-end system could improve,

but overall shows promise with a lot of potential in real-

world applications.

E. REFERENCES

[1] Simonite, Tom. “Machine Learning Opens Up New Ways to Help

People with Disabilities.” MIT Technology Review, MIT Technology
Review, 2 Apr. 2020,

[2] Krishna, Ranjay, et al. “Dense-captioning events in videos.”
Proceedings of the IEEE international conference on computer vision.
2017.

[3] Zhou, Luowei, et al. "End-to-end dense video captioning with masked
transformer." Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018

[4] ran, Du, et al. "Learning spatiotemporal features with 3d
convolutional networks."Proceedings of the IEEE international
conference on computer vision. 2015.

[5] Zhang, Chengliang, et al. "Mark: Exploiting cloud services for cost-
effective, slo-aware machine learning inference serving." 2019

{USENIX} Annual Technical Conference ({USENIX}{ATC} 19).

2019.
[6] “Redis” 17 Mar. 2021. Accessed on: 6 Apr. 2021 [Online] Available:

https://redis.io/

[7] “RQ: Simple job queues for Python” 1 Apr. 2021. Accessed on 6 Apr.

2021. [Online] Available: https://python-rq.org/

[8] “Foreword - Flask Documentation (1.1.x)” 5 Apr. 2020. Accessed on:

6 Apr. 2021. [Online] Available:
https://flask.palletsprojects.com/en/1.1.x/foreword/

[9] “I3D model | DeepMind” 12 Feb 2018. Accessed on: 7 Apr. 2021.

[Online] Available: https://deepmind.com/research/open-source/i3d-
model

[10] Hershey, Shawn, et al. "CNN architectures for large-scale audio

classification." 2017 ieee international conference on acoustics,
speech and signal processing (icassp). IEEE, 2017.

[11] CabaHeilbron, Fabian and Escorcia, Victor and Ghanem, Bernard and

Carlos Niebles, Juan “ActivityNet: a large-scale video benchmark for

Human Activity Understanding” Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). June 2015

[12] Krishna, Ranjay and Hata, Kenji and Ren, Frederic and Fei-Fei, Li

and Niebles, Juan Carlos “Dense-captioning events in videos”

International Conference on Computer Vision (ICCV). 2 May 2017

[13] Iashin, Vladimir, and EsaRahtu. "A better use of audio-visual cues:

Dense video captioning with bi-modal transformer." arXiv preprint

arXiv:2005.08271 (2020).

[14] Brian Sam Thomas, Rajat Dogra, Bhaskar Dixit, Aditi Raut.

“Automatic Image and Video Colourisation using Deep Learning”
2018 International Conference on Smart City and Emerging

Technology(ICSCET), Mumbai, 2018

[15] “React – A JavaScript library for building user interfaces” 1 Apr

2021. Accessed on: 6 Apr. 2021. [Online] Available:

https://reactjs.org/

171

