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Abstract:In this paper, we interpret a fuzzy differential equations by using Seikkala derivative of fuzzy process. We
investigate the problem of finding a numerical approximation of solutions. Adam’s fifth order predictor-corrector method
and Runge-Kutta method of order five are implemented and their analysis which guarantees pointwise convergence is
discussed. These methods are illustrated by solving example. Finally, we compare the solutions obtained by Adam’s fifth
order predictor corrector and Runge-Kutta method of order five.
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I. INTRODUCTION

Fuzzy differential equations (FDE’s) are utilized for
the purpose of the modeling problems in science and
engineering. The most of the problems in science and
engineering require the solutions of a fuzzy differential
equation(FDE) which are satisfied in Fuzzy initial
conditions. Therefore a fuzzy initial value problem is occurs,
and should be solved. It is too complicated to obtain the
exact solution of FDE which models the mentioned problem.
The concept of fuzzy derivative was first introduced by
Chang Zadeh in [7], it was followed up by Duboi’s, prade in
[8], who defined and used the extension principle. The fuzzy
differential equation and the initial value problem where
regularly treated by Kaleva in [9],[10] and by Seikkala in
[11]. The numerical method for solving fuzzy differential is
introduced by Ma, Friedman and Kandel in [12].

In this paper, we develop numerical solution of fuzzy
differential equation by an application of the fifth order
predictor corrector method.
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II. -~ DEFINITIONS AND BASIC PROPERTIES
A. Fuzzy sets

The idea of fuzzy set was introduced by Lotfi Zadeh
in 1965 as a means of handling uncertainty that is due to
imprecision or vagueness rather than to randomness. Fuzzy
sets were taken up with interests by engineers, computer
scientists and operations researchers. While mathematicians
have been involved with the development of fuzzy sets from
the very beginning, it has really been in recent years only
that fuzzy sets have started receiving serious consideration
from a wider mathematical community. Many interesting
mathematical problems are coming and the mathematical
foundations of the subject are firmly established and now it
has emerged as an independent branch of applied Fuzzy sets
are considered with respect to a nonempty base set X of
elements of interest. The essential idea is that each element
x€X is assigned a membership grade u(x) taking values in [
0,1 ], with u(x) = 0 corresponding to non-membership, 0 <
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u(x) < 1 to partial membership, and =1 to full membership.
According to Zadeh a fuzzy subset of X is a nonempty
subset {(x, u(x)) :x€X} of X x [ 0,1 ]for some function u: X
— [ 0,1 ]. The function u itself used for the fuzzy set.

B. Fuzzy Cauchy Problem

Consider the first order fuzzy differential equation
y’ = f(t, y) where y is a fuzzy function of f(t, y) is a
fuzzy function of t, f(t, y) is a fuzzy function of crisp
variable y, and y’ is Hukuhara or Seikala fuzzy
derivative of y. If an initial value y(ty) = arp is given, a
fuzzy Cauchy problem of first order will be obtained as
follows:

y @ =faym),t,<t<t,
y (t ()) 7O 0
Sufficient conditions for the existence of a unique
solution to equation 1 are
(i) Continuity of f,
(i) Lipschitz condition

d.J@o, f@y)<Ld (x,y),L>0.
C. Adam’s-Bashforth Five Step Method

V.= Y, T Y, T Y, T X

h
i =y, +=—[1901f(,,,y,.
yl+l y; 720[ f( i+l yzl)
=2774f (8,1, y,,) +26064(f (2,5, ¥ »)
—1274f (8,5, y:,) + 251 @ g5 yis)s
where i=4,5,....N-1.

D. Adam’s-Moulton Four Step Method

yozao’y,2051’}’22052’}’3:0!3’

h
=Y, A ——[251F (. Vs,
yt+l yt 720[ f( i+1 yl 1)

+646 f(z,,y,) —264(f(t,_,, ¥, )
+106 (7, 5.y, ) =191, 5.y, 3),

where i=4,.........,N-1.
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E. Definition
Associated with the difference equation

Yiri = Ama Y, TAn Y, TK Ta,y

+hE(f, . h, V... yi,K Y ),

i+l—m

y, =&y = K, Yo" Aur>
is a polynomial, called the characteristic polynomial of the
method given by

m m—1 m-2
pA=2"=a, A" —a, , 2" -K,q,2-q,
If |ﬂi| <1for each i=1,2,3,......... ,m, and all roots

with absolute value 1 are simple roots, then the difference
method is said to satisfy the root condition.

i+1—m

F. Interpolation of Fuzzy Number

The problem of interpolation for fuzzy sets is as
follows: Suppose that at various time instant t information
f(t) is presented as fuzzy set. The aim is to approximate the
function f(t) , for all t in the domain of f.

