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Abstract: This The effect of temperature modulation on Rayleigh Benard convection with dielectric fluid is investigated. A 

local nonlinear theory presented using Ginzburg-Landau model. Instability and heat transfer in the medium depends not 

only on system parameters but also on modulation parameters. It is found that, a small variation in modulation parameters 

(į1, φ, ω) there is a significant effect on heat transfer in the system. The nature of Dielectric fluid is to stabilize the system. 

It is found that IPM (synchronous boundaries) is negligible on heat transport while OPM, LBMO (asynchronous 

boundaries) is to regulate heat transport. 
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I. INTRODUCTION 

Magneto-convection in a fluid layer has been 

extensively investigated by Chandrasekhar (1961). 

Numerous practical engineering problems in which 

the temperature gradient is a function of both space 

and time. This non-uniform temperature gradient can 

be achieved by solving the energy equation with 

suitable time dependent thermal boundary conditions 

and can be used as an effective external mechanism to 

control the convective flow. However, in practice, the 

non-uniform temperature gradient finds its origin in 

transient heating or cooling at the boundaries. Hence 

the steady state temperature depends explicitly on 

position and time. This problem, called the 

temperature modulation problem, involves the 

solution of the energy equation under suitable time 

dependent boundary conditions. Predictions exist for 

a variety of responses to modulation depending on the 

relative strength and rate of forcing. Among these, 

there is the upward or downward shift of convective 

threshold compared to the un-modulated problems. 

Lot of work is available in the literature covering how 

a time periodic boundary temperature affects the 

onset of Rayleigh Benard convection. An excellent 

review related to this problem is given by Davis 

(1976). 

Venezian (1969) was the first person who investigated 

thermal instability in a fluid layer under temperature 

modulation considering linear theory, he was motivated 

by the experiment of Donnelly (1964), in which, he 

investigated the effect of rotation speed modulation on 

the onset of instability in fluid flow between two 

concentric cylinders. However, the rotation speed 

modulation was the originating idea of the temperature 

modulation. Gershuni and Zhukhovitskii (1963) 

investigated the stability of equilibrium of a plane 

horizontal layer of fluid with a periodically varying 

temperature gradient obeying rectangular law. Rosenblat 

and Herbert (1970), investigated the linear stability 

problem and found an asymptotic solution by 

considering low frequency modulation and free free 

boundaries. Rosenblat and Tanaka (1971), studied the 

linear stability for a fluid in a classical geometry of 

Benard by considering the temperature modulation of 

rigid-rigid boundaries. The first nonlinear stability 

problem in a horizontal fluid layer, under temperature 

modulation was studied by Roppo et al. (1984). 

Bhadauria and Bhatia (2002), studied the effect of 
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temperature modulation on thermal 

instability by considering rigid rigid boundaries and 

different types of temperature profiles. Malashetty and 

Swamy (2008), investigated thermal instability of a 

heated fluid layer subject to both boundary temperature 

modulation and rotation. Bhadauria et al. (2009), studied 

the non-linear aspects of thermal instability under 

temperature modulation, considering various temperature 

profiles. Raju and Bhattacharyya (2010), investigated 

onset of thermal instability in a horizontal layer of fluid 

with modulated boundary temperatures by considering 

rigid boundaries. Bhadauria et al.(2012) studied 

temperature or gravity modulated non-linear stability 

problem in a rotating viscous fluid layer, using 

Ginzburg-Landau equation for stationary convection. 

Bhadauria et al.(2013) analyzed the effect of temperature 

dependant viscosity on thermal instability under 

temperature modulation by employing Darcy model. 

Bhadauria and Kiran (2014) investigated nonlinear 

double diffusive thermal instability in an electrically 

conducting fluid layer under thermal modulation. 

