
                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   137 
 

Application of Computer Vision in Human-

Robot Interaction Using Hand Gesture for 

Robot Control  

Samson Z. Damtew1*, Prabhakar.S2   

1* Dean, Mechatronics Department, Engineering College, Kombolcha Institute of Technology, Wollo University, 

Ethiopia.  

Email: samsonzerihun@kiot.edu.et  

   2 Associate professor, Mechanical department, Automotive Engineering Stream, Kombolcha Institute of Technology, 

Wollo University, Kombolcha-208, Ethiopia. Email: praba.rockson@gmail.com, prabhakar@kiot.edu.et, 

prabhakar@avit.ac.in 

 

Abstract: This paper aims about implementing a computer vision application that can be used to control a robot 

through simple hand gestures. The main motivation of our paper is the need to develop a simple robot controller that 

can interact smoothly with humans without having any special devices.  The purpose of this paper is to analyze the 

different hand gesture and finger representations which are captured from webcam from different users in a real time so 

that the robot will detect, recognize and interpret the meanings for the respected commands so that take action to 

control the robot motion or movement directions based on the current situations into consideration. During the project, 

four gestures were chosen to represent four navigational commands for the robot, namely Move Forward, Turn Left, 

Turn Right, and Stop. The result shows that this program is robust to color contrast and in detection and recognition of 

different hand skins from different users while further improvement and optimization of memory and storage 

allocations needs to be done using different open CV versions and can be also implemented for other related 

application that needs a human machine interactions. 

Index Terms—Computer vision, Convex hull, Gesture recognition, Human and robot, HMI, Hand gestures. 

 

I. INTRODUCTION 

Gesture recognition has been a very interesting problem 

in Computer Vision community for a long time. This is 

particularly due to the fact that segmentation of foreground 

object from a cluttered background is a challenging 

problem in real-time. Nowadays robot are used successfully 

in many areas, particularly in industrial production, military 

applications and space explorations. This success drives the 

interest in the feasibility of using robots in human social 

environments. In human social environments 

communications can be done using verbal language (audio) 

or gesture. Robots can also be controlled using speech but 

due to the complexity of speech signal the control is a more 

difficult using verbal language.  

Early approaches to the hand gesture recognition 

problem in a robot control context involved the use of 

markers on the finger tips [1]. An associated algorithm is 

used to detect the presence and color of the markers, 

through which one can identify which fingers are active in 

the gesture. The inconvenience of placing markers on the 

user’s hand makes this an infeasible approach in practice. 

Recent methods use more advanced computer vision 

techniques and do not require markers. Hand gesture 

recognition is performed through a curvature space method 

in [2], which involves finding the boundary contours of the 

hand. This is a robust approach that is scale, translation and 

rotation invariant on the hand pose, yet it is 

computationally demanding. In [3], a vision-based hand 

pose recognition technique using skeleton images is 

proposed, in which a multi-system camera is used to pick 

the center of gravity of the hand and points with farthest 

distances from the center, providing the locations of the 

finger tips, which are then used to obtain a skeleton image, 

and finally for gesture recognition. A technique for gesture 

recognition for sign language interpretation has been 

proposed in [4]. Our focus is the recognition of a fixed 

set of manual commands by a robot, in a reasonably 

structured environment in real time. Therefore the speed, 

hence simplicity of the algorithm is important. We develop 

and implement such a computer vision procedures in this 

work in our detection and recognition of the four gestures 

and their translation into the corresponding commands for 

the robot. The appropriate OpenCV functions and image 

processing algorithms for the detection and interpretation of 

the gestures were used. Then after, the program was tested 

on a webcam with actual hand gestures in real-time and the 

results to be observed.   

http://www.ijartet.com/
mailto:samsonzerihun@kiot.edu.et
mailto:praba.rockson@gmail.com,%20prabhakar@kiot.edu.et
mailto:prabhakar@avit.ac.in


                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   138 
 

II. MATERIALS AND METHODS 

As the first step in hand gesture recognition is obviously to 

find the hand region by eliminating all the other unwanted 

portions in the video sequence, the techniques used in our 

research project involves the use of several algorithms 

commonly used in computer vision. These include those 

used in color segmentation, contour drawing, convex hull, 

feature extraction, and gesture recognition. A computer 

vision application written in C is used integrated with the 

computer webcam as a camera for the robot.   

