
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 7

A Comparison of 128 bit Addition Using Ripple

Carry Adder with Carry Lookahead Adder in

Mentor EDA Tools
Kishore Prabhala1 and Prof. Prabhandhakam Sangameswara Raju2

Research Scholar, EEE PhD, Rayalaseema University, Senior Member IEEE1

Principal, PLNM Degree College, Opposite Acharya Nagarjuna University Mens Hostel, Nagarjuna Nagar – 522 510, Guntur Dist.,

AP, India, 9177408565, prabhalakishore@gmail.com1

MSEE – Georgia Institute of Technology, GA, USA-1989, BSEE-Purdue University, W. Lafatette, IN, USA-19811

Dept. of Electrical and Electronics Engineering, SVU Engineering College, Sri Venkateswara University, Tirupati – 517 502, AP2

Abstract: A complex process of adding two 128 bits has become a standard since 2018 as microprocessor have become to operate at

128 bits having a Tera byte by memory (1012) with over 1 GHz speed. There are two techniques that have been normally used so

called Ripple Carry Adder and Carry Lookahead Adder. Using Mentor tools these two techniques will be explored and the results

will be presented in simple fashion at 135 nm. But the technology has been rapidly moving from 135 nm to 90 nm to 65 nm.

Keywords: Addition, Ripple Carry Adder, Carry Lookahead Adder, Mentor Tools, 135nm Technology.

I. INTRODUCTION

A full adder performs addition of two inputs from A and B

and another input called carry-in, Cin. There are two outputs are

Sum and Carry-Out, Co. Since there are three inputs there will

be eight combinations in binary and the input combinations

would generate the output as truth table for a full adder (FA)

shown in the table 1. A half adder does not have a carry-in as

input. A half adder (HA) has two inputs and two outputs. A

Karnaugh Map optimizes the equation from the truth table.

Table 1: Truth table & K-Map for Full Adder

A B Cin Sum Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The equation for Sum from K-Map is

S = AB’Cin’ + A’B’Cin + A’BCin’ + ABCin

 = (AB’ + AB’)Cin’ + (A’B’ + AB)Cin

 = (A  B)Cin’ + (A  B)Cin

 = (A  B)Cin’ + ((A  B)’)Cin = A  B  Cin,

S = A  B  Cin, the symbol  stands for Exclusive

OR, logically when inputs are not equal output will be ONE and

the symbol  stands for Exclusive NOR. The logic diagram is

shown in figure 1.1.

Carry out is Co = AB + ACin + BCin or AB + (AB)Cin

Figure 1.1: Logic Diagram for Sum and Carry out of a Full Adder

A Verilog code for a Full adder logic is

 module fulladder(a,b,c,sum,carry);

 input a,b,c;

 output sum,carry;

 assign sum = a ^ b ^ c;

 assign carry = (a & b) | (b & c) | (c & a);

endmodule

http://www.ijartet.com/
mailto:prabhalakishore@gmail.com

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 8

A full adders with two exclusive OR gates is shown for

the output Sum and two AND and a OR shown for Carry out in

the figure 2 after the logic synthesis from Mentor Tools.
Figure 2: Logic Diagram created for a Full Adder in Mentor tools

II. DESIGN OF RIPPLE CARRY ADDER WITH 128 BITS

2.1 Design of Ripple Carry Adder of 128 bits

 The delay for the carry out would be based on the Carry

out = AB + (A+B)Cin implemented with two AND gates in first

stage and a OR gate in second stage so the total delay will be 2

gates and 8 gate delay for 4 bit RCA, 16 gate delay for 8 bit

RCA, 32 gate delay for 16 bit RCA, 64 gate delay for 32 bit

RCA, 128 gate delay for 64 bit RCA, so for a 128 bit RCA there

will be 256 gate delay. The total logic gate count and ports is

11,274 in this design using Mentor tools.