Let fo<t, <K <t be n+1 distinct points in R and

let 022,

A fuzzy polynomial interpolation of the data is a
fuzzy value continuous function f: R — E satisfying:

(i) f(t,-) — I:l,- - i= 1,.....,11.
(i) If the data is crisp, then the interpolation f is a crisp
polynomial.

K K77 be n+1 fuzzy sets in E.

A function f which fulfilling these condition may be
constructed as follows.

Let ' g, forany a € [0,1], i=0,1,2,....,n.

For each »+1 | the unique

B — (xO’xl,K ,xn) e R
polynomial of degree < n denoted by Py such that
P, 0=Yx,i=12..5

n r—¢, ).
PX(t): : J
S

i=j

Finally, for each € Rand all £ € R is defined by
f (@) € Eby
(F@O)& =supfael0]:3X e C”_ x...ceen xC
such that P, (1) =& }.

The interpolation polynomial can be written level set
wise as
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[fO1 ={yeR:Y = P, ), : N
. fayoy=21,0f ¢3¢,
xe€ly, i= 1,2,....,n}, j=i-1
i+3
for 0<a<1. r N r
or0=a flayan="Y [of .y
When the data [(; presents  as triangular fuzzy j=i-L] (020
numbers, values of the interpolation polynomial are i3 I
triangular fuzzy numbers. Then f(t) has a particular simple + Z l i (1) f (t j y(t j ),
form that is well situated to computation. J=i=L] (<0
1. ADAM’S METHOD For s <tr< lis:

A. Adam’s-Bashforth methods

(t- ti)(t B ti+l)(t B ti+2)(t B ti+3)

Now we are going to solve fuzzy initial value problem l ¥ )= 2
' . (o< ti)(tf—] - tm)(ti—l - ti+2)(ti—1 - ti+3)
y (t) = f(t, y(t)) by Adams-Bashforth five step method.
Let the fuzzy initial values b ’
o thefuzzy iniial valucs g P e 24 0t 0Lt PO
i . b

e Y DG YED G 5 D) @ =1, =DE = 1,00~ 1,00~ 1)
PG YE D LGy YD)

[ ()= (- ti)(t B ti+l)(t B ti+2)(t B ti+3)
which are triangular fuzzy numbers and are shown by i (T =t ) =) — 1, ) — 1) o
! ¢ 7
(f ’(t,-fl’Y(tlf.)),l f (t,-fl’Y(t,-,lr))’ f @ 8 t—f )e—g)t—¢. )E~¢.) <0
{f (t,.,y(ti)),f (ti,Y(ti)),f Y@ )} A’ (R ti—l)(ti \, — fi)(ti . fi+1)(ti o= ti+3)
{fl(t[ﬂ’y(tiﬂ))’fc(tﬁl’y(t[ﬂ))’f'(ti+1’y(tl+l))}’
U oyt D G Y E D f 3D [..® Sl Pt ket P 5
i+ "y ti+ ’ i+ Y i+277” ti+ Y i+ ’ i+ 3 -
N R T (1,000~ 1)~ 1) 1.,
{f (ti+3’y(ti+3))’f (ti+3’y(ti+3))’f (ti+3’y(ti+3))}’
Also, Therefore the following results will be obtained.
- - e - flayon=1,o f ¢ .y
Yt,) =Y.+ | FEy@)dr. -1
tis +ll(t)f (ti’ )’(t,))*'lm(f)f (ti+l’y(ti+1))
By fuzzy interpolation: r i
- - . 1@ G @D+ 1O F G ),
f(ti—l i y(ti—l))’ f(tz ’ y(ti))’ f(ti+l ’ y(ti+1))’ le f tHz ’ ll ’ f t » ’
FGErias YE I L E s YELD
; i+3 . It follows that:
faymy= 3 [Of¢.5¢) a 5 .
Wehave: = o Y ) =15 @)y 1)),
DI FOF MR
j:i—],lj_(r)<0
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oo ® f G Y6+, O f (90,0,

frayo=1,0f ¢,y
1O F @D+ 1,0 F ¢y

+ li+2 (t) fl (ti+2 ’ y(ti+2 )) + li+3 (t) fr (ti+3 2 y(ti+3 ))

