
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 1

Image Inpainting using Partial Convolution
(Eswari.B1, Madhuja.S2, Sakthi Harini.D3, Agnes Joshy.S4)

1(Dept of IT, UG Scholar, Francis Xavier Engineering College, eshbala06@gmail.com)
2(Dept of IT, UG Scholar, Francis Xavier Engineering College, madhujasunderaja@gmail.com)

3(Dept of IT, UG Scholar, Francis Xavier Engineering College, sakthiharinicute@gmail.com)
4(Dept of IT, Assistant Professor, Francis Xavier Engineering College, sagnesjoshy@gmail.com)

Abstract: Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted

image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked

holes (typically the mean value). This often leads to artefacts such as colour discrepancy and blurriness. Postprocessing is

usually used to reduce such artifacts but are expensive and may fail. We propose the use of partial convolutions, where the

convolution is masked and renormalized to be conditioned on only valid pixels. We further include a mechanism to

automatically generate an updated mask for the next layer as part of the forward pass. Our model outperforms other

methods for irregular masks. We show qualitative and quantitative comparisons with other methods to validate our

approach.

I. INTRODUCTION
Python is an interpreted, high level, general-purpose

programming language. Created by Guido van Rossum and

first released in 1991, Python has a design philosophy that

emphasizes code readability, notably using significant

whitespace. It provides constructs that enable clear

programming on both small and large scales.VanRossum led

the language community until stepping down as leader in

July 2018. Python features a dynamic type system and

automatic memory management. It supports

multiple programming paradigms, including object-

oriented, imperative, functional and procedural, it also has a

comprehensive standard library. Python interpreters are

available for many operating systems.

Image Inpainting

 This module is concerned with the inpainting of the

image. It receives the image from the user where the region

to be inpainted is marked in green (R = 0, G = 255, B = 0).

As mentioned earlier, we have chosen green color because

of its use in the creation of special effects in movies etc.

Let us first describe the terms used in inpainting literature.

a) The image to be inpainted is represented as I.

b) The target region (i.e., the region to be inpainted) is

represented as Ω.

c) The source region (i.e., the region from the image which

is not to be inpainted and from where the information can be

extracted to reconstruct the target region) is represented as

Φ.

Φ = I - Ω

d) The boundary of the target region (i.e., the pixels that

separate the target region from the source region) is

represented as δΩ.

 We have followed the algorithm developed by all with a

few modifications. As with all other exemplar based

algorithms, this algorithm replaces the target region patch by

patch. This patch is generally called the template window, ψ.

The size of ψ must be defined for the algorithm. This size is

generally kept to be larger than the largest texture element in

the source region. We have kept the default patch size of 9 x

9 but we may have to vary it for some images. Once these

parameters are assigned the remaining process is completely

automatic. The input to the inpainting module is the image

with target region marked in green color. The first step is to

initialize confidence values. First let us understand what

these values represent. In this algorithm, each pixel

maintains a confidence value that represents our confidence

in selecting that pixel. This confidence value does not

change once the pixel has been filled. We initialize the

confidence value for all the pixels in the source region (Φ) to

be 1 and the confidence values for the pixels in target region

(Ω) to be 0. Once we have the target region, we find the

boundary of the target region. For this, we first construct a

http://www.ijartet.com/
mailto:eshbala06@gmail.com
mailto:madhujasunderaja@gmail.com
mailto:sakthiharinicute@gmail.com
mailto:sagnesjoshy@gmail.com
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Significant_whitespace
https://en.wikipedia.org/wiki/Significant_whitespace
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Operating_system

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 2

Boolean matrix where we put 1’s corresponding to pixels

which are in the target region (Ω) and zero at other places.

Let us call this matrix as fillRegion as it denotes the

region.We can then find the boundary of the target region by

convolving the matrix with a Laplacian filter. We use the

followingLaplacian filter for this task. The next step is to

compute the priorities for the patches centered on the pixels

in δΩ. The result of the inpainting algorithm depends on the

order in which the target region is filled. Earlier approaches

used the “onion peel” method where the target region is

synthesized from outside inward in concentric layers. In

however a different method for estimating the filling order is

defined which takes into account the structural features of

the image. They fill the target region in a best-first-filling

order that depends entirely on the priority values assigned to

the patches on the fill front (δΩ). They have developed the

priority term such that it is biased towards the patches that

contain the continuation of edges and are surrounded by high

confidence pixels.

Existing system

 Deep Learning Method is used. Based on Image

Inpainting a standard convolution network is used over the

corrupted images,But this leads to color discrepancy and

blurriness. To reduce such artifactsPostprocessing is used,

but it is expensive and it may fail. Deep learning approaches

have focused on rectangular regions. And they fill and detect

rectangular region. Located around the center of the image,

and often rely on expensive post-processing. It will not

detect the irregular holes.