Figure 2.1: Logic design of 128 bit RCA with 8 bit RCA of sixteen blocks

2.2: Behavioural Coding of Ripple Carry Adder of 128 bits
Verilog has been used to define behaviou of 128 bit

RCA from 4 to 8 to 16 to 32 to 64 to 128 RCA and the following

is the Verilog code for 128 bit Ripple Carry Adder.

Verilog Code for 128 bit Ripple Carry Adder

 input [127:0]a2;

 input [127:0]b2;

 input cin2;

 output [127:0]s2;

 output cry2;

 wire u2;

 newra64 z1(a2[63:0],b2[63:0],cin2,s2[63:0],u2);

 newra64 z2(a2[127:64],b2[127:64],u2,s2[127:64],cry2);

endmodule

module newra64 (a12,b12,cin12,sm12,cry12);

 input [63:0]a12;

 input [63:0]b12;

 input cin12;

 output [63:0]sm12;

 output cry12;

 wire u12;

newrpa32 y1(a12[31:0],b12[31:0],cin12,sm12[31:0],u12);

newrpa32

y2(a12[63:32],b12[63:32],u12,sm12[63:32],cry12);

endmodule

module newrpa32 (a11,b11,cin111,sm11,cry11);

 input [31:0]a11;

 input [31:0]b11;

 input cin111;

 output [31:0]sm11;

 output cry11;

 wire u11;

nwrp16 y1(a11[15:0],b11[15:0],cin111,sm11[15:0],u11);

nwrp16 y2(a11[31:16],b11[31:16],u11,sm11[31:16],cry11);

endmodule

module nwrp16 (a1,b1,cin11,sm1,cry1);

 input [15:0]a1;

 input [15:0]b1;

 input cin11;

 output [15:0]sm1;

 output cry1;

 wire u1;

 nwrpa8 l1(a1[7:0],b1[7:0],cin11,sm1[7:0],u1);

 nwrpa8 l2(a1[15:8],b1[15:8],u1,sm1[15:8],cry1);

 endmodule

module nwrpa8 (a,b,cin1,sm,cry);

 input [7:0]a;

 input [7:0]b;

 input cin1;

 output [7:0]sm;

 output cry;

 wire w1;

 rpa4 p1(a[3:0],b[3:0],cin1,sm[3:0],w1);

 rpa4 p2(a[7:4],b[7:4],w1,sm[7:4],cry);

 endmodule

module rpa4(a,b,cin,s,co);

 input [3:0]a;

 input [3:0]b;

 input cin;

 output [3:0]s;

 output co;

17

AND2 18

OR2

19 coutOUTPUT
16

AND2

VCC14 Cin
INPUT

VCC13 B
INPUT

10

XOR

11

XOR

15 sumOUTPUT

VCC12 A
INPUT

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 9

 wire c1,c2,c3;

 fularqa m1(a[0],b[0],cin,s[0],c1);

 fularqa m2(a[1],b[1],c1,s[1],c2);

 fularqa m3(a[2],b[2],c2,s[2],c3);

 fularqa m4(a[3],b[3],c3,s[3],co);

 endmodule

module fularqa(a,b,c,s,ca);

 input a,b,c;

 output s,ca;

 assign s=a^b^c;

 assign ca=(a&b)|(b&c)|(c&a);

 endmodule

2.3 Simulation of Ripple Carry Adder of 128 bits
Mentor Logical Simulation begins with a set of inputs to

the 128 bit RCA and verifies the outputs of 128 bit of Sum and a

Carryout have to be checked and make sure they are correct. So

a set of test benches are created to find the validity of the design.

A simple test bench is shows two different numbers at A

and B inputs with Carry-in and find the output, as shown in

figure 2.2.