Dielectric liquids are widely used as electrical insulators 

in high voltage applications, such as transformers, 

capacitors, high voltage cables, and switchgear (namely 

high voltage switchgear). The application of a strong 

electric field in a poorly conducting fluid can induce bulk 

amount of motions. This phenomenon known as electro 

convection or electro hydrodynamics, according to 

Paschkewitz (1998) the above phenomenon is gaining 

importance due to the technological stimulus of 

designing more efficient heat exchangers as required for 

jet engines. This phenomenon as boiling of dielectric 

liquids is an effective and promising cooling mechanism 

for future microelectronic chips Hetsroni (1990) and 

Hollen (1995). The dielectric fluid motor is attractive as 

a source of mechanical energy in a micro-machine, 

where the efficiency of energy transformation from 

electric to kinetic energy is very high Otsubo et 

al.(1997). Since magnetic fields and switching circuits 

are not required the dielectric fluid motor enhances size 

reduction and hence is an attractive source of mechanical 

energy in a micro machine. Convective heat transfer 

through polarized dielectric liquids were studied by 

Stiles et al.(1991,1997). They found that temperature 

drop between an electrically insulating layer of a 

dielectric liquid increases the fraction of the heat transfer 

associated with convection is found to pass through a 

maximum value when the critical horizontal wave 

number is close to 4 times its value when gravity is 

absent. For magneto-convection concerns Siddheshwar 

and Pranesh (2002), analyzed the role of magnetic field 

in the inhibition of natural convection driven by 

combined buoyancy and surface tension forces in a 

horizontal layer of an electrically conducting Boussinesq 

fluid with suspended particles confined between an upper 

free/adiabatic and a lower rigid/isothermal boundary is 

considered in 1g and µ g situations. Bhadauria (2006), 

studied the effect of temperature modulation under 

vertical magnetic field by considering rigid boundaries. 

Bhadauria et al. (2010), investigated magneto-double 

diffusive convection in an electrically conducting fluid 

saturated porous medium with temperature modulation of 

the boundaries. Bhadauria and Sherani (2008, 2010), 

investigated onset of Darcy-convection in a magnetic 

fluid-saturated porous medium subject to temperature 

modulation of the boundaries and magneto-convection in 

a porous medium under temperature modulation. 

Dielectric liquids are widely used as electrical insulators 

in high voltage applications, such as transformers, 

capacitors, high voltage cables, and switchgear (namely 

high voltage switchgear). The application of a strong 

electric field in a poorly conducting fluid can induce bulk 

amount of motions. This phenomenon known as electro 

convection or electro hydrodynamics, according to 

Paschkewitz (1998) the above phenomenon is gaining 

importance due to the technological stimulus of 

designing more efficient heat exchangers as required for 

jet engines. This phenomenon as boiling of dielectric 

liquids is an effective and promising cooling mechanism 

for future microelectronic chips Hetsroni (1990) and 

Hollen (1995). The dielectric fluid motor is attractive as 

a source of mechanical energy in a micro-machine, 

where the efficiency of energy transformation from 

electric to kinetic energy is very high Otsubo et 

al.(1997). Since magnetic fields and switching circuits 

are not required the dielectric fluid motor enhances size 

reduction and hence is an attractive source of mechanical 

energy in a micro machine. Convective heat transfer 

through polarized dielectric liquids were studied by 

Stiles et al.(1991,1997). They found that temperature 

drop between an electrically insulating layer of a 

dielectric liquid increases the fraction of the heat transfer 

associated with convection is found to pass through a 

maximum value when the critical horizontal wave 

number is close to 4 times its value when gravity is 

absent. For magneto-convection concerns Siddheshwar 

and Pranesh (2002), analyzed the role of magnetic field 

in the inhibition of natural convection driven by 

combined buoyancy and surface tension forces in a 

horizontal layer of an electrically conducting Boussinesq 
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fluid with suspended particles confined 

between an upper free/adiabatic and a lower 

rigid/isothermal boundary is considered in 1g and µ g 

situations. Bhadauria (2006), studied the effect of 

temperature modulation under vertical magnetic field by 

considering rigid boundaries. Bhadauria et al. (2010), 

investigated magneto-double diffusive convection in an 

electrically conducting fluid saturated porous medium 

with temperature modulation of the boundaries. 

Bhadauria and Sherani (2008, 2010), investigated onset 

of Darcy-convection in a magnetic fluid-saturated porous 

medium subject to temperature modulation of the 

boundaries and magneto-convection in a porous medium 

under temperature modulation. 

 

A series of work on dielectric fluid layer under 

modulation is given by Siddheshwar et al.(2007), where 

they investigated thermal instability of dielectric fluid 

when the layer is subjected to gravity modulation. The 

effect of both temperature and gravity modulation on 

heat transport in the problem of magneto convection in a 

Newtonian fluid was analyzed by Siddheshwar et al. 

