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Abstract: Let G = ( V, E ) be a connected graph. A subset D of V is called a dominating set if every vertex in VD is 

adjacent to some vertex in D. A dominating set D of G is called a neighborhood tree dominating set (ntr-set), if the 

induced subgraph  N(D)  is a tree. The minimum cardinality of a ntr-set of G is called the neighborhood tree 

domination number of G and is denoted by ntr(G). The connectivity κ(G) of G is the minimum number of vertices whose 
removal results in a disconnected or trivial graph. A partition {V1, V2, V3, … ,Vn} of V(G), in which each Vi is a ntr - set 

in G is called a neighborhood tree domatic partition of simply ntr partition of G. The maximum order of a ntr - partition 

of G is called the neighborhood tree domatic number of G and is denoted by dntr(G).  

 In this paper, we find an upper bound for the sum of the neighborhood tree domination number and 

connectivity of a graph and to find bounds for dntr(G) and its exact value for some particular classes of graphs are 

studied. 

 

Keywords: Domination number, tree domination , neighborhood tree domination number, connectivity, domatic number. 

Subject classification: 05C69. 

 

 

 

INTRODUCTION 

The graph G = (V, E), we mean a finite, undirected, 
connected simple graph. The order and size of G are 
denoted by n and m respectively. The open neighborhood 
and the closed neighborhood of vV are denoted by N(v) 
and N[v] = N(v) {v} respectively. If DV, then 

v D
N(D)= N(v)


U and N[D] = N(D)D.  

 The study of domination in graphs has found rapid 
growth in the recent years. It is a highly flourishing area of 
research in graph theory. So far, hundreds of research 
articles have appeared on this topic of research in view of 
its growing real life application.  
  
 A subset D of V is called a dominating set of G if 
N[D] = V. The minimum cardinality of a minimal 
dominating set of G is called the domination number of G 
and is denoted by (G). An excellent treatment of the 
fundamentals of domination is given in the book by Haynes 
et al. [4]. A survey of several advanced topics in 
domination is given in the book edited by Haynes et al. [5].  
 

Xuegang Chen, Liang Sun and Alice McRac [8] 
introduced the concept of tree domination in graphs. A 

dominating set D of G is called a tree dominating set, if the 
induced subgraph  D  is tree. The minimum cardinality of 
a tree dominating set of G is called the tree domination 
number of G and is denoted by tr(G). S. Arumugam and C. 
Sivagnanam introduced the concepts of neighborhood 
connected and neighborhood total domination in 
graphs[1,2]. A dominating set D of G is called a 
neighborhood connected dominating set (ncd-set), if the 
induced subgraph  N(D)  is connected. The minimum 
cardinality of a ncd-set of G is called the neighborhood 
connected domination number of G and is denoted by 
nc(G).  

A dominating set D of G is called a neighborhood 
total dominating set, if the induced subgraph  N(D)  has 
no isolated vertices. The minimum cardinality of a ntd-set 
of G is called the neighborhood total domination number of 
G and is denoted by ntd(G).  
  
 We introduced the concept of neighborhood tree 
dominating set in [6]. Zelinka[10] studied the connected 
domatic number of a graph. Chen  et al. [9] studied the tree 
domatic number of a graph. 
  
 A dominating set D of a connected graph G is 
called a neighborhood tree dominating set(ntr-set), if the 
induced subgraph  N(D)  is a tree. The minimum 
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cardinality of a ntr-set of G is called the 
neighborhood tree domination number of G and is denoted 
by ntr(G). The tree domatic number of G is the maximum 
number of pairwise disjoint tree dominating sets in V(G) 
and is denoted by dtr(G). 
 A partition {V1, V2, V3, … ,Vn} of V(G), in which 
each Vi is a ntr - set in G is called a neighborhood tree 
domatic partition of simply ntr partition of G. the 
maximum order of a ntr partition of G is called the 
neighborhood tree domatic number of G and is denoted by 
dntr(G). The connectivity κ(G) of G is the minimum number 
of vertices whose removal results in a disconnected or 
trivial graph.  
  