So, our first step to find the hand region from a video 

sequence involves three simple steps. 

 

 Background Subtraction 

 Motion Detection and Thresholding 

 Contour Extraction 

 

 Having segmented the hand region from the live video 

sequence, we will make our system to count the fingers that 

are shown via a camera/webcam. Here, we will use ideas 

from region-based segmentation [5, 6] to alleviate this 

problem. Our assumption is that as the largest connected 

white region corresponds to the hand, we will use a relative 

region size threshold to eliminate the undesired regions. 

Then after, to count the fingers, we will introduce a faster 

approach to perform hand gesture recognition as proposed 

by Malima et.al. Therefore, our methodology to count the 

fingers (as proposed by Malima et.al) will be as shown in 

the figure 1 below. 

 

 
Figure 1: Methodology of Hand-Gesture Recognition 

algorithm to count the fingers 

As you can see from the above image, there are four 

intermediate steps to count the fingers, given a 

segmented hand region. All these steps are shown with a 

corresponding output image (shown in the left) which 

we get, after performing that particular step. 

1. Find the convex hull of the segmented hand 

region (which is a contour) and compute the 

most extreme points in the convex hull 

(Extreme Top, Extreme Bottom, Extreme 

Left, Extreme Right). 

2. Find the center of palm using these extremes 

points in the convex hull. 

3. Using the palm’s center, construct a circle with 

the maximum Euclidean distance (between 

the palm’s center and the extreme points) as 

radius. 

4. Perform bitwise AND operation between the 

thresholded hand image (frame) and the 

circular ROI (mask). This reveals the finger 

slices, which could further be used to 

calculate the number of fingers shown. 

Once we have got the segmented hand region, we can 

calculate its centroid, or center of gravity (COG), 

[7], as shown in (1): 

 

                                               (1) 

 

Where xi and yi are x and y coordinates of the ith pixel 

in the hand region, and k denotes the number of pixels 

in the region. 

Furthermore, below is our implementation section 

that present the entire function used to perform the 

above four steps. 

III. IMPLEMENTATION  

Color segmentation using Thresholding 

Hand segmentation deals with separating the user’s 

hand from the background in the image. This can be 

done using various different methods. The most 

important step for hand segmentation is thresholding 

which is used in most of the methods described below to 

separate the hand from the background such that each 

pixel is either classified as a hand pixel or a background 

pixel. 

Thresholding can be done using HSV or YCrCb color 

spaces. In this project both color spaces are used in 

combination for robust hand segmentation. 

 

The algorithm used for the color segmentation using 

thresholding should consider the following points: 

 

1) Capture an image of the hand gesture from the 

camera. 

2) Determine the range of HSV and/or YCrCb values 

http://www.ijartet.com/


                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   139 
 

for skin color for use as threshold values. 

3) Convert the image from RGB color space to HSV 

and YCrCb color space. 

4) Convert all the pixels falling within the threshold 

values to white. 

5) Convert all other pixels to black. 

6) Save the segmented image in an image file. 

 

A static threshold value is selected from 0 to 255. 

This threshold value is chosen in such a way that the 

white blob of the hand is segmented with minimum 

noise possible. The system use the following ranges in 

HSV and YCrCb color spaces. 

H[0,20], S[45,255], V[0,255] & 

Y[60,255], Cr[140,210], Cb[90,130] 

This values work best for a constant lighting 

condition and lighter skin color. To adjust the threshold 

value according to the usage scenario track bar control 

is also provided. This method is useful where the 

intensity of the hand is almost similar whenever the 

system is used. Also the background intensity should be 

similar every time the system is used. But even in 

constant lighting conditions during every system use the 

system might fail depending on the user’s hand color. If 

the user’s hand is also darker in color, the system might 

not be able to separate the user’s hands and the dark 

background. After segmentation a Gaussian and median 

smoothing techniques are used to reduce noise due to 

lightning conditions. Figure 2 shows a sample 

segmented image after all smoothing techniques are 

applied. 

 
Figure 2: Sample image, image after color 

segmentation. 

IV. HAND DETECTION 

1) Contour  

A contour is the curve for a two variables function 

along which the function has a constant value. A 

contour joins points above a given level and of equal 

elevation. The contour is drawn around the white blob 

of the hand that is found out by thresholding the input 

image. There can be possibilities that more than one 

blob will be formed in the image due to noise in the 

background. So the contours are drawn on such smaller 

white blobs too. Considering all blobs formed due to 

noise are small, thus the large contour is considered for 

further processing specifying it as a contour of hand. 