(2012, 2013). One may notice that Siddheshwar et 

al.(2009) is considered time periodic thermal boundary 

conditions in a dielectric fluid layer and presented onset 

convection. But, heat transfer results are missing. As a 

consequence it is required to study nonlinear theory in 

order to understand heat transfer in the system. With this 

concept we have investigated a weak nonlinear theory 

while employing non autonomous Ginzburg-Landau 

equation. 

II. GOVERNING EQUATIONS 

We consider an infinite horizontal dielectric fluid layer 

of depth‘d’ that supports a temperature gradient and an 

ac electric field in the vertical direction. The upper and 

lower boundaries are maintained at sinusoidally varying 

temperatures profile given bellow. For mathematical 

understanding and tractability we confine ourselves to 

study two-dimensional rolls so that all physica 

l quantities are independent of y, a horizontal co-

ordinate. Further, the boundaries are assumed to be free 

and perfect conductors of heat. In this paper we assume 

the effective viscosity µ to be constant and the reference 

viscosity µ1 will be used to denote the constant viscosity. 

Under the Boussinesq approximation, the dimensional 

governing equations are [Siddheshwar et al.(2013)]: 

,                                                         (1) 

,  (2) 

                   (3) 

,        (4) 

       (5) 

and . 

The equation of state for dielectric constant  is: 

      (6) 

Where  is an ac electric field, C(V E) is an effective 

heat capacity at constant volume and electric field,  is 

the root mean square value of the electric field at the 

lower surface,  is thermal conductivity, is dielectric 

polarisation and is thermal expansion coefficient. We 

note here that the assumed Strength  of is such that it 

does not induce any non-Newtonian characteristics in the 

dielectricliquid. It is expedient to write , 

where  is the electric susceptibility, for it enablesus to 

arrive at the conventional definition   in the 

absence of the temperature dependence of  , that is, 

when e = 0. We continue using Eq. (6) with  replaced 

by (1 + ). In writing Eq.(6) we have assumed that  

varies with the electric field strength quite insignificantly 

(Stiles et al.,1993). The externally imposed thermal 

boundary conditions, considered in this paper are given 

by (Venezian (1969)): 

 

                    at   z=0 

                 at   z=d   (7) 

where  represents the amplitude of temperature 

modulation, is modulation frequency and is the 

phase difference. The electric boundary conditions are 

that the normal component of the electric displacement  

and tangential component of the electric field  are 

continuous across the boundaries. Taking the 

components of polarization and electric field in the basic 

state to be [0, Pb(z)]and [0,Eb(z)], we obtain the 

conduction state solutions as: 

                     (8) 

         (9) 

                (10) 

,              (11) 
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where E0 is the root mean square value 

of the electric field at the lower surface. Now, we impose 

finite amplitude perturbations to the basic state of the 

form: 

                              (12) 

where primes denote the quantities at the perturbations, 

and now the quantities leads to  

 

                            (13) 

where it has been assumed that . 

Further, we consider only two dimensional 

disturbances in our study and hence the stream function 

can be drawn from Eq. (1) and intro- 

ducing the perturbed electric potential through the 

relation , eliminate density and 

pressure terms from Eq.(2) and the resulting system is 

non-dimensionalized using the following scal- 

ing: , 

. For  

simplicity, we drop the asterisk, then the non-

dimensionalized governing equations derived from Eqs. 

(1) -(6) are:   

-∇ ̇4Ψ+(RaT+RE) -RE =- ∇̇2Ψ+RE + 

                                                      (14) 

-∇ ̇2T =- +       (15) 

-∇ ̇2       (16) 

where the non-dimensionalized numbers are Pr=Ȟ/kT is 

Prandtl number, RaT=αTgΔTd3/ȞkT is the thermal 

Rayleigh number and RE=İ(eE0ΔTd)2/ȝ1kT(1+χE) is the 

electric Rayleigh number. The Eq.(15) shows the basic 

state solution temperature influences the stability 

problem. Since, we assume small variations of time, 

therefore re-scaling it as t=İ2τ. The considered stress free 

and isothermal boundary conditions to solve the 

Eqs.(14)-(16) are:  

Ψ=∂2Ψ/∂z2
=T=0 at z=0, z=1.                    

(17) 

III. FINITE AMPLITUDE EQUATION AND HEAT TRANSPORT 

We introduce the following asymptotic expansions in 

Eqs.(14)-(16).  

