
 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

FLOATING POINT ARITHMETIC UNIT

CYAMIRON

SHRESTHA,

BTI, Bangalore,

India.

kyamironstha@gma

il.com

BIRENDRA

SHRESTHA

BTI, Bangalore,

India.

Sdhiren24@gmail.c

om

Floating Point Arithmetic unit

is possible to development Very Large Scale I

algorithm for the arithmetic unit has been implemented on Spartan3 XC3S400 FPGA Board

The arithmetic operations like addition, subtract

arithmetic unit. The purpose of this paper is to overcome the delay time of

like addition, subtraction and multiplication

computations. All the algorithm modules are coded by using Verilog HDL and Simulated with Xilinx ISE tools.

Keywords—FPGA; Floating Point N

Floating Point (FP) Arithmetic is used for a variety of Digital Signal P

it allows the designer and the user to concentrate on the algorithms and architecture without

issues. In early daysmany DSP applications used fixed point a

delay and power consumption of Floating Point arithmetic unit. Floating Point also supports the much wider

range of values then the fixed point and also have the ability to represent the very small number to t

number. In DSP applications they have

Point operations haveapplications in communication,

Realization of complex digital circuits i

circuit technology. Therefore various conventional and non

Floating Point Arithmetic operation.

different things working together as one unit

This paper implements algorithm for

Floating Point numbers like addition, subtraction and multiplication

SIGN

Figure 1:

Floating Point number for 32 bit format includes 1 sign bit, 8 bits for exponential and 23 bits wide

mantissa or fractions. In this algorithm a

register for the end result. For the

inexact, exception and invalid is been used in the algorithm

Floating-point operations are needed very frequently in nearly all computing disciplines, and studie

have shown floating-point addition to be the most used Floating

for the floating-point adder that closely follows the IEEE

operations.

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

FLOATING POINT ARITHMETIC UNIT
BIRENDRA

SHRESTHA,

BTI, Bangalore,

India.

Sdhiren24@gmail.c

NABIN DHAKAL,

BTI, Bangalore,

India.

dhakalnabin013@g

mail.com

KORASH

WAIBA,
BTI, Bangalore,

India.

waibakorash@gmai

l.com

ABSTRACT

nit plays a vital role in digital systems. With the over view of complex digital circuits

s possible to development Very Large Scale Integration (VLSI) circuit technology for the arithmetic unit

has been implemented on Spartan3 XC3S400 FPGA Board for the Floating point numbers.

addition, subtraction and multiplication on Floating Point numbers have been implemented

The purpose of this paper is to overcome the delay time of arithmetic operations of floating point

like addition, subtraction and multiplication. Floating Point Arithmetic unit is used for execution of the floating point

modules are coded by using Verilog HDL and Simulated with Xilinx ISE tools.

FPGA; Floating Point Numbers; Verilog;

I. INTRODUCTION

metic is used for a variety of Digital Signal Processing (DSP)

llows the designer and the user to concentrate on the algorithms and architecture without

early daysmany DSP applications used fixed point arithmetic due to high cost

delay and power consumption of Floating Point arithmetic unit. Floating Point also supports the much wider

range of values then the fixed point and also have the ability to represent the very small number to t

y have high accuracy and impressive precision with dynamic

pplications in communication, multimedia system and the signal processing techniques.

l circuits is possible with development in Very Large Scale I

gy. Therefore various conventional and non-conventional arithmetic methods are required for the

Floating Point Arithmetic operation.Initially Floating Point was allowed via coprocessor rather than having

different things working together as one unit and in microcomputers time a single microchi

implements algorithm for thearithmetic unit that are specially designed for

like addition, subtraction and multiplication.

1bit 8 bit 23 bit

SIGN EXPONENT MANTISSA

Figure 1: Representation of 32bit Floating Point Number

Floating Point number for 32 bit format includes 1 sign bit, 8 bits for exponential and 23 bits wide

mantissa or fractions. In this algorithm a 32 bit operandisused forthe operations to be performed

For the representation of the operation, signals status like

is been used in the algorithm.

