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I. INTRODUCTION 

The concept of a fuzzy subset in non-empty set was first 
introduced by Zadeh [16] in 1965. Since then, many 
generalisations of this fundamental concept have been 
developed. The notion of IF set introduced by Atanassov [1] 
is one among them.  

Subsequently, Jun and Lee [9] studied fuzzy Γ rings. Zhan 
and Davvaz [17] then explained fuzzy ideals of near rings. 
Bhavanari and Kuncham [5] explained fuzzy cosets of Γ near 
rings as an extension of that. Then, the isomorphism 
theorems for IF submodules of G modules was studied 
elaborately by Sharma and Kaur [15] and they analysed IF 
co-sets in Γ near rings. 

Now in this paper we study IF ideals of MΓ  group G and 
proof of few theorems of IF ideals of MΓ group in near rings. 

 

II. PRELIMINARIES 

A. Definition 2.1 [6] 

Let M be a 𝛤-near ring. An additive group G is said to be 
a 𝛤-near ring module (or M𝛤-module) if there exists a 
mapping M × 𝛤 × G→G (denote the image of (m, α, g) 
by mαg for m ∈ M, a ∈ 𝛤, g ∈ G) satiating the 
conditions  

(i) (m1 + m2)α1g = m1α1g + m2α1g and 
(ii) (m1α1m2)α2g = m1α1 (m2α2g)  
For all m1, m2 ∈ M, α1, α2 ∈ 𝛤, and g ∈ G. 

All through this section, G stands for an M𝛤-module. 
 
B. Definition 2.3[13] 

Let M be a nonempty set. A fuzzy set A in M is 
characterized by its membership function µA: M → [0, 1] 
and the degree of membership of constituent x in fuzzy set A 
for each x ∈ M is given as µA (x). 

 
C. Definition 2.4[13] 

Let µ be a fuzzy set in a G - ring M. For any t ∈ [0, 1], 
then the level set of μ is given as set U (µ, t) = {x ∈ M | 
μ(x) ı t}. 

 
D. Definition 2.5[13] 

A fuzzy set µ in a G - ring M is called a fuzzy left (right) 
ideal of M, if it conforms to following: 

(i) µ (x - y) ı µ(x) ġ µ(y), 
(ii) μ (xαy) ı μ(y) (resp. μ(xαy) ı μ(x). 
for all x, y ∈ M and α ∈ Γ. μ is called a fuzzy ideal 

of M if μ is both a fuzzy left and right ideal of M. 
 
E. Definition 2.8[6] 

A fuzzy set µ of G is called a fuzzy M𝛤-subgroup of G if 
these two conditions are satisfied: 

 (i) µ(x - y) = min{µ(x), µ(y)} and 
 (ii) µ(aαy) = µ(y) for all x, y ∈ G, a ∈ M, and α ∈ G. 
Here, M represents a gamma near ring, and G denotes an 

M𝛤-group.. 
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F. Definition 2.9[1] 

Let X be a nonempty fixed set. An intuitionistic fuzzy set 
A in X is an object having the form A = {[x, µA(x), ν A(x)] 
/x ∈ X}, where the functions µA: X → [0, 1] and νA: X → 
[0, 1] denote the degree of membership and the degree of 
non-membership of each element x ∈ X to the set A, 
respectively, and 0 = µ (x) = 1 for every x ∈ X.The 
intuitionistic fuzzy set (IFS in short) is given as A = {[x, 
µA(x), νA(x)] /x ∈ X} by A = (µA, νA). 

 
G. Definition 2.10[15] 

Let A be an IF ideal of M and x ϵ M. Then an IF co-set of 
A is given by the IF subset x + A defined by (x + µA) (y) = 
µA (y - x) and (x + vA) (y) = vA (y - x) for all y ϵ M. 

III. THEROEMS ON M𝛤 GROUP OF INTUITIONISTIC 

FUZZY IDEALS IN NEAR RINGS 

A. Definition 3.1 

An IFS A = (µA, γA) in M is called an intuitionistic 
fuzzy left (resp. right) ideal of a Γ - ring M if µA(  x-y) 
ıµA (x)ġ µA (y) and µA( xαy)ı µA (y)(resp. µA 
(xαy)ı) µA(x)), 

γA (x−y) İ {γA (x)Ģ γA (y)} and γA (xαy) İ γA 
(y)(resp. γA (xαy)İ γA (x)), for all x,y ∈ M and    α ∈ Γ. 

 
B. Proposition 3.2 

      Suppose that G is an MΓ group, A be an IF ideal and 
x, y ϵ G then, 

x+µA = y+µA and x+γA = y+ γA if and only if µA (x-y) 
= µA(0) and γA (x-y) = γA (0). 