In this implementation, after preprocessing of the 

image frame, white blob is formed. Contour is drawn 

around this white blob. 

For finding contours in OpenCV using C we use the 

following function.  

 

IntcvFindContours(CvArr* image, 

CvMemStorage* storage, CvSeq** first_contour, 

int header_size=sizeof(CvContour), 

 

Int 

mode=CV_RETR_LIST,int method=CV_CHAIN_APP

ROX_SIMPLE, CvPoint offset=cvPoint(0,0) ) 

 

This function returns a sequence of contours from the 

segmented image. To draw the contours on the image 

we use the draw contour function which draws external 

contour and holes using different colors. 

 

void cvDrawContours(CvArr* img, CvSeq* contour, 

CvScalar externalColor, CvScalar holeColor, 

int maxLevel, int thickness=1, intlineType=8 ) 

 

We then can filter the smaller blobs using the contour 

area so that the blob with the maximum contour area can 

be considered as hand contour as depicted in figure 3. 

 
Figure 3: Hand Contour 

http://www.ijartet.com/


                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   140 
 

2) Convex Hull 

The convex hull of a set of points in the Euclidean 

space is the smallest convex set that contains all the set 

of given points. For example, when this set of points is a 

bounded subset of the plane, the convex hull can be 

visualized as the shape formed by a line stretched 

around this set of points. 

 Convex hull is drawn around the contour of the hand, 

such that all contour points are within the convex hull. 

This makes an envelope around the hand contour. 

An approximate polygon is drawn before using the 

convex hull function. A sequence of points is then 

extracted from the approximate polygon to get the 

corresponding convex hull as depicted in figure 4. For 

detecting the approximate polygon and convex hull of a 

contour the following functions are used. 

 

CvSeq* cvApproxPoly(const void* src_seq, 

int header_size, CvMemStorage* storage, int method, 

double eps, int recursive=0 ) 

 

CvSeq* cvConvexHull2(const CvArr* input, void* 

hull_storage=NULL, int 

orientation=CV_CLOCKWISE, int return_points=0 ) 

 

 
Figure 4: An approximate polygon to extract the 

convex hull (red line) 

 

3) Convexity Defect 

When the convex hull is drawn around the contour of 

the hand, it fits set of contour points of the hand within 

the hull. It uses minimum points to form the hull to 

include all contour points inside or on the hull and 

maintain the property of convexity. This causes the 

formation of defects in the convex hull with respect to 

the contour drawn on hand. A defect is present wherever 

the contour of the object is away from the convex hull 

drawn around the same contour. Convexity defect gives 

the set of values for every defect in the form of vector. 

This vector contains the start and end point of the line of 

defect in the convex hull. These points indicate indices 

of the coordinate points of the contour. These points can 

be easily retrieved by using start and end indices of the 

defect formed from the contour vector. Convexity defect 

also includes index of the depth point in the contour and 

its depth value from the line. Due to this requirement on 

the minimum depth required for consideration as the 

space between two fingers, the system may not detect 

some fingers if the user’s hand is far away from the web 

camera. The convexity defects are used to count fingers 

on feature extraction stage. Figure 5 shows the start and 

end defect points using different colors. 

 

 
Figure 5: Convexity defects points 

Feature extraction 

After all pre-processing on the input image frame 

mentioned in hand segmentation and hand detection is 

done, useful information is extracted from the user’s 

hand for input purposes. For extracting useful input, two 

main things that are mentioned in hand detection 

contour and convexity defects in the image frame are 

mainly used for extraction of inputs. In this project we 

used number of fingers and hand orientation to 

distinguish the hand gestures. 

4) Number of fingers 

In this method, the count of fingers from the user’s 

hand is extracted. It makes use of convexity defects for 

detecting the finger count. As mentioned above, the data 

structure of convexity defect gives the depth of the 

defects. Such defects can occur in a general hand image 

due to wrist position and orientation. But some defects 

have far greater depth than others. These are the gaps 

between the two fingers. As shown in the figure 6, count 

http://www.ijartet.com/


                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   141 
 

given by the user is two. There are many defects that are 

formed, but the depth of defect formed due to the gap 

between two fingers is much greater and thus can be 

separated from other non-important defects. For two 

adjacent fingers, there is one such defect. 

