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Abstract— In this paper, a fuzzy production inventory model with wastage item and two warehouse under 

two constraints have been considered. In this model the deterioration rate and demand rate considered as random 

variable and the production rate depends directly on demand rate. The lotus petal fuzzy number is defined and its 

properties are given. The parameters involved in this model are represented by lotus petal fuzzy number. The 

expected average total cost is defuzzified by the regular weighted point technique. The analytical expressions for 

expected inventory level of temporary warehouse, maximum inventory (sugar and wastage item) levels are derived. 

The optimum values of time are determined by using nonlinear programming technique. A numerical example is 

presented to illustrate the results. 
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I. INTRODUCTION 

Inventory problems are common in manufacturing, 

service and business operations in general. Some inventory 

models were formulated in a static environment where the 

demand is assumed to be constant and steady over a finite 

planning horizon. Many items of inventory such as 

electronic products, fashionable clothes, tasty food products 

etc.,  

Most of the existing inventory models in the 

literature assume that items can be stored indefinitely to 

meet the future demands.  However, certain types of 

commodities either deteriorate or become obsolete in the 

course of time and hence are unstable. Therefore, if the rate 

of deterioration is not sufficiently low, its impact on 

modelling of such an inventory model cannot be ignored. In 

this connections, inventory problems for deteriorating items 

have been studied extensively by many researchers 

[3],[6],[7] and [9] from time to time. Research in this area 

started with the work of Whitin [10], who considered 

fashion goods deteriorating at the end of prescribed storage 

period. Goyal and Giri [5] gave recent trends of modelling in 

deteriorating item inventory. The inventory model for 

variable demand and production is given in [1]. A 

production inventory model for variable demand and 

production is explained in [2]. Samantha and Ajanta roy 

work based on realistic production lot-size inventory model 

for deteriorating items is given in [8]. 

In conventional inventory models, uncertainties are 

treated as randomness and are handled by probability theory. 

Furthermore, when addressing real world problems, 

frequently the parameters are imprecise numerical quantities. 

However, in certain situations, uncertainties are due to 

fuzziness and in such cases the fuzzy set theory introduced 

by Zadeh [11] is applicable. A. Faritha Asma and E.C. 

Henry Amirtharaj analized multi objective inventory model 

of deteriorating items with two constraints using fuzzy 

optimization technique [4]. 

In the real situation, at the time of production the 

deterioration rate and demand rate are varied. So that the 

deterioration rate and demand rate are considered as a 

random variable which follows rayleigh distribution and 

bounded pareto distribution respectively. 
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In the existing inventory models, 

they used only rented warehouse and own warehouse. When 

using the rented warehouse the transportation cost, rental 

and maintenance cost are all high. Here, the model newly 

constructed with permanent warehouse and temporary 

warehouse.  

As warehouse is a key factor in production 

inventory model, so these days researcher are paying more 

rent in stored the goods. The temporary warehouse used for 

reducing the rented amount and maintenance cost. 

 

This paper is organized as follows: 

 

In section 2, assumptions and notations for the 

fuzzy production inventory model under consideration are 

given. The mathematical formulation for the proposed model 

is explained in crisp environment under section 3. In section 

4, lotus petal fuzzy number is defined and its properties are 

given. To defuzzify the model, the regular weighted point of 

lotus petal fuzzy number is determined in section 5. In 

section 6, the mathematical model is explained in fuzzy 

environment. In section 7, an application of this model is 

given in both environment. 

II. ASSUMPTIONS AND NOTATIONS 

The following assumptions and notations are used 

throughout this paper: 

Assumptions  
1. Demand rate for inventory(sugar and wastage item) 

are taken as a random variable which follows 

bounded pareto distribution. 

2. Production rate is demand dependent that is p = cd,     

0 < c < n, n is a finite number. 

3. Deterioration rate for inventory(sugar and wastage 

item) are taken as a random variable which follows 

reyleigh distribution. 

4.  First, the goods(sugar) are stored in permanent 

warehouse then the remaining goods(sugar) are 

stored in temporary warehouse. 

5. The goods(sugar) of permanent warehouse are 

consumed only after consuming the goods(sugar) 

kept in temporary warehouse. 