 
C. Theorem 3.3 

Let A ( µA, γA ) and B ( µB, γB ) are any two 
intuitionistic fuzzy of G such that A ⊆ B and µA(0) = µB(0) 
and γA(0) = γB(0) then the mapping hB : G/A → [ 0,1 ] 
defined by  

  hB (x + µA ) = µB(x) and 
  hB ( x + γA ) =  γB(x) for all x + A ϵ G/A 

is a fuzzy ideal. 
 Proof 
First, we verify that hB is well defined. Let x +µA, y+µA, 

x+γA, y+γA ϵ G/A such that  
   x + µA = y + µA 
   ⟹µA(0) = µA( x-y) by 3.2 

  We have µB(0) ı µB( x-y ) since B כ A 
               ı µA( x – y )  
    = µA (0) = µB(0) by given data 
    = µB(x – y)  
                      i.e. µB (0) = µB( x-y)  
          ⟹   x + µB = y + µB by 3.2 
                  ⟹   ( x + µB ) (0) = ( y + µB) ( 0) 
                  ⟹ µB (0 – x) = µB( 0 – y) by 3.2 
                  ⟹ µB( - x) = µB ( - y) ⟹ µB( x) = µB ( y ) since B is an intuitionistic fuzzy 

ideal. 
Which implies hB ( x + µA ) = hB ( y + µA ) 
 i.e. if x + µA = y + µA then 
 hB ( x + µA ) = hB ( y + µA ) 
similarly if x + γA = y + γA then hB ( x + γA ) = hB ( y + 

γA ). 
Now we verify that hB is a intuitionistic fuzzy ideal of 

G/A. 
Consider x + A, y + A, a + A ϵ G/A and m ϵ M. Now we 

check the axioms of an intuitionistic fuzzy ideal for G/A. 
( i ) hB [ ( x + µA ) – ( y + µA )  = hB [ ( x – y ) + µA ] 
     = µB( x – y ) by definition of hB  = µB( x + ( - y ) ) 
     ı min { µB ( x ), µB ( - y ) } since B is an 

intuitionistic fuzzy ideal. 
     = min { µB ( x ), µB ( y ) } since µB ( y ) = µB ( - y ) 
     = min { hB ( x + µA ) , hB ( y + µA ) } by definition 

of hB. 
Therefore, hB [ ( x + µA ) – ( y + µA ) ] ı min { hB ( x 

+ µA ) , hB ( y + µA ) } 
Similarly, hB [ ( x + γA ) – ( y + γA ) ] İ  max { hB 

( x + γA ) , hB ( y + γB ) } 
( ii ) hB [ ( x + µA ) + ( y + µA ) – ( x + µA ) ] = hB [ ( x 

+ y – x ) + µA ] 
 = µB( x + y – x ) by definition of hB 
 ı µB( y )  since B is an intuitionistic fuzzy ideal. 
 = hB ( y + µA ) by definition of hB. 
Therefore, [ ( x + µA ) + ( y + µA ) – ( x + µA )] ıhB ( 

y + µA ) 
Similarly, hB ( x + γA ) + ( y + γA ) – ( x + γA ) ] İ 

hB ( y + γA ). 
( iii ) hB ( - x + µA ) = µB ( - x ) by definition of hB. 
             = µB(x) since B is a intuitionistic 

fuzzy ideal. 
                          = hB ( x + µA ) 
Therefore, hB ( - x + µA ) = hB ( x + µA ). 
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Similarly, hB ( - x + γA ) = hB ( - x + γA ) 
( iv ) hB ( mγ (( a + µA ) + ( x + µA ) ) – mγ ( a + µA ) ) 
 = hB ( mγ ( ( a + x ) + µA ) – mγ ( a + µA ) ) by 

definition of addition in G/A. 
 = hB [ (mγ ( a + x ) – mγa ) + µA ] 
 = µB( mγ ( a + x ) – mγa ] by definition of hB. 
ı µB( x ) since B is an intuitionistic fuzzy ideal of G. 
 = hB ( x + µA ) by definition of hB. 
Therefore, hB [ mγ ( ( a + µA ) + ( x + µA ) ) – mγ ( a 

+ µA ) ] ı hB ( x + µA ) 
Similarly, hB [ mγ ( a + γA ) + ( x + γA ) – mγ ( a 

+ γA ) ] İ hB ( x + γA ). 
Therefore, by definition of intuitionistic fuzzy ideal, hB is 

an intuitionistic fuzzy ideal of G/A.  
 
D. Preposition 3.4 

Let A : G → [0 ,1] is an intuitionistic fuzzy ideal of the 
MΓ group G. 