A = 452, B = 781 and Cin = 0, Output is BD3, Carry out = 0,

A = 1201, B = 1010 and Cin = 1, Output is 2212, Carry out = 0,

A = 4571, B = 2543 and Cin = 1, Output is 6AB5, Carry out = 0

Figure 2.2: Test Bench - Simulation of 128 bit RCA

A standard test bench is check all Fs as an input with a 1

at B or Carry-in so Carry out moves at each adder stage of 128

adders in 128 bit RCA. Each input has to checked for One and

Zero as shown in figure 2.3.

A = 0, B = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF and

Cin = 0,

Output is FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF,

Carry out = 0

A = 0, B = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF and

Cin = 1, Output is 0, Carry out = 1.

Figure 2.3: Test Bench - Simulation of 128 bit RCA

 Another test bench is to check for Zero and One for

inputs from previous check.

A = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF, B = 0

and Cin = 0, Output is FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF, Carry out = 0

A = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF, B = 0,

and Cin = 1, Output is 0, Carry out = 1, shown in figure 2.4.

Figure 2.4: Test Bench - Simulation of 128 bit RCA

The test bench is alternative Ones and Zeros at one

input and Zeros with Ones at other input.

A = 1010 1010 1010 1010 1010 1010 1010 , B = 0101 0101

0101 0101 0101 0101 0101 0101 and Cin = 0, Output is 1111

1111 1111 1111 1111 1111 1111 1111, Carry out = 0

A = 0101 0101 0101 0101 0101 0101 0101 0101, B = 1010

1010 1010 1010 1010 1010 1010 and Cin = 0, Output is 1111

1111 1111 1111 1111 1111 1111 1111, Carry out = 0, shown

in figure 2.5.

Figure 2.5: Test Bench - Simulation of 128 bit RCA

3. Design and Simulation of 128 bit adder with CLA

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 10

 A 4 bit CLA has been explained with details for the

design of 128 bit CLA in the next section with figure 3.1 and 3.2

and simulated to verify the logic. A total of thirty two 4 bit

CLAs have been used.

3.1 Logic Design of Carry Lookahead Adder of 128 bits
 Carry Look Ahead (CLA) is new technique in a adder

design based on the principle of looking carry of lower four bits

or eight bits. This adder reduces the carry delay by reducing the

number of gates through which a carry signal must propagate.

This adder design brings two internal inputs known as

“Generation” (G) and “Propagation” (P) at each stage. Carry is

generated when inputs A and B are “High” without carry-in.

Similarly if A or B is High the carry is propagated if Carry-in is

“High”. The generation values and propagation values are

computed based on the carry out equation which is

 Sum = A  B  Carryin, Cout = AB + Cin(A+B) eq. 2.1

 Generate, G = AB eq. 2.2

 Propagate, P = A + B eq. 2.3

For a 4 bit CLA, the Generate and Propagate terms are

G0 = A0B0 and P0 = A0+B0, G1 = A1B1 and P1 = A1+B1, G2 =

A2B2, and P2 = A2+B2, and G3 = A3B3, and P3 = A3+B3

Substituting the each term from 0 stage to 2 stage in the 3rd

stage, the final carry-out can be obtained.

C[1] = G0 + P0Cin eq. 2.4

C[2] = G1 + P1 G0 + P1 P0 Cin eq. 2.5

C[3] = G2 + P2G1+P2P1G0+P2P1P0Cin eq. 2.6

Cout=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0Cin eq. 2.7

Figure 3.1: Carry Lookahead Logic (CLL) for Carry Out for a 4 bit adder

Carry generation from each stage is calculated from the above

equations and finally carry out at the end of 4 bits which shown

in as Carry Lookahead Logic in the figure 3.1.