RaT=R0+İR1+İ2
R2+İ3

R3+........, 

Ψ=İΨ1+İ2Ψ2+İ3Ψ3+........, 

T=İT1+İ2
T2+İ3

T3+........, 

φ =İ φ 1+İ2
 φ 2+İ3

 φ 3+........,               (18) 

 

where R0 is the critical value of the Rayleigh number at 

which the onset of convection takes place in the absence 

of temperature modulation. Now, we solve the system for 

different orders of İ. At the lowest order, we consider the 

following solution (the readers may refer Bhadauria and 

Kiran (2013, 2014):  

Ψ1=-c/a A sin(ax)sin(πz).,                            (19) 

T1=A cos(ax)sin(πz).,               (20) 

Φ1=π/c A cos(ax)cos(πz).,                            (21) 

where c=a
2
+π2

. 

 

The critical value of the Rayleigh number for the onset of 

convection in the absence of temperature modulation is: 

R0=c
3
/a

2
-REa

2
/c. If RE=0, we obtained the classical 

results of Rayleigh-Benard convection obtained by 

Chandrasekhar (1961). Here a critical value of the wave 

number and is defied while minimizing R0 with respect 

to a. For second order system, following the similar 

analysis of Bhadauria et al.(2013) and Siddheshwar et 

al.(2013),  subjected to the boundary conditions given in 

Eq.(17), we obtain the following results 

 

Ψ2=0.,               

T2=-c/8π A
2(τ) sin(2πz).,            (22) 

Φ2=0.,              (23) 

 

The horizontally averaged Nusselt number, Nu, for the 

stationary mode of convection is given by: 

Nu=1+(c/a) A
2(τ).            (24) 

Here, we notice that thermal modulation is effective at 

second order and affects the above Nusselt number. At 

the third order, we have solution of the following form 

(the readers may refer Bhadauria and Kiran (2013, 

2014):  

 

R31= ∇̇2Ψ-R2 +RE           (25) 

R32= + + δ1 f1            (26) 

R33=              (27) 

Substituting Ψ1, T1 and T2 into Eqs.(25-27), we can 

obtain expressions for R31, R32 and R33 easily. Now by 
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applying the solvability condition for 

the existence of third order solution, we get the non 

autonomous Ginzburg-Landau equation for stationary 

convection with time-periodic coefficients in the form: 

Q1 = Q2  Q3               (28) 

where Q1=(1+Pr)/Pr,  Q2= a
2
/c

2
 R2-2c δ1 I(τ), Q3= c

2
/8+ 

RE a
2
 π2

/8c
2  

and I(τ)= .  

The Ginzburg-Landau equations given in Eq.(28) is 

Bernoulli equation and obtaining its analytical solution is 

not an easy task, due to its non-autonomous nature. So it 

has been solved numerically using the in-built function 

NDSolve of Mathematica, subjected to the initial 

condition A(0)=a0 where a0 is the chosen initial 

amplitude of convection. In our calculations we may use 

R2=R0, to keep the parameters to the minimum. We 

have calculated the mean value of Nusselt number 

(MNu) foe better understanding the effect of thermal 

modulation on heat transport, a representative time 

interval that allows a clear comprehension of the 

modulation effect needs to be chosen. The interval (0,2π) 

seemed an appropriate interval to calculate MNu. The 

time-averaged Nusselt number MNu is defined as 

MNu=1/2π .    (29) 

An interesting observation that can be observed in I1, 

that determines whether the modulation amplifies or 

diminishes the amplitude of convection. A discussion of 

the results now follows culminating in a listing of 

conclusions. 

IV. RESULTS AND DISCUSSION 

This paper is an attempt to find temperature 

modulation effect on Rayleigh-Benard convection with 

dielectric fluid. A non-linear realm of convection has 

been considered to investigate heat transport in terms of 

Nusselt and mean Nusselt numbers as a function of 

system parameters. We consider a small amplitude 

temperature modulation is to discount possible 

oscillatory convection that might be triggered by large 

amplitude temperature modulation. We also assume low 

values of frequency of modulation where for low values 

of frequency heat transfer is maximum. The effect of the 

applied electric field comes through the electrical 

Rayleigh number RE. Fredholm alternative condition is 

invoked for deriving Ginzburg-Landau equation in order 

to find an amplitude of convection, which is used to 

calculate Nu and MNu. The results have been presented 

here in two ways one for Nu and another for MNu. In 

Fig.1-4 the results are given for Nu as a function of time 

and by showing the individual parameter effect on Nu. 