( i ) The mapping ϕ ( x ) : G → G/A is defined by ϕ ( x ) = 
x + A is an onto homomorphism with  Ker ϕ = GA = { x ϵ G 
/ µA ( x ) = µA ( 0 ) }. 

Hence the MΓ group G/A is isomorphic to the MΓ group 
G/GA under the mapping  

f : G/GA → G / A defined by f ( x + GA ) = x + A. 
( ii ) Suppose A and B are two intuitionistic fuzzy ideals 

of the MΓ group G such that  
GA = GB.  Then the mapping g : G / A → G / B  

defined by  
 g ( x + A ) = x + B is an isomorphism. 
( iii ) if G / A ≅ G / B  under the isomorphism 
 g ( x + A ) = x + B then GA = GB. 
 
E. Theorem 3.5 

Let X&Y be two nonempty IF sets and Let f be  a 
function of X into Y. Let A be a IF subset of Y. Then f-1 
(A),the pre image of A under f is a IF subset of X defined by 
(f-1(A)) for all x ϵX. 

 
F. Preposition 3.6 

Let A : G → [ 0 , 1 ] is a intuitionistic fuzzy ideal of the 
MΓ group G. 

( i ) The mapping ϕ : G → G / A is defined by  
Φ ( x ) = x + A is an onto homomorphism with ker ϕ = 

GA 

 = { x ϵ G / µA ( x ) = µA ( 0 ), γA ( x ) = γA ( 0 ) }. 
Hence the MΓ group G / A  is isomorphic to the MΓ 

group G / GA under the mapping 
 f : G / GA →G / A  defined by f ( x + GA ) = x + A 

. 
( ii ) Suppose A and B are two intuitionistic fuzzy ideals 

of the MΓgroup G such that 
 GA = GB then the mapping g : G / A → G / B  defined 

by g ( x + A ) = x + B is an isomorphism. 
( iii ) If G / A ≅ G / B under the isomorphism 
 g ( x + A ) = x + B then GA = GB. 
Proof 
Define ϕ : G →G / A by Φ ( x ) = x + A for all x ϵ G. 
 Φ is well defined as x ϵ G  are all distinct. 
Let x , y ϵ G  and m ϵ M . then ϕ ( x + y ) = ( x + y ) + A 

by definition of A . 
      = ( x + A ) + ( y + A )  
      = ϕ ( x ) + ϕ ( y ) 
i.e. ϕ ( x + y )  = ϕ ( x ) + ϕ ( y ). 
And ϕ ( mαx ) = mαx + A for all m ϵ M and α ϵ Γ 
  = mα ( x + A ) by definition of G / A. 
  = mα ϕ ( x ) by definition of ϕ. 
i.e. ϕ ( mαx )  = mα ϕ ( x ).Therefore, ϕ is an MΓ group 

homomorphism. 
 To prove ϕ is onto, 
Consider an element x + A ϵ G / A. 
As x ϵ G and by definition of ϕ, we have Φ ( x ) = x + A  
Hence ϕ is onto. So ϕ is an MΓ group epimorphism. 
Therefore by fundamental theorem of homomorphism 

(theorem 3.5)  
 G / ker ϕ ≅ ϕ ( G )Where ϕ ( G ) = G /A  and hence 
 G / ker ϕ ≅ G \ A. 
To prove: 
Ker ϕ = GA, let us consider x ϵ ker ϕ ⟹ ϕ ( x ) = 0 , 0 is the zero element of G / A. ⟹ x + A = 0 + A ( =A ) ⟹ µA( x ) = µA ( 0 ) ( by preposition 3.2 ) ⟹x ϵ GA by definition of GA. 
 Therefore, ker ϕ = GA. 
Hence G / GA≅ G / A. 
( ii ) Given GA = GB⟹ G / GA= G / GB 
Using ( I ) we have 
G/ A  ≅ G / B  under the isomorphism defined by g (x + 

A) = x + B . 
( iii ) Assume G / A ≅ G/ B  under the isomorphism of 

defined by g ( x + A ) = x + B . 
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We have to prove that GA = GB. 
Let x ϵ GA⟹ µA( x ) = µA ( 0 ) ⟹ µA( x – 0 ) = µA ( 0 ) by preposition 3.2 ⟹ x + A = 0 + a  
Operating g on both sides  
 g ( x + A ) = g ( 0 + B ) 
 ⟹ x + B = 0 + B  
 ⟹ µB( x ) = µB ( 0 ) 
 ⟹ x ϵ GB ( by definition of GB ) ⟹ GA ⊆ GB 
Similar proof gives GB ⊆ GA and so GA = GB. 

IV. CONCLUSION 
 

We have considered IF ideals of M𝛤 groups in near rings. 
We proved few important theorems on IF ideals of M𝛤 group 
in near rings. 
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