Full adder has been defined with four NAND gates as EXOR

in two stages with Generate (G) coming from first NAND (it is

G’ or G Bar) and Propagate (P) coming from first EXOR output,

A and B as inputs. This is shown in figure 3.2. The input carry-

in will feed the second EXOR gate designed after four NANDs

in the first stage shown in the bottom of the figure 3.2.
Figure 3.2: Carry Lookahead Adder with Carry Out for a 4 bit adder

A3

A0

B3

B0 Cin

Cin

G0

G1

G2

G3’

G0’

C0 = (G0’(CinP0)’)’=G0+CinP0

P3

P0

P0

P3

P3

P3

P2

P2

P2

P1

P1

Sum3

Sum0

A1

A2

B1

B2

G1’

G2’

C1 = (G1’(C0P1)’)’=G1+C0P1

C2 = (G2’(C1P2)’)’=G2+C1P2

P1

P2

Sum1

Sum2

Cout

A 4 bit CLA has nine inputs: Four A0-3, Four B0-3 and a

Carry-in. It has with five outputs; Four Sum S0-3 and Carry-out.

This Carry out becomes input as Carry-in in the next stage. Two

4 bit CLAs have been used to build an 8 bit, two 8 bit CLAs

used for 16 bit, two 16 bit CLAs used for 32 bit, two 32 bit

CLAs used for 64 bit and two 64 bit CLAs used for 128 bit CLA

as shown in figure 3.3 and figure 3.4.
Figure 3.3: Logic design of 128 bit CLA with 4 bit CLA of sixteen blocks,

first page

Cin

G3 P3 G2 G1 G0 P2 P0 P1

Cout

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 11

Figure 3.4: Logic design of 128 bit CLA with 4 bit CLA of sixteen blocks,

Second page

3.2 Verilog Code for 128 bit Carry Lookahead Adder

module newcla128 (a3,b3,cin3,sum3,cout3);

 input[127:0] a3,b3;

 input cin3;

 output [127:0] sum3;

 output cout3;

 wire p0,cout3;

 wire [127:0]sum3;

 newclar64 k1(a3[63:0],b3[63:0],cin3,sum3[63:0],p0);

 newclar64

k2(a3[127:64],b3[127:64],p0,sum3[127:64],cout3);

endmodule

module newclar64 (a23,b23,cin23,sum23,cout23);

 input[63:0] a23,b23;

 input cin23;

 output [63:0] sum23;

 output cout23;

 wire p0,cout23;

 wire [63:0]sum23;

 nwclaa32

u1(a23[31:0],b23[31:0],cin23,sum23[31:0],p0);

 nwclaa32

u2(a23[63:32],b23[63:32],p0,sum23[63:32],cout23);

endmodule

module nwclaa32 (a2,b2,cin2,sum2,cout2);

 input[31:0] a2,b2;

 input cin2;

 output [31:0] sum2;

 output cout2;

 wire p0,cout2;

 wire [31:0]sum2;

 nwclra16 t1(a2[15:0],b2[15:0],cin2,sum2[15:0],p0);

 nwclra16

t2(a2[31:16],b2[31:16],p0,sum2[31:16],cout2);

endmodule

module nwclra16(a12,b12,cin12,sum12,cout12);

 input[15:0] a12,b12;

 input cin12;

 output [15:0] sum12;

 output cout12;

 wire p0,cout12;

 wire [15:0]sum12;

nwclra8 a1(a12[7:0],b12[7:0],cin12,sum12[7:0],p0);

nwclra8a2(a12[15:8],b12[15:8],p0,sum12[15:8],cout12);

endmodule

module nwclra8 (a1,b1,cin1,sum1,cout1);

 input[7:0] a1,b1;

 input cin1;

 output [7:0] sum1;

 output cout1;

 wire p0,cout1;

 wire [7:0]sum1;

 cladaa4 c1(a1[3:0],b1[3:0],cin1,sum1[3:0],p0);

 cladaa4 c2(a1[7:4],b1[7:4],p0,sum1[7:4],cout1);

endmodule

module cladaa4 (a,b,cin,sum,cout);

 input[3:0] a,b;

 input cin;

 output [3:0] sum;

 output cout;

 wire p0,p1,p2,p3,g0,g1,g2,g3,c0,c1,c2,c3,c4;

 assign p0=a[0]^b[0];

 assign p1=a[1]^b[1];

 assign p2=a[2]^b[2];

 assign p3=a[3]^b[3];

 assign g0=a[0]&b[0];

 assign g1=a[1]&b[1];

 assign g2=a[2]&b[2];

 assign g3=a[3]&b[3];

 assign c0=cin;

 assign c1=g0|(p0&cin);

 assign c2=g1|(p1&g0)|(p1&p0&cin);