 In this paper, we find an upper bound for the sum 
of the neighborhood tree domination number and 
connectivity of a graph and to find bounds for dntr(G) and 
its exact value for some particular classes of graphs are 
studied. 

 
 

2. PRIOR RESULTS 
 

THEOREM:  2.1[6] Let G be a connected graph on n ≥ 3 
vertices. Then 0 ≤ ntr(G) ≤ n  1 and ntr(G) =  n  1 iff     
G  P3. 
 

THEOREM:  2.2[1] For any graph G, κ(G) ≤ δ(G). 
 
3. MAIN RESULTS 
 

THEOREM: 3.1 For any connected graph G with n 
vertices, ntr(G) + κ(G) ≤ 2n  3, n ≥ 3. 
 
PROOF: 
 By theorem 2.1 and 2.2, 
 γntr(G) + κ(G) ≤ n  1 + δ(G) ≤  n  1 + n  1 ≤ 2n 
 2. 
If γntr(G) + κ(G) = 2n  2, then the following cases are to be 
considered. 

(i) γntr(G) = n and κ(G) = n  2.  
(ii) γntr(G) = n  1 and κ(G) = n  1 

 Since γntr(G) ≤ n  1 the case (ii) alone be 
considered. But γntr(G) = n  1 iff G  P3 and κ(P3) = 1     
n  1.Therefore, there is no connected graph G with ntr(G) 
+ κ(G) = 2n  2. Hence, ntr(G) + κ(G) ≤ 2n  3, n ≥ 3. 
 

THEOREM:  3.2 Let G be a connected graph. Then   
γntr(G) + κ(G) = 2n  3 (n ≥ 3) if and only if G is 
isomorphic to one of the graphs C3 and P3. 
 
PROOF: 

       If G  P3 then γntr(G) = 2 and κ(G) = 1 and hence 
γntr(G) + κ(G) = 3 = 2n  3. 
 If G  C3 then γntr(G) = 1 and κ(G) = 2 and   
γntr(G) +κ(G) = 3 = 2n  3.  
 Conversely, assume γntr(G) + κ(G) = 2n   3, for   
n ≥ 3. Then the following cases are to considered. 

(i) γntr(G) = n and κ(G) = n  3 
(ii) γntr(G) = n  1 and κ(G) = n  2 
(iii) γntr(G) = n  2 and κ(G) = n  1.  

 

Case(i): γntr(G) = n and κ(G) = n  3. 
 Since for any connected graph G, γntr(G) ≤ n1, 
this case is not possible. 
 
Case(ii): γntr(G) = n  1 and κ(G) = n  2 
 γntr(G) = n1 if and only if G  P3 and κ(P3) = 1 = 
n  2. Therefore G  P3.  
 

Case(iii): γntr(G) = n  2 and κ(G) = n  1. 
 If κ(G) = n  1,then G  Kn, n ≥ 3.But γntr(G) = 0 
for G  Kn, n  4. Therefore, G  K3 (or) C3. Also γntr(C3) = 
1 = n  2. 
Therefore, from case(ii) and case(iii), G  P3 (or) C3. 
 

THEOREM: 3.3 There is no connected graph G with 
γntr(G) +κ(G) = 2n  4, where n ≥ 3.  
 
PROOF: 
 Assume γntr(G) + κ(G) = 2n  4, n ≥ 3. Then the 
following cases are to be considered. 

(i) γntr(G) = n and κ(G) = n  4 
(ii) γntr(G) = n  1 and κ(G) = n  3 
(iii) γntr(G) = n  2 and κ(G) = n  2  
(iv) γntr(G) = n  3 and κ(G) = n  1 

There is no connected graph G with γntr(G) = n, κ(G) = n  
4 and γntr(G) = n  1, κ(G) = n  3. 
 

Case(iii): γntr(G) = n  2 = κ(G)  
 Since κ(G)  δ(G), δ(G)  n  2. 
 (a) If δ(G) > n  2, then G  Kn, n  3.But     
γntr(G) = 0 for G  Kn, n  4. Therefore, G  K3, and           
κ (K3) = 2  n  2. 
  