This technique fails when there is no large defect in 

the input image frame. This situation occurs when there 

is one finger or no finger in the image. To overcome this 

issue we design the commands from count of 2 to 5. The 

count of 1 and 0 can also be used as a command but 

they both represent the same command. 

 
Figure 6: Extraction of finger count 

5) Hand Orientation 

Three possible orientations can be recognized such as 

up, right and left. To get the hand orientation we use 

bounding rectangle around the contour. The center of 

the bounding rectangle and centroid of the contour are 

used as distinguishing features. The tip of the finger 

which is a point farthest from the center of the contour 

is extracted by comparing the distance from the centroid 

to all convex defect points. The tip of the finger is used 

to know the direction of the pointing finger. The tip of 

the finger is the solid purple point as shown in figure 7. 

Comparing the width and height of the bounding 

rectangle, we can differentiate up, left and right gesture. 

If the height is greater than the width the hand is in 

upright position which can be forward or stop gesture. 

The two gestures can be differentiated using finger 

count. If finger count is one or two considering the error 

in finger count, Forward gestures is selected. If the 

number of fingers is greater than three, Stop gesture is 

selected. However if the width is greater than the height 

the gesture must be Turn left or turn right. To further 

distinguish the gestures we use the position of fingertip 

with respect to the center of the rectangle. i.e. if the 

fingertip is to the right of the center, the gesture is turn 

right and if it is to the left of the center ,the gesture is 

turn left. Figure 7 shows the actual result of our gesture 

recognition.  

 

 
Figure 7: Gesture recognition results 

V. EXPERIMENTAL RESULTS 

We have conducted experiments based on images we 

have acquired using a 4 Mega-Pixel digital camera as 

well as a simple webcam. We have collected these data 

on uniform as well as cluttered backgrounds. Figure 6 

shows a sample result for a hand image displaying the 

count “two”. We showed the output of various stages of 

our algorithm.  

When the hand gestures were made before the 

webcam, the program successfully implemented the 

OpenCV track bars, the segmentation of images into 

black and white, the detection of blobs, the recognition 

of the images, and the output of the control commands. 

 The results also showed that the gesture recognition 

application was quite robust for static images. However, 

the video version was enormously affected by the 

amount of illumination, such that it was necessary to 

check and adjust the HSV values for skin color when 

starting the program to get the proper output. Sometimes 

the adjustment was difficult to do because of the 

lighting conditions and the amount of objects in the 

background.  

Moreover, the application was very susceptible to 

noise on the video stream. Slight hand movements could 

affect gesture recognition. Nevertheless, if the hand is 

steady enough, the program outputs the correct 

command. It was also observed that while the program 

was executing there were memory leaks. Attempts to 

remedy the problem were made by using the OpenCV 

functions to release memory. Despite this, the leaks 

continued. Perhaps the leaks were due to the 

implementation of OpenCV functions for the sequences 

behind the scenes. 

VI. CONCLUSION 

We proposed a fast and simple algorithm for a hand 

gesture recognition problem. Given observed images of 

http://www.ijartet.com/


                                                                                                          ISSN 2394-3777 (Print) 
                                                                                                                                           ISSN 2394-3785 (Online)    

                                                                                                                        Available online at www.ijartet.com  
                         
                             

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 
Vol. 7, Issue 7, July 2020 

 

 

 
 

                                                                 All Rights Reserved © 2020 IJARTET                                                   142 
 

the hand, the algorithm segments the hand region, and 

then makes an inference on the activity of the fingers 

involved in the gesture. We have demonstrated the 

effectiveness of this computationally efficient algorithm 

on real images we have acquired. Based on our 

motivating robot control application, we have only 

considered a limited number of gestures.  

Our algorithm can be extended in a number of ways 

to recognize a broader set of gestures. Such applications 

lack accuracy to be implemented using webcams 

mounted on mobile robots since the movements of the 

robot and hand could affect the gesture recognition. 

However it would be convenient for remote control of a 

robot from stationary platform. A lot has to be done to 

get a robust hand detection algorithm which cannot be 

affected by lightning conditions and movements of the 

hand. 