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 12

 assign

c3=g2|(p2&g1)|(p2&p1&g0)|(p1&p1&p0&cin);

 assign

c4=g3|(p3&g2)|(p3&p2&g1)|(p3&p2&p1&g0)|(p3&p2&p1&p0

&cin);

 assign sum[0]=p0^c0;

 assign sum[1]=p1^c1;

 assign sum[2]=p2^c2;

 assign sum[3]=p3^c3;

 assign cout=c4;

endmodule

3.3 Simulation of Carry Lookahead Adder of 128 bits
 Logical Simulation in Mentor initiated through a set of

logical conditions at the 128 inputs of A and B along with

Carryin in the 128 bit CLA and these logical conditions verifies

the outputs of 128 bit for Sum and a Carryout have to be

checked to make sure they are correct. So a set of test benches

are created to find the validity of the design.

 A simple test bench is shows two different numbers at

A and B inputs with Carry-in and find the output, shown in

figure 3.5.

A = 4512, B = 5214 and Cin = 1, Output is 9727, Carry out = 0

A = 631, B = 456 and Cin = 0, Output is 1087, Carry out = 0

A = 6324, B = 7895 and Cin = 1, Output is DBBA, Carry out = 0
Figure 3.5: Test Bench - Simulation of 128 bit CLA

Another test bench shows two different numbers at A and B

inputs with Carry-in and find the output. One has all ONEs and

other has all ZEROs, shown in figure 3.6.

A = FF..FF, B = 00..00 and Cin = 0, Output is FF..FF, Carry out

= 0.
Figure 3.6: Test Bench - Simulation of 128 bit CLA

III. RESULTS

Delays are calculated based on the figure 2.1, logic

design for RCA along with figure 3.2 and 3.3, logic design for

CLA of 128 bits and simulation has been done in Mentor EDA

tools. The simulation results of these two adders are compared in

terms of delay and area and shown in table 4.1. Gate count has

been increased in CLA because at each adder stage Generate and

Propagate logic has to be built which is less than 2 percent. But

the delay got reduced by over 40 percent from 22 ns to 12.9 ns in

this 64 bit design.

Table 4.1: Area and Delay comparison of RCA and CLA

Name of the Adder

Design

Logic Gate

Count

Delay

128 bits

Ripple Carry Adder
11,274 32.5 ns

Carry Look Ahead Adder
13,414 19.3 ns

64 bits

Ripple Carry Adder
5,461 22.5 ns

Carry Look Ahead Adder
5,574 12.9 ns

IV. CONCLUSION

 CLA is 40 percent faster than RCA and it will boast the

performance of any microprocessor though its higher gate count.

This has been done with 135 nm technology in Mentor tool. At

19 ns, the One GHz microprocessor has to wait for 20 cycles to

finish a 128 bit addition. One can do the design in 90 nm and 65

nm to reduced the delay as microprocessors are going over 50

GHz speed and a clock cycle of 20 ps.

REFERENCES

[1]. Anku Bala (2015), “Layout and Design Analysis of Carry Look Ahead

Adder Using 90 nm Technology”, International Journal o f Electrical &
Electronics Engg. Vol. 2, spl..issue1.

[2]. Balasubramanian P and S. Yamashit, 2016, “Area/latency optimized early

output asynchronous full adders and relative‑timed ripple carry adders”,

SpringerPlus, 5:440, Pages 1-26.