II. LITERATURE SURVEY

point operations are needed very frequently in nearly all computing disciplines, and studie

point addition to be the most used Floating-Point operation. In this, the operation presents

point adder that closely follows the IEEE-754 specification for floating

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 490

FLOATING POINT ARITHMETIC UNIT

PROF. KIRAN

KUMAR
BTI,Bangalore,

India.

kirankumarec029@

gmail.com

of complex digital circuits it

for the arithmetic unit. In this paper,

for the Floating point numbers.

oint numbers have been implemented on

arithmetic operations of floating point numbers

Arithmetic unit is used for execution of the floating point

modules are coded by using Verilog HDL and Simulated with Xilinx ISE tools.

cessing (DSP)applications and

llows the designer and the user to concentrate on the algorithms and architecture without complex numerical

metic due to high cost in area of utilization,

delay and power consumption of Floating Point arithmetic unit. Floating Point also supports the much wider

range of values then the fixed point and also have the ability to represent the very small number to the very large

precision with dynamic range.Floating

multimedia system and the signal processing techniques.

s possible with development in Very Large Scale Integration (VLSI)

entional arithmetic methods are required for the

via coprocessor rather than having

a single microchip was used.

designed for various operations on

Floating Point number for 32 bit format includes 1 sign bit, 8 bits for exponential and 23 bits wide

to be performed and operator

status like overflow, underflow,

point operations are needed very frequently in nearly all computing disciplines, and studies

Point operation. In this, the operation presents

754 specification for floating-point arithmetic

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

[1] This paper presents the systems using digital signal processing multiply

functions. The whole systems performance depends on the performance of the MAC units. It also presents that

the design and implementation of 16 bit Floating Point mu

consists of three units like Floating Point multiplier, Adder and an Accumulator. The input takes the half

precision format where there is 1 bit sign, 7

of operation faster.

[2] This paper presents an open source Floating P

custom number format based on radix

format is not identical to the single-precision IEEE

a way that the numerical results for a given operation will be identical to the result from an IEEE

operator with support for round-to-nearest even, NaNs and Infs, and subnormal numbers. The drawback of this

number format is that the rounding step is more involved than in a regular, radix

hand, the use of a high radix means that the area cost associated with normalization and denormalization can be

reduced, leading to a net area advantage for t

subnormal numbers is required. The adder can operate at 319MHz and multiplier can operate at a frequency of

305MHz.

[3] The paper presents an arithmetic unit based on IEEE

implemented on Spartan3E XC3S500e FPGA Board and follows IEEE single precision format. Various

arithmetic operations on Floating-Point number have been performed on arithmetic unit. This can perform 50

Mega floating point operation per second at 50MHz clock. Three stages of all arithmetic operations are

normalize stage, arithmetic core and post

into formats so that they can be handled easily and efficiently.

done. Lastly in post normalize stage the result is normalized and converted into format specified by IEEE

standard.

A Floating Point number

Floating Point number is represented in a standard form

F = -1
s
x 1.M x2

E

Where, S is Sign part, M is Mantissa part, and E is E

For 32bit floating point number

When the mantissa is leading

produce a leading should be 0 and

exponent of the floating point is given by the usual

E = E
true

 +bias.

Common value of the bias of Floating Point number

2
e-1

- 1

Where, e is the number of bits present

numbers.

IV. IMPLEMENTATION OF FLOATING POINT UNIT

The arithmetic operations are done

operation stage and post-normalize stage.

more easily and efficiently in pre-

core. At lastly the result is normalized and converted into format

normalize stage.

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

ts the systems using digital signal processing multiply-accumulate which is the one of the

functions. The whole systems performance depends on the performance of the MAC units. It also presents that

the design and implementation of 16 bit Floating Point multiplication and additions. Where MAC unit generally

consists of three units like Floating Point multiplier, Adder and an Accumulator. The input takes the half

precision format where there is 1 bit sign, 7-bit exponent and 8 bit mantissa therefore making t

resents an open source Floating Point adder and multiplier implemented using a 32

custom number format based on radix-16 and optimized for 7 series FPGAs from Xilinx. Although this number

precision IEEE-754 format, the Floating Point operators ar

a way that the numerical results for a given operation will be identical to the result from an IEEE

nearest even, NaNs and Infs, and subnormal numbers. The drawback of this

s that the rounding step is more involved than in a regular, radix-2 based operator. On the other

hand, the use of a high radix means that the area cost associated with normalization and denormalization can be

reduced, leading to a net area advantage for the custom number format, under the assumption that support for

subnormal numbers is required. The adder can operate at 319MHz and multiplier can operate at a frequency of

] The paper presents an arithmetic unit based on IEEE-754 standard for floating-point numbers has been

implemented on Spartan3E XC3S500e FPGA Board and follows IEEE single precision format. Various