 Proposed system

 The Partial Convolution method is used. Convolution is

masked and renormalized on only valid pixels. We further

include a mechanism of partial convolution to automatically

generate an updated mask with any form of pixels. By using

partial convolution layer, any mask will eventually be all

ones, if the input contained any vialed pixels .It detect all the

irregular holes. Image inpainting that operates robustly on

irregular hole patterns. And produces semantically

meaningful predictions that incorporate smoothly with the

rest of the image without the need for any additional post-

processing or blending operation.

Python Technology

 Python is an interpreter, high-level, object oriented

programming language. Many other paradigms are

supported via extensions, including design by contract

 and logic programming. Python uses dynamic typing, and a

combination of reference counting and a cycle-detecting

garbage collector for memory management. Python is

a multi-paradigm programming language. They are fully

supported, and many of its features support functional

programming and (including

by metaprogrammingand metaobjects (magic methods)).

Many other paradigms are supported via extensions,

including design by contract and logic programming. Python

uses dynamic typing, and a combination of reference

counting and a cycle-detecting garbage collector for memory

management. It also features dynamic name resolution (late

binding), which binds method and variable names during

program execution. Many other paradigms are supported via

extensions, including design by contract and logic

programming. Python uses dynamic typing, and a

combination of reference counting and a cycle-detecting

garbage collector for memory management. It also features

dynamic name resolution (late binding), which binds method

and variable names during program execution. It is a logical

programming and collector for memory management Python

works on different platforms (Windows, Mac, Linux,

Raspberry Pi, etc). Python has a simple syntax similar to the

English language. Python has syntax that allows developers

to write programs with fewer lines than some other

programming languages. Python runs on an interpreter

system, meaning that code can be executed as soon as it is

written. This means that prototyping can be very quick.

Python can be treated in a procedural way, an object-

orientated way or a functional way. Some Python

expressions are similar to languages such as C and Java

Addition, subtraction, and multiplication are the same, but

the behavior of division differs. There are two types of

divisions in Python. They are floor division and integer

division. Python also added the ** operator for

exponentiation. From Python 3.5, the new @ infix operator

was introduced. It is intended to be used by libraries such as

NumPy for matrix multiplication. In Python, == compares

http://www.ijartet.com/
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Name_resolution_(programming_languages)
https://en.wikipedia.org/wiki/Late_binding
https://en.wikipedia.org/wiki/Late_binding
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Name_resolution_(programming_languages)
https://en.wikipedia.org/wiki/Late_binding

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 3

by value, versus Java, which compares numerics by value

[69] and objects by reference. (Value comparisons in Java

on objects can be performed with the equals () method.)

Python's is operator may be used to compare object identities

(comparison by reference). In Python, comparisons may be

chained, for example a <= b <= c.Python uses the words and,

or, not for its boolean operators rather than the symbolic

&&, ||, !used in Java and C.

 Extended list comprehensions into a more general

expression termed a generator expression. Anonymous

functions are implemented using lambda expressions;

however, these are limited in that the body can only be one

expression. Conditional expressions in Python are written as

x if c else y (different in order of operands from the c ? x : y

operator common to many other languages).Python makes a

distinction between lists and tuples. Lists are written as [1, 2,

3], are mutable, and cannot be used as the keys of

dictionaries (dictionary keys must be immutable in Python).

Tuples are written as (1, 2, 3), are immutable and thus can be

used as the keys of dictionaries, provided all elements of the

tuple are immutable. The + operator can be used to

concatenate two tuples, which does not directly modify their

contents, but rather produces a new tuple containing the

elements of both provided tuples. Thus, given the variable t

initially equal to (1, 2, 3), executing t = t + (4, 5) first

evaluates t + (4, 5), which yields (1, 2, 3, 4, 5), which is then

assigned back to t, thereby effectively "modifying the

contents" of t, while conforming to the immutable nature of

tuple objects. Parentheses are optional for tuples in

unambiguous contexts. Python features sequence unpacking

where multiple expressions, each evaluating to anything that

can be assigned to (a variable, a writable property, etc.), are

associated in the identical manner to that forming tuple

literals and, as a whole, are put on the left hand side of the

equal sign in an assignment statement.

Architectural diagram

Figure 1 Data Flow Diagram

II. IMAGE LOADING

Training Data We use 3 separate image datasets for

training and testing. ImageNetdataset ,Places2 dataset and

CelebA-HQ . We use the original train, test, and val splits

for ImageNet and Places2. For CelebA-HQ, we randomly

partition into 27K images for training and 3K images for

testing. Training Procedure we initialize the weights using

the initialization method described in and use Adam for

optimization. We train on a single NVIDIA V100 GPU

(16GB) with a batch size of 6.