. fr <
Y t.) =Y ¢, )+ [laf @y®

tiis
+(—a) f (0. y(e))dt
Y G0 =5 e | e £ o
a7yt
Y )=y g )+ tf{aqu) F Gy,
tis

1O F GG+ L O Gy

o ® [ GG D+ [ oy ED)
A=, F ¢ D+ LO f @)
L0 F Y ED L ® f ¥
FLLO f (g ),

V)= )+ tf{a(zf,,(o G

tis

1.0 F Gy + 1O f (¢

1o ® [ G YE D+, O f (YD)
-] O f Gy e DL f )
L O F G Y E DL f Gy
150 (09, ).
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The following results will be obtained by using the method
of

1901A e ()

2774h

720
2616h

720

@[af t (1))

Y )=y )+

+(1'05)f (5, Yt 3] — laf (.5, ¥(t,,5)

+ (1 - a) fr(ti+2’ y(ti+2))] +

[cgc ¢ (ti+1 > y(tiﬂ ))
+A-a) f @,y D] -

+A=a)f (1, y@ )]+
+ (1 g a)f (t,q s }’(f, 1))]

Tzo[aj‘ (tz+3 y(t1+3))

2774h
1-a)f" =
DT, v, D1 g lof “ (1.5, ¥(t:1y)

2616h

7720[6{][ (tll y(t, 1))

Y=y (ts)+

+(1_a)fl(ti+2’ y(ti+2))]+ [O,f (1+1 y(tH—l ))

1274h
+ A=) @y D1 - — = laf (8, ()

F (=) f ey )+ ﬂ[af (o y(E))

+ (=) f @, 95 ))],

o (24 h (24
Y )= 3 W)+ 219017 (1, 3(010))
—2774f " (t112), Y(t,.,)) + 2616 £ * (2,,,, ¥(t1.,))
— 1274 (1), y(t, ) + 251f"(t,- YD),

Y @)=Y (t,+3>+ [1901f (t135 Y(t15))

-~ 2774£ (t:12)s y(ti+2 )) + 2616f (t05 Y1)
—1274(f (1), () + 251 (1, y(t, )]

Therefore Adam’s —Bashforth five step method is obtained
as follows:

Za (t,,,) = [1901j_Ca (13, y(t,,3))
—2774f " (1;,5), Y(t;,, )+ 2616 £ “ (1,1, ¥(2;,,))
—1274Cf (1, y) +251£ (¢, (2, )],

o h
t,3)+—
e T
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y (t1+4) y (tH—S) + [1901f (tl+3’ y(tl+3 ))
- 27741 (10, ¥, )) +261 6f (05 ¥(:10))
—1274(f (1, y(t, )+ 251f (0, y(t )],
Xa(tiq) = ao’za(ti) = al,za(tm) =,
Xa (ti+2) = a3’l}a(ti+3) = a4
Yt D=y @)=y )=
;a (t,‘+2) =y ;a (t,‘+3) o4

IV . NUMERICAL EXAMPLES

A. Example 4.1

Consider the fuzzy initial value problem,
y'(®) =y@), te=[0,1],

y(0)=(0.75 + 0,25 1, 1,125-0.125 1),
o<r<l.

By using the Runge-Kutta method of order 5, we
have

W h h h
yl(t,m r)= Y, (t, r){1+h+ 24 144}
. = . hz h3 h4 hs
yz(tnﬂ’r)—yz(l‘n,r){l-l-h-i——z +—6 +_24+144]

The exact solution is given by
Y@=y e,
y,6n=y e
where at t=1,
Y, (1;7) =[(0.754+0.25r)e,(1.125—-0.125r)e],
O<r<l.