Point number have been performed on arithmetic unit. This can perform 50

ion per second at 50MHz clock. Three stages of all arithmetic operations are

normalize stage, arithmetic core and post-normalize stage. In pre- normalize stage the operands are converted

into formats so that they can be handled easily and efficiently. In arithmetic core basic arithmetic operations are

done. Lastly in post normalize stage the result is normalized and converted into format specified by IEEE

III. NUMBER SYSTEMS

A. Floating Point Number

oint number is a number which represents the specific way of encoding a number. A

is represented in a standard form

Where, S is Sign part, M is Mantissa part, and E is Exponent part of the Floating Point number.

Bit No Size Name

31 1 bit Sign (S)

23-30 8 bits Exponent (E)

0-22 23 bits Mantissa (M)

leading by 1 and implied in hardware. So, itmeans that for computations the

 fraction must be shifted. The only leading 1 is for gr

exponent of the floating point is given by the usual biased format which is given by

of Floating Point number is given by

present in the exponent part. It is done by make comparisons

IMPLEMENTATION OF FLOATING POINT UNIT

The arithmetic operations are done in three stages and they are pre-normalize stage, arithmetic

normalize stage. The operands are converted into a formats so that they can be handled

 normalize stage. Various basic arithmetic operations are done

rmalized and converted into format which is specified by IEEE standard

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 491

accumulate which is the one of the

functions. The whole systems performance depends on the performance of the MAC units. It also presents that

Where MAC unit generally

consists of three units like Floating Point multiplier, Adder and an Accumulator. The input takes the half-

bit exponent and 8 bit mantissa therefore making the performance

oint adder and multiplier implemented using a 32-bits

16 and optimized for 7 series FPGAs from Xilinx. Although this number

754 format, the Floating Point operators are designed in such

a way that the numerical results for a given operation will be identical to the result from an IEEE-754 compliant

nearest even, NaNs and Infs, and subnormal numbers. The drawback of this

2 based operator. On the other

hand, the use of a high radix means that the area cost associated with normalization and denormalization can be

he custom number format, under the assumption that support for

subnormal numbers is required. The adder can operate at 319MHz and multiplier can operate at a frequency of

point numbers has been

implemented on Spartan3E XC3S500e FPGA Board and follows IEEE single precision format. Various

Point number have been performed on arithmetic unit. This can perform 50

ion per second at 50MHz clock. Three stages of all arithmetic operations are- pre-

normalize stage the operands are converted

In arithmetic core basic arithmetic operations are

done. Lastly in post normalize stage the result is normalized and converted into format specified by IEEE

is a number which represents the specific way of encoding a number. A

number.

by 1 and implied in hardware. So, itmeans that for computations the

is for gradual underflow. The

make comparisons of floating point

normalize stage, arithmetic

formats so that they can be handled

asic arithmetic operations are done in arithmetic

specified by IEEE standard in post-

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

Suppose two floating-point numbers

(M1 x 2^E1) + (M2 x 2^E2) = M x 2^E

Where M is Mantissa

 E is Exponent of the Radix(r)

 Radix(r) = 2

 M1 is Mantissa of first number

 M1is Exponent of the Radix(r) of first number

 M2 is Mantissa of second number

 E2 is Exponent of the Radix(r) of second nu

The sum of mantissas is the mantissa part

are properly normalized and if M11 and M2

mantissa part of sum.

Fig 1. Block Diag

For the computation of Floating Point addition

EXPONENT

OF A

EXPONENT

EXPONENT COMPARE

RESULT EXPONENT

NORMALIZATION AND ROUNDING OF RESULTS

EL = EA

ES =EB

ML=MA

MS=MB

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

A. Addition/Subtraction

point numbers are given, then sum of these numbers are

x 2^E

1 is Mantissa of first number

1is Exponent of the Radix(r) of first number

2 is Mantissa of second number

E2 is Exponent of the Radix(r) of second number

The sum of mantissas is the mantissa part and whereas the exponent part of the sum is remain same. M1 and M

properly normalized and if M11 and M2 are not properly normalized than we have to

Block Diagram of Floating-Point Addition/Subtraction

B. Addition/Subtraction Algorithm

oint addition and subtraction are more complex rather than multiplication.