6. The permanent warehouse has a fixed capacity of IP 

units. 

7. The inventory(suger and wastage item) levels 

depleted due to demand and deterioration. 

8. Shortages are not allowed. 

Notations    

I1(t) – the level of inventory(sugar) at time t, 0 t t1. 

I2(t) -  the level of inventory(sugar) in temporary warehouse  

            at time t, t1  t t2. 

I3(t) – the level of inventory(sugar) in permanent warehouse                          

            at time t, t1  t t4.   

W1(t) - the level of inventory(wastage item) at time t ,  

             0  t t1. 

W2(t) – the level of inventory(wastage item) at time t,  

              t1  t t3. 

IP  – fixed capacity for permanent  warehouse at time t1. 
Im – expected maximum inventory(sugar) level at time t1.  

         (decision variable)  

Iw  -  expected maximum inventory(wastage item) level at 

time t1. (decision variable) 

IT – expected maximum inventory(sugar) level of temporary  

            warehouse at time t1.(decision variable) 

p  –  production rate for inventory (sugar). 

D – demand rate for inventory(sugar). 

 - deterioration rate for inventory(sugar). 

d1 – demand rate for inventory(wastage item). 

1 - deterioration rate for inventory(wastage item). 

t1  - machine time available for product. 

TC – expected average total cost per cycle. 

cS
~

- fuzzy setup cost per cycle. 

ch
~

- fuzzy holding cost for inventory(sugar) per unit per unit  

          time. 

cd
~

- fuzzy deteriorating cost for inventory(sugar) per unit 

per    

          unit time. 

wh
~

- fuzzy holding cost for inventory(wastage item) per unit   

          per unit time. 

wd
~

- fuzzy deteriorating cost for inventory(wastage item) per  

          unit per unit time. 

wcT
~

- fuzzy cost for 1 square feet of temporary warehouse. 

wsT
~

- fuzzy total space for temporary warehouse. 

twcT
~

- fuzzy total temporary warehouse  cost. 

mT
~

- fuzzy machine time consumed per month. 

m~ - fuzzy number of months for production. 

III.  MATHEMATICAL FORMULATION AND 

SOLUTION 

 The proposed inventory model is formulated to 

minimize the average total cost, which includes setup cost, 
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holding cost, deterioration cost and 

temporary warehouse cost. The rate of change of the 

inventory during the following periods are governed by the 

following differential equations: 

10)(1

)(1 ttdptI
dt

tdI
              (1) 

 with boundary condition  I1 (t) = 0 at  t = 0  

21)(2

)(2 tttdtI
dt

tdI
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 with boundary conditions I2(t) = 0 at t = t2  

               and I2(t) = IT at  t = t1 
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with boundary conditions I3 (t) = IP at  t =t1   
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Fig 1: Graphical representation of the state of inventory   

              system 
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The maximum inventory(sugar) level per cycle is 

   Im = IT + IP                                                      (13) 

 

Expected demand rate for inventory(sugar) is  
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where, 
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Holding cost = Holding cost for 

inventory(sugar) (HCS)  

  +Holding cost for inventory(wastage item) (HCW)                                                                                                               
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Deterioration cost = deteriorationcost for inventory (sugar)    

                                    (DCS) + deterioration cost for  

                                     inventory(wastage item) (DCW) 
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Temporary warehouse cost = temporary warehouse cost for  

                                                    inventory (sugar) (TWCS)  

                                   TWCS = TwcTws   
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                                                                                         (15) 

Solve the objective function using MATLAB software, 

the values of 
*

2

*

1 , tt , 
*

3t and 
*

4t are obtained. 

Substituting
*

2

*

1 , tt , 
*

3t and 
*

4t in (8), (12), (13) and (15), 

the optimum values *,*,*
mIwITI and 

*
TC  are obtained. 

IV LOTUS PETAL FUZZY NUMBER AND ITS 

PROPERTIES 

DEFINITION:  LOTUS PETAL FUZZY NUMBER 

Fig 2: Lotus Petal Fuzzy Number 

 

A Lotus petal fuzzy number A
~

described as a 

normalized convex fuzzy subset on the real line R whose 

membership function )(~ x
A

 is defined as follows: 
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              This type of fuzzy number be denoted as             

A
~

= [a, b, c], whose membership function )(~ x
A

 satisfies 

the following conditions: 

1. )(~ x
A

 is a continuous mapping from R to 

the closed interval [0,1] 

2. )(~ x
A

 is a convex function. 