(b) Assume δ(G) = n  2. Then G is isomorphic to 
KnY where Y is a matching in Kn, n  3 and γntr(G) ≤ 2.If 
γntr(G) = 2 = n  2 then n = 4.Therefore, G  K4  e, C4. If 
G  C4, then γntr(G) = 0. If G  K4  e, then γntr(G) = 1 n  
2. If γntr(G) < 2, then n  2 < 2.That is,  
n  3. Therefore n = 3 and G  P3 (or) C3. If G  P3,     

γntr(P3) = n  1.If G  C3, κ(C3) = 2  n  2. 
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Case(iv): γntr(G) = n  3 and κ(G) = n  1 
 If δ(G) = n  1, then G  Kn, n  3. But γntr(Kn) = 
0 for n  4. Therefore, G  K3 and γntr(G) = γntr(K3) = 1      
 n  3. Therefore, there is no connected graph G with 
γntr(G) + κ(G) = 2n  4.  
 

THEOREM: 3.4 For any connected graph G, γntr(G) + κ(G) 
= 2n  5 (n  4) if and only if G  K4  e, K5 {e1, e2}.  
 
PROOF: 
 Assume γntr(G) + κ(G) = 2n  5, then the 
following cases are to be considered.  

(i) γntr(G) = n and κ(G) = n  5  
(ii) γntr(G) = n  1 and κ(G) = n  4  
(iii) γntr(G) = n  2 and κ(G) = n  3  
(iv) γntr(G) = n  3 and κ(G) = n  2  
(v) γntr(G) = n  4 and κ(G) = n  1 

There is no connected graph G satisfying (i), (ii), and (v). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case (iii):  γntr(G) = n  2 and κ(G) = n  3 
  

Then (G)  n  3, since κ(G)  (G). If (G) =    
n  1, then G  Kn, n  4. But γntr(Kn) = 0 for n  4. If (G) 
= n  2, then G is isomorphic to Kn  Y, where Y is 
matching in Kn. Then γntr(G)  2. If γntr(G) = 2, then n = 4. 
Therefore K4  e, C4. If G  C4, γntr(C4) = 0.If G  K4  e,  

κ(K4  e) = 1  n  2. Therefore, G  P4. If γntr(G) < 2, then 
n  3. But    n  4. Therefore, (G) = n  3.  
 Let X = {v1, v2, v3, …,vn3} be a vertex cut of G 
and V  X = {x1, x2, x3}. 
 

Subcase: 3.1 V  X    

Since (G) = n  3, each vertex in V  X is 
adjacent to all the vertices of X. 
 (1)Assume E(X) = . If |X|  4, then  X  
contains atleast one edge. Therefore, |X|  3. Hence,          
G   K3,3 , K2,3 or K1,3. But γntr(K3,3) = γntr(K2,3) = 0. 
Therefore, G   K1,3. 
 (2) Let E(X)  . Let  X  contains exactly one 
edge say (v1, v2) E(X). Then {v1, v2, …,vn3} is a ntr - 
set of G and hence γntr(G)  n  4. If  X  is a tree, then    
V  X is a ntr - set of G and hence γntr(G)  | V  X | = 3. 
 That is., n  2  3  n  5 and hence |X|  2. If 
|X| = 2, then G   K2 + 3 K1.If |X| = 2, then G   K1,3. If |X| 
contains atleast two edge and  X  is not a tree, then  
γntr(G) = 0.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sub case: 3.2  V  X   K2   K1. 
 Let (x1, x2)E(G). Since (G) = n  3, x3 is 
adjacent to all the vertices in X. That is, d(x3) = n  3. 
(1) E(X) = . Therefore, d(vi) ≤ 3, i = 1, 2, …, n  3. 

v2 v1 

x2 x1 

v3 

x3 

G1

11 

v2 v1 

x2 x1 x3 

G2 

v2 v1 

x2 x1 x3 

G3 

v2 v1 

x2 x1 x3 

G4 
x1 

x2 

x3 

v1 

G5 
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  (G) ≤ d(vi) ≤ 3  n  3 ≤ 
3 n ≤ 6 
  |X| ≤ 3. 

(a) |X| = 3. Then | V(G) | = 6 and (G) = n  3 ≤ 3. 
Each vertex in X is adjacent to all the vertices of 
V  X. If G  G1, then γntr(G1) = 2  n  2. 