EXPONENT

OF B

ADD/SUBTRACT MANTISSAS

EXPONENT COMPARE

RESULT MANTISSARESULT EXPONENT

NORMALIZATION AND ROUNDING OF RESULTS

SHIFT MANTISSA TO EQULIZE

EXPONENTS

MANTISSA

OF A

Operand A = SignA& EA& MA

Operand B = SignB& EB& MB

EA >EB

Shift Right MS diff bits

M0=MS+\-ML

E0=EL

Diff = EL – E0

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 492

s remain same. M1 and M2

we have to first normalize the

than multiplication.

ADD/SUBTRACT MANTISSAS

RESULT MANTISSA

NORMALIZATION AND ROUNDING OF RESULTS

SHIFT MANTISSA TO EQULIZE

EXPONENTS

MANTISSA

OF A

EL = EB ES =EA

ML=MB

MS=MA

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

Fig. 2: Flowchart

Here are the some algorithm for computation of Floating Point addition ha

Suppose X1 and X2 be two numbers and X3 be the resultant. The sum/different of these numbers is given by

X3 = X1 +/- X2

X3 = (M1 x 2
E1

) +/- (M2 x 2
E2

)

1. When the exponents are the same(i.e. E1=E2) then X1 and X2 can only be added.

2. Assume X1 has the larger absolute value of the two numbers. Then absolute value of X1 should be

greater than absolute value of X2. Otherwise swap the values such that absolute value of X1 is greater

than absolute value of X2. (i.e. Abs(X1) > Abs(X2)).

3. At first initial value of the exponent should be the larger of the two numbers, since exponent of X1

will be bigger. Therefore, initial exponent result E3 = E1.

4. The difference of exponents is calculated. i.e. diff = (E1

5. Then left shift the decimal po

both X1 and X2 are now same.

6. The sum/difference of the mantissas depending on the sign bit S1 and S2 are calculated.

 If signs part of X1 and X2 are equal (S1 == S2) then the mant

 Otherwise the mantissas are subtracted (i.e.S1! =S2).

7. Then the resultant mantissa (M3) is normalized if it is needed. Then the 1.M3 format and the initial

exponent result E3=E1 have to be adjusted according to the normalization of ma

8. If anyone of the operands is infinity or if resultant exponent is greater than maximum exponent (i.e. E3

>Emax), then overflow have occurred. Therefore, the output should set to infinity. If resultant exponent

is less than minimum exponent (

to zero.

9. Not a numbers (NaN) are not supported in Floating Point operations.

In this designed the single-precision multiplier for floating

part and 9 bit for exponent part. If there is a

complement format.

We supposed, the two Floating Point numbers

number is given by

(M1×2^E1) × (M2 × 2^E2) = (M1 × M2) × 2^ (E1+E2) = M

Where M is Mantissa

 E is Exponent of the Radix(r)

 Radix(r) = 2

 M1 is Mantissa of first number

 E1is Exponent of the Radix(r) of first number

 M2 is Mantissa of second number

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

 Yes

 No

2: Flowchart of Addition and Subtraction Computation

Here are the some algorithm for computation of Floating Point addition have been given below:

Suppose X1 and X2 be two numbers and X3 be the resultant. The sum/different of these numbers is given by

When the exponents are the same(i.e. E1=E2) then X1 and X2 can only be added.

Assume X1 has the larger absolute value of the two numbers. Then absolute value of X1 should be

greater than absolute value of X2. Otherwise swap the values such that absolute value of X1 is greater

than absolute value of X2. (i.e. Abs(X1) > Abs(X2)).

first initial value of the exponent should be the larger of the two numbers, since exponent of X1

will be bigger. Therefore, initial exponent result E3 = E1.

The difference of exponents is calculated. i.e. diff = (E1-E2).

Then left shift the decimal point of mantissa (M2) by the exponent difference. Since the exponents of

both X1 and X2 are now same.

The sum/difference of the mantissas depending on the sign bit S1 and S2 are calculated.

If signs part of X1 and X2 are equal (S1 == S2) then the mantissas are added.

Otherwise the mantissas are subtracted (i.e.S1! =S2).

Then the resultant mantissa (M3) is normalized if it is needed. Then the 1.M3 format and the initial

exponent result E3=E1 have to be adjusted according to the normalization of mantissa part.

If anyone of the operands is infinity or if resultant exponent is greater than maximum exponent (i.e. E3

>Emax), then overflow have occurred. Therefore, the output should set to infinity. If resultant exponent

is less than minimum exponent (i.e. E3 <Emin) then it is an underflow. Therefore, the output should set

Not a numbers (NaN) are not supported in Floating Point operations.