[3]. Bharathi A, K. Manikandan, K. Rajasri, and Santhini, (2018), “High
Speed Multioutput 128bit CarryLookahead Adders Using Domino Logic”,

International Journal of Advanced Research in Electrical, Electronics and

Instrumentation Engineering Vol. 3 / 10

[4]. Bui, H.T., Y.Wang, and Y.Jiang (2002), “Design and Analysis of Low-

Power 10-transistor Full Adders using Novel XOR-XNOR gates”, IEEE

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 9, September 2019

 All Rights Reserved © 2019 IJARTET 13

Transactions on Circuits and Systems – II, Analaog and Digital Signal
Processing, Vol. 49, No.1.

[5]. Kapil Mangla, and Shashank Saxena (2015), “Analysis of Different

CMOS Full Adder Circuits Based on Various Parameters for Low Voltage
VLSI Design”, International Journal of Engineering and Technical

Research (IJETR), Vol. 3 / 6. Kishore Prabhala, Haritha Dasari, and

Thrinadh Komatipalli, “Performance Comparison of 64-Bit Adders”,
IJEDR, Volume 6, Issue 2, June 2018, ISSN: 2321 9939

[6]. Kishore Prabhala and Prof. Prabhandhakam Sangameswara Raju, “A

CMOS Design of 64 bit ALU using Mentor Tools”, IJSART - Volume 5
Issue 4 –April 2019, ISSN [ONLINE]: 2395-1052

[7]. Morris Mano “Digital Design”. Pearson Education Asia. 3rd Ed, 2002.

[8]. Sushma Kodagali, Sneha Solanki and Debajani Mahanta (2017),
“Comparative Analysis of Various Fast Adder Circuits in Different Deep

Sub-micron Technologies”, International Journal of Electronics, Electrical

and Computational System, IJEECS, Volume 6 / 8, ISSN 2348-117X.

[9]. Uyemura, John P, “Chip Design for Submicron VLSI: CMOS Layout and

Simulation”, Cengage Learning, 2006.

[10]. Weste, N. and K. Eshranghian, “Principles of CMOS VLSI Design: A
System Perspective,” Reading MA:Wesley, 1993.

[11]. Zhang, M.J. Gu, and C. H. Chang, (2003) “A novel hybrid pass logic with

static CMOS output drive full-adder cell,” in Proc. IEEE Int. Symp.
Circuits Syst.,pp. 317–320.

[12]. Zhuang N. and H. Wu (1992), “A new design of the CMOS full adder,”

IEEE J. Solid State Circuits, vol. 27 / 5, pp. 840– 844.

[13]. Zimmermann R. and W. Fichtner (1997), “Low-Power Logic Styles:

CMOS Vs Pass- Transistor Logic” IEEE Journal of Solid-State Circuits,

vol. 32 / 7, pp. 1079–1090.

BIOGRAPHY

Kishore Prabhala is a research Scholar in EEE PhD,

Rayalaseema University and also Senior Member IEEE. He

published eight papers in CMOS VSLI design in India after

leaving USA in 1994 working at Motorola, MMI and National

Semiconductor from 1981. Currently, he is the Principal, PLNM

Degree College, Opposite Acharya Nagarjuna University Mens

Hostel, Nagarjuna Nagar – 522 510, Guntur Dist., AP, India. He

received a MSEE from Georgia Institute of Technology, GA,

USA in 1989 and BSEE from Purdue University, W.Lafatette,

IN, USA in 1981. He has published 6 papers and guided 5

M.Tech. students in VLSI Design projects.

Prof. Prabhandhakam Sangameswara Raju is a Professor in

Dept. of Electrical and Electronics Engineering, SVU

Engineering College, Sri Venkateswara Univeristy, Tirupati –

517 502, Chitoor Dist., AP. He received M.Tech. and Ph.D.

from SVU Engineering College. He has been teaching PG

course for last 25 years and guided over 52 projects. He

published over 70 papers. Currently there are 8 students

pursuing Ph.D.

http://www.ijartet.com/