 

(b) |X| = 2. Then | V(G) | = 5 and (G) = n  3 ≤ 2. If 
G  G2 and d(x1) = d(x2) = 3 and d(x3) = 2 and 
then γntr(G2) = 2  n  2. If G  G3 and d(x1) = 3 
and d(x2) = d(x3) = 2 and then γntr(G3) = 2  n  2. 
If G  G4 and d(x1) = d(x2) = d(x3) = 2 and then 
γntr(G4) = 0. 
 

(c) |X| = 1. Then | V(G) | = 4 and (G) = n  3 ≤ 1. If 
G  G5 and d(x1) = d(x2) = 2 and d(x3) = 1 and 
then γntr(G5) = 2 = n  2. 

 
(2). E(X)  . Since (G) = n  3, d(x1), d(x2) ≥ n  3. 
Therefore, x1, x2 are adjacent to atleast (n  4) vertices of 
v1, v2, v3, … ,vn3. Let d(x1) = d(x2) = n  2. If  X  
contains an edge, then any dominating set D of G 
containing (n  2) vertices,  N(D)  contains a cycle and 
hence  γntr(G) = 0. Let d(x1) = d(x2) = n  3 and (vn4, vn3) 
 E(G). Let x1 be adjacent to v1, v2, v3, …,vn4. Then {v1, 
v2, v3, …,vn4} is a ntr-set of G and γntr(G) ≤ n  4. Let 
d(x1) = n  2, d(x2) = n  3 and let x2 be non adjacent to  
vn3. Then {v1, v2, v3, …, vn4} is a ntr-set of G and    
γntr(G) ≤ n  4. If X contains atleast two edges then  
γntr(G) = 0. 
 

Sub case: 3.3  V  X   P3 
(1) If E( X ) = , then X is an ntr-set of G and hence 

γntr(G) ≤ X= n  3. 
(2) If E( X )  , and if X contains exactly one 

edge, then γntr(G) ≤ n  4. If E(X)  , and if       
 X  contains exactly two edge, then γntr(G) = 0. 

 
Sub case: 3.4  V  X   C3 
 Then any dominating set D of G containing         
(n  2) vertices contain a cycle and hence γntr(G) = 0.  
case (iv): γntr(G) = n  3 and κ(G) = n  2 
  
Therefore, (G) ≥ n  2. If (G) = n  1, then G  Kn, n ≥ 4. 
But γntr(Kn) = 0, n ≥ 4. Let (G) = n  2. Then G is 
isomorphic to Kn -Y, where Y is a matching in G, n ≥ 4 and 
γntr(G) ≤ 2. If γntr(G) = 2, then n = 5. Therefore, G  K5  e 
(or) K5  (e1, e2), where (e1, e2) is a matching. If G  K5  e, 
then γntr(G) = 0. If G  K5  (e1, e2), then γntr(G) = 2 = n  3 
and κ(G) = 3 = n  2. If γntr(G) = 1, then n = 4. Therefore, 

G  K4  e, C4. But γntr(C4) = 0. If G  K4  e, then     
γntr(G) = 1= n  3 and κ(G) = 2 = n  2. 
 

4. NEIGHBORHOOD TREE DOMATIC NUMBER 
 
 In this section we define a new parameter known 
as neighborhood tree domatic partition of a given graph 
and study that parameter. 
 
DEFINITION: 4.1 
 A domatic partition of G is a partition {V1, V2, 
V3, … ,Vn} of V(G), in which each Vi is a dominating set 
of G. The maximum order of a domatic partition of G is 
called the domatic number of G and is denoted by d(G). 
 

 
DEFINITION: 4.2 
 A partition {V1, V2, V3, … ,Vn} of V(G), in which 
each Vi is a ncd - set in G is called a neighborhood 

connected domatic partition of simply ncd partition of G. 
the maximum order of a ncd partition of G is called the 
neighborhood connected domatic number of G and is 
denoted by dncd(G). 
 