C. Multiplication

precision multiplier for floating-point numbers. We have u

xponent part. If there is a negative numbers then that number should be taken

oint numbers and taken for multiplication operation. The product

(M1×2^E1) × (M2 × 2^E2) = (M1 × M2) × 2^ (E1+E2) = M × 2^E

1 is Mantissa of first number

E1is Exponent of the Radix(r) of first number

2 is Mantissa of second number

Round M0

Normalize

Exception

occurred?

Signal exception

Output=sign0& E0& M0

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 493

ve been given below:

Suppose X1 and X2 be two numbers and X3 be the resultant. The sum/different of these numbers is given by

When the exponents are the same(i.e. E1=E2) then X1 and X2 can only be added.

Assume X1 has the larger absolute value of the two numbers. Then absolute value of X1 should be

greater than absolute value of X2. Otherwise swap the values such that absolute value of X1 is greater

first initial value of the exponent should be the larger of the two numbers, since exponent of X1

int of mantissa (M2) by the exponent difference. Since the exponents of

The sum/difference of the mantissas depending on the sign bit S1 and S2 are calculated.

Then the resultant mantissa (M3) is normalized if it is needed. Then the 1.M3 format and the initial

ntissa part.

If anyone of the operands is infinity or if resultant exponent is greater than maximum exponent (i.e. E3

>Emax), then overflow have occurred. Therefore, the output should set to infinity. If resultant exponent

i.e. E3 <Emin) then it is an underflow. Therefore, the output should set

We have used 23 bit mantissa

then that number should be taken in 2’s

he product of these two

Signal exception

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

 E2 is Exponent of the Radix(r) of second number

The mantissa part of the product

part of the product of these two numbers is the sum of exponents. We assumed that M1 and M2 are properly

normalized. If they are not normalized than first normalize the mantissa

Fig.3: Block Diagram of Floating Point Multiplication

a.

• Addition of exponents and then subtract bias.

• The mantissa parts of these numbers are multiplied

• Then the resulting value of the product is normalized

• When the mantissa of the product is reduced by half

multiplication.

• The algorithm for the multiplication is done in

multiply:

(a) Multiply fractions and calculate the result exponent.

(b) Round the fraction to nearest-even

(c) Result = 2
83

× 1.1100

TABLE I. COMPARISON

Slices For Addition

Slices For Subtraction

LUTs For Addition

LUTs For Subtraction

EXPONENT

OF A

EXPONENT

ADD

RESULT EXPONENT

NORMALIZATION AND ROUNDING OF RESULTS

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

E2 is Exponent of the Radix(r) of second number

part of the product of these two numbers is the product of mantissa

of these two numbers is the sum of exponents. We assumed that M1 and M2 are properly

lized than first normalize the mantissa part of product of these two numbers

: Block Diagram of Floating Point Multiplication.

a. Floating point multiplication algorithm

then subtract bias.

The mantissa parts of these numbers are multiplied and also the sign of result is determined

of the product is normalized.

hen the mantissa of the product is reduced by half than the rounding of numbers occurs in floating point

for the multiplication is done in 3 steps. For example let us take two 5

(2
100

× 1.1001) × (2
110

× 1.0010)

(a) Multiply fractions and calculate the result exponent.

1.1001 × 1.0010 = 1.11000010

So, M0= 1.11000010 and

E0= 2
100+110−bias

= 2
83

even

M0 = 1.1100

V. IMPLEMENTATION RESULTS

In Our Paper In Reference Paper

 155 out of 3584 (4%) 157 out of 2448 (6%)

Slices For Subtraction 155 out of 3584 (4%) 157 out of 2448 (6%)

 295 out of 7168 (4%) 279 out of 4896(5%)

LUTs For Subtraction 295 out of 7168 (4%) 279 out of 4896(5%)

EXPONENT

OF B

RESULT MANTISRESULT EXPONENT

NORMALIZATION AND ROUNDING OF RESULTS

MULTIPLY

MANTISSA

OF A

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 494

of these two numbers is the product of mantissas, and the exponent

of these two numbers is the sum of exponents. We assumed that M1 and M2 are properly

of these two numbers.

is determined.

occurs in floating point

two 5- digits FP numbers to

Reference Paper[1]

157 out of 2448 (6%)

157 out of 2448 (6%)

279 out of 4896(5%)

279 out of 4896(5%)

RESULT MANTISSA

NORMALIZATION AND ROUNDING OF RESULTS

MULTIPLY

MANTISSA

OF A

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

From the table I shows the comparison for slices and LUTs of floating point operation like addition and

subtraction.