Initial Training and Fine-Tuning. Holes present a

problem for Batch Normalization because the mean and

variance will be computed for hole pixels, and so it would

make sense to disregard them at masked locations. However,

holes are gradually filled with each application and usually

completely gone by the decoder stage. In order to use Batch

Normalization in the presence of holes, we first turn on

Batch Normalization for the initial training using a learning

rate of 0.0002. Then, we fine-tune using a learning rate of

0.00005 and freeze the Batch Normalization parameters in

the encoder part of the network. We keep Batch

Normalization enabled in the decoder. This not only avoids

the incorrect mean and variance issues, but also helps us to

achieve faster convergence. ImageNetandPlaces2 models

train for 10 days, whereas CelebA-HQ trains in 3 days. All

fine-tuning is performed in one day.

III. LOAD MASK

 Previous works generate holes in their datasets by

randomly removing rectangular regions within their image.

We consider this insufficient in creating the diverse hole

shapes and sizes that we need. As such, we begin by

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 4

collecting masks of random streaks and holes of arbitrary

shapes. We found the results of occlusion/dis-occlusion

mask estimation method between two consecutive frames for

videos described in to be a good source of such patterns. We

generate 55,116 masks for the training and 24,866 masks for

testing. During training, we augment the mask dataset by

randomly sampling a mask from 55,116 masks and later

perform random dilation, rotation and cropping. All the

masks and images for training and testing are with the size

of 512×512. We create a test set by starting with the 24,866

raw masks and adding random dilation, rotation and

cropping. Many previous methods such as

haveImageInpainting for Irregular Holes Using Partial

Convolutions.

.

Figure 2 Masking

 Some test masks for each hole-to-image area ratio

category. 1, 3 and 5 are shown using their examples with

border constraint; 2, 4 and 6 are shown using their examples

without border constraint degraded performance at holes

near the image borders. As such, we divide the test set into

two: masks with and without holes close to border.

 The split that has holes distant from the border ensures a

distance of at least 50 pixels from the border. We also

further categorize our masks by hole size. Specifically, we

generate 6 categories of masks with different hole-to-image

area ratios: (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4,

0.5], (0.5, 0.6].Each category contains 1000 masks with and

without border constraints. In total, we have created

6×2×1000 = 12,000 masks.

Figure 3 Startup page

 This is the page where we load the image by clicking

load image button.

Figure 4 Patch Size

 In this page the user has to type the patch size of the

input image.

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 5

Figure 5 Gaussian Smoothing

 This is apply for the Gaussian Smoothing which is

available in sigma, the use have to type the required size of

the sigma.

Figure 6 Mask

 Now the input image is loaded and the use have to

select the portion that the use has to remove and the mask is

created.

Figure 6 Result

 Finally the image is obtained.

IV. CONCLUSION

 We propose the use of a partial convolution layer with

an automatic mask updating mechanism and achieve state-

of-the-art image inpainting results. Our model can robustly

handle holes of any shape, size location, or distance from the

image borders. Further, our performance does not deteriorate

catastrophically as holes increase in size. However, one

limitation of our method is that it fails for some sparsely

structured images.

REFERENCES

[1]. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.:

Deformable convolutional networks. CoRR, abs/1703.06211 1(2), 3

(2017)

[2]. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic

style. arXiv preprint arXiv:1508.06576 (2017)

[3]. Harley, A.W., Derpanis, K.G., Kokkinos, I.: Segmentation-aware

convolutional networks using local attention masks. In: IEEE

International Conference on Computer Vision (ICCV). vol. 2, p. 7

(2017)

[4]. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers:

Surpassing humanlevel performance on imagenet classification. In:

Proceedings of the IEEE international conference on computer

vision. pp. 1026–1034 (2017)

[5]. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally

consistent image completion. ACM Transactions on Graphics (TOG)

36(4), 107 (2017)

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 6, Issue 4, April 2019

 All Rights Reserved © 2019 IJARTET 6

[6]. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image

translation with conditional adversarial networks. arXiv preprint

(2017)

[7]. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time

style transfer and super-resolution. In: European Conference on

Computer Vision. pp. 694–711. Springer (2016)

[8]. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of

gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196 (2016)

[9]. Ledig, C., Theis, L., Husza´r, F., Caballero, J., Cunningham, A.,

Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-

realistic single image superresolution using a generative adversarial

network. arXiv preprint (2016)

[10]. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In:

The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). vol. 1, p. 3 (2016)

http://www.ijartet.com/