DEFINITION: 4.3 
 A partition {V1, V2, V3, … ,Vn} of V(G), in which 
each Vi is a ntr ˗set in G is called a neighborhood tree 

domatic partition of simply ntr partition of G. the 
maximum order of a ntr partition of G is called the 
neighborhood tree domatic number of G and is denoted by 
dntr(G). 
 
EXAMPLE: 4.1 
 

 

 

 

 

 D1 = { v1, v4 }, V - D1= { v2, v3} 

 D2= { v2, v3 } , dntr(G) = 2 
 
REMARKS: 

a) If G  C3, then dt(G) = dntr(G) = κ(G) where κ(G) 
is the connectivity of G. 
 

b) Since any tree domatic partition of G is a ntr – 
domatic partition, we have  
dtr(G) ≤ dntr(G) ≤ d(G). 
 

 

v2 v1 v3 v4 
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c) Let vV(G) and d(v) = δ. Since 
any ntr – set of G must contains either v (or) 
neighbor of v, it follows that dntr(G) ≤  δ(G) + 1. 

 
EXAMPLE 4.2: 
 
 
 

 

 

 

 

dntr(G) ≤  δ (G) + 1 = 3 

dt(G) = dntr(G) = κ(G) = 3 
 
Now we give some observations, theorems relating 
neighborhood tree domatic numbers of some classes of 
graphs. 
 
Observation: 4.1 
 If  { V1, V2, … ,Vdntr} is a neighborhood tree 
domatic partition of G. Since |Vk| ≥ γntr  for each k, it 
follows that γntr(G). dntr(G) ≤ n. 
 
EXAMPLE 4.3: 
 If G  G1  K1, where G1 is any tree then dntr(G) = 
2 and γntr(G) = n/2an hence γntr(G). dntr(G) = n. 
 
THEOREM : 4.1 
 For any connected graph G, d(G)/2 ≤ dntr(G) ≤ 
d(G) and the bounds are sharp. 
 
PROOF: 
 Since every neighborhood tree dominating set, we 
have dntr(G) ≤ d(G). Further, since the union of two disjoint 
dominating sets is a neighborhood tree dominating set, we 
have , d(G)/2 ≤ dntr(G).  
 Also for the graphs G  P3, K1, n  1, Jm, n, Tn. , 
d(G)/2 = dntr(G). For the graph G = K3 ,                    
dntr(G) = d(G) = 3. 
 
THEOREM:  4.2 

 If γntr(G) > 0, then 
(G)γ

n
(G)d

ntr

ntr   and the 

bound is sharp. 
 

PROOF: 

Let{D1, D2, … ,Dk} is a partition of V(G) into k 
neighborhood tree dominating sets, such thatb , dntr(G) = k. 
Since each  N(Di)  is a neighborhood tree dominating set, 
it follows that , γntr(G) ≤ Di for 1 ≤ i ≤ k. 
 Thus, k.(G)γDn ntr

ki1
i 

  
 
THEOREM: 4.3 
 For the path Pn (n ≥ 4), we have 






evenisnif2

oddisnif1
)(Pd nntr   

PROOF: 
 Let V(Pn) = {v1, v2, v3, … ,vn}.  
  
 If n is odd, V(Pn) is the only ntr – set. Suppose n is 
even, it follows from remarks that dntr(Pn) ≤ 2.  
Now, let  

 









4

1
v 14i,v 24i

n

i

S  and 

let

 













 4)(mod3nv,vS

4)(mod21,nvS

4)(mod0nS

V

n1n

n1   

Then {V1, V- V1} is a ntr- domatic partition of Pn and 
hence dntr(Pn) = 2. 
 
Observation 4.2: 
 For the cycle Cn (n ≥ 3), we have 









1k2,4knif2

3nif3
)(Cd nntr

 
 

Observation 4.3: dntr(K1, n-1) = 1, n ≥ 3. 
 

Observation 4.4: dntr(Sm, n) = 2, m, n ≥ 1. 
 

Observation 4.5: dntr(Pn K1) = 2, n ≥ 2. 
 
Observation 4.6: dntr(Pn + K1) = 3, n ≥ 2. 
 

Observation 4.7: 








4nif0

4nif2
)(dntr Pn
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Observation 4.8: 3)(d
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