[1]International journal of modern trends in engineering and science on”Design of 16

Saravana R, Balaji P,Prabu R

[2]”Area Efficient Floating-Point Adder and Multiplier with IEEE

[3] Prateek Sing Instrumentation and Control Department College of Engineering Pune, India 41105 “Optimizied Floating Point Arithmeti

Unit”.

[4]Koren, Israel, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd., Natick, MA, 2002.

[5] G. Lienhart, A. Kugel, and R. Manner, “Using floating

Programmable Custom Computing Machines, 2002. Proceedings. 10

[6] D. G. Bailey, “Space efficient division on fpgas,” in

[7] N. Sorokin, “Implementation of high-speed fixed

[8] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. S. Hemmert, “A comparison of floating point and logarith

number systems for fpgas,” in Field-Programmable Custom ComputingMachines, 2005. FCCM 2005. 13th Annual IEEE Symposium on

IEEE,

2005, pp. 181–190.

[9] R. Goldberg, G. Even, and P.-M. Seidel, “An fpga implementation of pipelined multiplicative division with i

Programmable Custom Computing Machines, 2007. FCCM 2007. 15

[10] “Digital Signal Processing with Field Programmable Gate Array” by Dr. Uwe Meyer

[11] “Digital Systems Design using VHDL” by Charles H. Roth.

[12] “Design Through Verilog HDL” by T.R.Padmanabhan and B.Bala Tripura Sundari.

[13] Peter-Michael seidel and Guy Even.On the Design of Floating

Arithmetic.

ISSN2394

ISSN2394

 Available online

International Journal of Advanced Research Trends in Engineering and Technology

Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET

comparison for slices and LUTs of floating point operation like addition and

REFERENCES

[1]International journal of modern trends in engineering and science on”Design of 16-bit Floating Point Multiply and Accumulate Unit” by

Point Adder and Multiplier with IEEE-754 Compatible Semantics” 2014 IEEE.

ation and Control Department College of Engineering Pune, India 41105 “Optimizied Floating Point Arithmeti

]Koren, Israel, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd., Natick, MA, 2002.

] G. Lienhart, A. Kugel, and R. Manner, “Using floating-point arithmetic on FPGAs to accelerate scientific n-

Programmable Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE Symposium on. IEEE, 2002, pp. 182

] D. G. Bailey, “Space efficient division on fpgas,” in Electronics New Zealand Conference (EnzCon’06), 2006, pp. 206

speed fixed-point dividers onFPGA,” Journal of Computer Science & Technology

] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. S. Hemmert, “A comparison of floating point and logarith

Programmable Custom ComputingMachines, 2005. FCCM 2005. 13th Annual IEEE Symposium on

M. Seidel, “An fpga implementation of pipelined multiplicative division with i

Programmable Custom Computing Machines, 2007. FCCM 2007. 15thAnnual IEEE Symposium on. IEEE, 2007, pp. 185

] “Digital Signal Processing with Field Programmable Gate Array” by Dr. Uwe Meyer-Baese.

gn using VHDL” by Charles H. Roth.

] “Design Through Verilog HDL” by T.R.Padmanabhan and B.Bala Tripura Sundari.

Michael seidel and Guy Even.On the Design of Floating-Point Adders.In proceedings of the 15th IEEE symposium of Computer

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
Available online atwww.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology

 495

comparison for slices and LUTs of floating point operation like addition and

bit Floating Point Multiply and Accumulate Unit” by

ation and Control Department College of Engineering Pune, India 41105 “Optimizied Floating Point Arithmetic

-body simulations,” in Field-

. IEEE, 2002, pp. 182–191.

, 2006, pp. 206–211.

Journal of Computer Science & Technology, vol. 6, 2006.

] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. S. Hemmert, “A comparison of floating point and logarithmic

Programmable Custom ComputingMachines, 2005. FCCM 2005. 13th Annual IEEE Symposium on.

M. Seidel, “An fpga implementation of pipelined multiplicative division with ieee rounding,” in Field-

. IEEE, 2007, pp. 185–196.

Point Adders.In proceedings of the 15th IEEE symposium of Computer