3. )(~ x
A

 = 0 & 1 at x=b. 

4. 
2

1
)(~ x

A
 at x= a & c. 

5. )(~ x
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 is strictly decreasing as well as 

increasing and continuous on [a,b] and 

[b,c]. 

Properties: 

1. Left and right opposite angles are equal. 

2. The horizontal and vertical diagonal bisect 

each other and meet at 
90 . 

3. The lower angle is twice that of the upper 

angle. 

IV.  REGULAR WEIGHTED POINT OF LOTUS 

PETAL FUZZY NUMBER 
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The regular weighted point of a lotus petal fuzzy 

number is of the form 
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V.  INVENTORY MODEL IN FUZZY 

ENVIRONMENT  

The proposed inventory model in fuzzy environment is  
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subject to : 1
~~

,
~~~

tmTTTT mtwcwswc                                                

where ~ represents for fuzzification of the parameters.    
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Now using the technique, regular weighted point of 

lotus petal fuzzy number, the above model is defuzzified as 

follows    
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COMPARISON TABLE 7.1 

 

Solve the objective function using MATLAB software, 

the values of 
*

2

*

1 , tt , 
*

3t and 
*

4t are obtained. Substituting 

*

2

*

1 , tt ,
*

3t and 
*

4t in (8), (12), (13) and (17), the optimum 

values *,*,*
mIwITI  and 

*
TC  are obtained. 

VI. NUMERICAL EXAMPLES 

 In sugar factory, there are two warehouse 

(permanent and temporary). In permanent warehouse it has 

constant capacity, but in temporary warehouse holds its 

inventory(sugar) in constainers. The wastage item is sold at 

the time of manufacturing. 

The following values of the parameter in proper 

unit were considered as input for the numerical result of the 

above problem. 

L = 100, H = 1000,  = 0.5, c = 2,  = 5,   = 3.14, L1 = 

50, H1 = 500, 1 = 0.25, 1 = 2.5, 1  = 3.14, Ip = 50000 

Ton.  

All costs are taken in rupees. 

cS
~

 = (1000000, 2000000, 3000000), ch
~

 = (5000, 6000, 

7000), cd
~

 = (500, 600, 700), wh
~

 = (1000, 2000, 3000),  

wd
~

 = (100, 200, 300), )700000,600000,500000(
~ twcT , 

wcT
~

= (200, 250, 300), wsT
~

=(2000,2050,2100) in sqft,  

mT
~

 = (25,27,29) in days, m~  = (3,4,5) in months.  

Using MATLAB software, the optimum values 

*,*,*
wImITI and 

*
TC are tabulated below: 

 

 

 

 

 

 

 

 

 

 

OBSER

VATIO

N 

From the above table, it should be noted that 

compared to crisp model, the fuzzy model is very effective 

Model 

 

t1
* 

/mont

h
 

t2
* 

/mont

h 

t3
* 

/mont

h 

t4
* 

/month 

IT
*
  

/Ton 

Im
* 
/Ton Iw

* 

/Ton 

TC
* 

Rs 

Crisp     

   1 

3.0567 4.2073 4.2825 5.3105 68,134 1,18,130 16,327 2,77,66,000 

Crisp   

    2 

3.6509 4.7895 4.8052 5.8798 63,196  1,13,200 11,399 2,80,54,000 

Crisp 

    3 

4.6492 5.7856 5.7998 6.8746 62,330 1,12,330 11,189 2,78,78,000 

Fuzzy 4.9635 6.1486 6.2104 7.2878 84,586 1,34,590 18,152 2,56,91,000 
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method, because of the time consuming in 

fuzzy analysis and the optimal results are obtained easily. 

i. The average total cost is obtained in fuzzy model is 

less than the crisp model. 

ii. The optimal values *,*,*
wImITI in fuzzy model are 

higher than the crisp model. 
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