Figure 1 present heat transfer results corresponding (RE, 

δ1, ω). In Fig.1a the effect of RE and in Fig.1b the effect 

of ω is presented. It is found that, as the value of (RE, ω) 
increases heat transfer decrease in the system. Indicating 

that the nature of dielectric fluid opposes the fluid 

motion in the system and the convection delays, as a 

consequence heat transfer decreases. In the case of 

frequency of modulation as ω  increased, the wave length 

becomes shortens and reduces heat transfer in the 

system. 

The results are similar to Siddheshwar et al.(2007) for 

gravity modulation with the same model. The effect of 

amplitude δ1 of modulation is presented in Fig.1c. It is 

found that, as δ1 varies heat transfer increases in the 

system. The reader may understand that the concept of 

modulation may use to regulate heat transfer in the 

system. The same concept may be used to delay or 

advance onset of convection using linear theory reported 

by Siddheshwar et al.(2009).  

A close observation on  and ω is made in order to 

understand the effect of modulation on mean Nusselt 

number. It is found that in Fig.2 and 3 for a given 

frequency of modulation there is a range of  in which 

MNu increases with increasing  and another range in 

which MNu decreases. Thus, one may conclude that, the 

combination of choices of ω and   can be made 

depending on the demands on heat transport in an 

application situation. Heat transfer can be regulated 

(enhanced or reduced) with the external mechanism of 

temperature modulation. Our results are compatible with 

http://www.ijartet.com/


                                                                                                                    ISSN 2394-3777 (Print) 
                                                                                                                                                             ISSN 2394-3785 (Online)    
                                                                                                                                         Available online at www.ijartet.com  
                         
                             
                            International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) 

  Vol. 5, Special Issue 12, April 2018 

 

 

 

                                                                 All Rights Reserved © 2018 IJARTET                                                   475 
 

results of Malashetty et al.(2002). We 

also can observe our results in Figs.5-7 are the results 

which are similar to Siddheshwar et al. (2013) for the 

ordinary fluid layer where RE=0. The effect Pr is to 

destabilize the system and hence heat transfer. 

The values of Pr  ranging from 1 to 20 to retain the 

inertial effects in the momentum equation. It is being 

observed from the figures, no modulation effect on Nu as 

there is an effect for lower values of time and becomes 

steady. Since there is no effect is being observed for IPM 

case of δ1, ω we have omitted figure representation. The 

Nusselt number starts with 1 showing steady state and 

becomes unsteady showing convective regime in the 

medium. 

 
 

It is clear that for the case of thermal modulation (in 

Fig.4a), the boundary temperatures should not be in in-

phase modulation (synchronized), where the effect of 

modulation is negligible on heat transport. The lower 

boundary case the results followed by OPM, but 

magnitude in Nu will be different in all the three cases 

given in Fig.4a. In Fig.4b it is observed that, Nu is 

obtained in terms of ω and the results conform the nature 

of ω as it is increases reduces the heat transfer in the 
system. To check the accuracy of our results, the present 

study results have been compared while solving an 

amplitude equation Eq.(28) with RKF45 and found best 

approximation presented in Fig.4c. The reader may also 

look at the studies of Venezian (1969), Bhadauria and 

Kiran (2013, 2014) for the results corresponding to 

temperature modulation.  

 

 

V. CONCLUSIONS 

A Weak nonlinear theory being investigated to study heat 

transport in dielectric fluid layer under thermal 

modulation. Ginzburg-Landau model was used to derive 

amplitude equation as a function of slow time and mean 

Nusselt number in terms of (ω and ). The following 

conclusions escribe our previous analysis: 

 

1. In-phase modulation has no significance on heat 

transport hence it is negligible. 

2. Asynchronous boundaries can be used 

effectively to regulate the system. 

3. [MNu/Nu] (δ1=0) ≈MNu/Nu( δ1≠0) for IPM 
case. 

4. MNu, Nu increases as PrD, δ1, and decreases as 

ω, RE increases. 

5. For a better choice of the values of ω and , 

heat transfer results may hold. 
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