As this work could also be done for a computer 

human interaction to replace a computer mouse or 

touchpad using hand gesture. Finding the tip of the 

finger could be promising to replace the computer 

cursor. The clicking, dragging and scrolling action can 

also be done using a combination of other hand gestures 

with fingertip position. This application could be more 

robust than robot control due to the possible constant 

lighting and limited relative movement of the hand. 

REFERENCES 

[1]. J. Davis and M. Shah "Visual Gesture 

Recognition", IEE Proc.-Vis. Image Signal 

Process, Vol. 141, No.2, April 1994. 

[2]. C.-C. Chang, I.-Y Chen, and Y.-S. Huang, "Hand 

Pose Recognition Using Curvature Scale Space", 

IEEE International Conference on Pattern 

Recognition, 2002. 

[3].  A. Utsumi, T. Miyasato and F. Kishino, "Multi-

Camera Hand Pose Recognition System Using 

Skeleton Image", IEEE International Workshop on 

Robot and Human Communication, pp. 219-224, 

1995. 

[4]. Y. Aoki, S. Tanahashi, and J. Xu, "Sign Language 

Image Processing for Intelligent Communication 

by Communication Satellite", IEEE International 

Conf. On Acoustics, Speech, and Signal 

Processing, 1994. 

[5]. R. C. Gonzalez and R. E. Woods, Digital Image 

Processing, Prentice-Hall, 2nd edition, 2002. 

[6]. R. M. Haralick, and L. G. Shapiro, Computer and 

Robot Vision, Volume I, Addison-Wesley, 1992, 

pp. 28-48. 

[7]. Malima, Asanterabi Kighoma and Özgür, Erol and 

Çetin, Müjdat (2006) A fast algorithm for vision-

based hand gesture recognition for robot control. 

In: IEEE 14th Signal Processing and 

Communications Applications, Antalya 

[8]. N.M. Oliver, B. Rosario, and A.P. Pentland, “A 

Bayesian computer vision system for modeling 

human interactions,” IEEE Trans. on Paftern Anal. 

and Machine Zntell., vol. 22, no. 8, pp. 831-

843,2000. 

[9]. Nir Friedman and Stuart Russell. “Image 

segmentation in video sequences: A probabilistic 

approach,” In Proc. of the Thirteenth Conference 

on Uncertainty in ArtzJcial Intelligence(lJA I), 

Aug. 1-3, 1997. 

[10]. M. Deepan Raj, I. Gogul, M. Thangaraja and V. S. 

Kumar, "Static gesture recognition based precise 

positioning of 5-DOF robotic arm using FPGA," 

2017 Trends in Industrial Measurement and 

Automation (TIMA), Chennai, 2017, pp. 1-6, doi: 

10.1109/TIMA.2017.8064804. 

[11]. Christof Ridder, Olaf Munkelt, and Harald 

Kirchner. “Adaptive Background Estimation and 

Foreground Detection using Kalman-Filtering,” 

Proceedings of Intemational Conference on recent 

Advances in Mechatronics, ICRAM’95, UNESCO 

Chair on Mechatronics, 193-199, -1995. 

[12]. [lo] M. Piccardi, T. Jan, “Efficient mean-shift 

backgonmd subtraction”, to appear in Proc. of 

IEEE 2004 KIP, Singapore, Oct. 2004. 

[13]. Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face 

Recognition with Learning based Descriptor”, 

Proceedings of Computer Vision and Pattern 

Recognition (CVPR), 2010. 

[14]. OpenCV documentation  http://docs.opencv.org/  

[15]. Hand Tracking And Gesture Detection (OpenCV) 

http://s-ln.in/2013/04/18/hand-tracking-and-

gesture-detection-opencv/  

[16]. OpenCV Tutorials for Hand Gesture Detection and 

Recognition http://www.intorobotics.com/9-

opencv-tutorials-hand-gesture-detection-

recognition/#UI32pLcIkQkVJyEd.99   

 

http://www.ijartet.com/
http://docs.opencv.org/
http://s-ln.in/2013/04/18/hand-tracking-and-gesture-detection-opencv/
http://s-ln.in/2013/04/18/hand-tracking-and-gesture-detection-opencv/
http://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/#UI32pLcIkQkVJyEd.99
http://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/#UI32pLcIkQkVJyEd.99
http://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/#UI32pLcIkQkVJyEd.99