By using Runge-Kutta fifth order method the following
results are obtained:
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TABLE 4.1

RKk-Order 5 Exact Solution

Yt | vt | Yt | Y

0.1 | 09078 | 3.5140| 0.9079 | 3.7886
0.2 09584 | 3.1224| 0.9585| 3.2851
03] 1.0128 | 2.8014 1.0129 | 2.8994
04| 1.0714| 25314 1.0715 | 2.5918
0.5] 1.1344 | 2.3039 1.1348 | 2.3419
0.6 | 1.2034 | 2.1096 1.2038 | 2.1330
0.7 1.2785 1.9419 1.2793 1.9568
0.8 | 1.3610 1.7957 1.3625 1.8051
0.9 ] 1.4524 1.6674 1.4545 1.6732
1.0 | 1.5537 1.5537 1.5574 1.5574

B. Example 4.2

Consider the fuzzy initial value problem,

y (1) =yt e I =[0,1],
y(0) =[0.75+0.25¢,1.125-0.125],0 < 2 <11

$(0.0)=[(0.75+025a) 0" (1125-0.125a) 0" ],
¥(02) =[(0.75+025¢) ¢, (1125 -0.1250) ],
¥(03)=[(0.75+0.25a) ", (1.125-0.1250) ™,
3(04) =[(0.75+0.252) (1125 -0.1250) ],

The exact solution at t=1 is given by

Y(1;a) =[(0.75+0.25x)e, (1.125 — 0.125x)e],
O<a<l.

By using Adam’s-fifth order predictor corrector method the
following results are obtained:
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TABLE 4.2
Adam’sOrder-5 ExactSolution
o = —
Ytsa) ytsa) Yt | Y(t )
0.1 | 2.1067 3.0241 | 2.10666841 | 3.02408853
0.2 | 2.1746 2.9901 | 2.17462546 | 2.99011001
0.3 | 2.2426 2.9561 | 2.24258250 | 2.95613148
0.4 | 2.3105 2.9222 | 2.31053955 | 2.92215296
0.5 | 2.3785 2.8882 | 2.37849660 | 2.88817444
0.6 | 2.4465 2.8542 | 2.44645364 | 2.85419592
0.7 | 2.5144 | 2.8202 | 2.51441069 | 2.82021739
0.8 | 2.5824 | 2.7862 | 2.58236773 | 2.78623887
0.9 | 2.6503 2.7523 | 2.60532478 | 2.75226035
1.0 | 2.7183 27183 | 2.71828182 | 2.71828182

The error of Runge-Kutta method of order 5 and Adam’s
method of order 5 are shown in order to show that our
proposed method gives better solution.

TABLE 4.3

Rk- Order 5 Adam’s -5
a — —

Yt | y(gse) | Xt | Y(tse)

0.1 | 1.615x | 2391x | 8.774Ix | 1.2595x
104 10-8 10-¢ 10-7

0.2 | 1.708x | 2.193x | 9.0571x | 1.2453x
104 10-8 10-2 1077

0.3 | 1.726x | 2.266 9.3401x | 1.2312x
104 x10~% | 10-% 10-7

0.4 | 1.772x 2.241 9.6231x | 1.2171x
104 x10~% | 10-% 10-7

0.5 | 1.824x 2.215 9.9062x | 1.2028x
10-4 %106 | 10-% 10-7

0.6 | 1.876x 2.189 1.0189x | 1.1887x
10-4 x10-% | 1077 10-7

0.7 | 1.928x | 2.163 1.0472x | 1.1745x
10-4 %106 | 1077 10-7

0.8 | 1980x |2.136 1.0755% | 1.1604x
10-4 %1076 | 1077 10-7

0.9 12033x |2.116 1.1038x | 1.1462x
10-4 %106 | 1077 10-7

LO 15 084x | 2.084 1.1321x | 1.1321x
104 x10~% | 1077 10-7
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IV.  CONCLUSION
In this Paper, we have Applied Iterative Solution of

Adam’s Predictor Corrector Fifth Order method for finding
the Numerical Solution of Fuzzy Differential Equations.
Comparison of Solution of Example 1 And 2 Shows that our
Proposed method gives better Solution than Runge-Kutta
Fifth Order method.
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