
ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 145

REDUCING APPLICATION UPDATES
SIZE FOR ANDROID DEVICES

 P. RAKSHITHA

#1
NESARA SINDHURI.V

#2

Department of Computer Science and Engineering Department of Computer Science and Engineering
C Byregowda Institute Of Technology C Byregowda Institute Of Technology Kolar-
Srinivaspur Road- 563101,Karnataka,India Kolar-Srinivaspur Road- 563101,Karnataka,India
p.rakshitha7296@gmail.comnesara1697.v@gmail.com

 SUBHASHINI. R

#4

 AMTHULLA AYESHA
#3 Assistant Professor

Department of Computer Science and Engineering Department of Computer Science and Engineering
C Byregowda Institute Of Technology CByregowda Institute Of Technology Kolar-Srinivaspur
Road- 563101,Karnataka,India Kolar-SrinivaspurRoad-
563101,Karnataka,Indiaamthullaayesha1234@gmail.com
 subhashini050@gmail.com

RADHA .R

#5

Assistant Professor

Department of Computer Science and Engineering
C Byregowda Institute Of Technology

Kolar-Srinivaspur Road- 563101,Karnataka,India
itzradha@gmail.com

ABSTRACT

Application updates result in traffic on the cellular network and generate load to data centers

that serve these updates.To solve this problem, in this paper we propose an improved Application update
mechanism called DELTA++(Delta Encoding for Less Traffic for Apps) to achieve an additional traffic
reduction and an additional size reduction of android application updates. The main idea of DELTA++ is
to determine the difference between the application files within an APK to reduce the size of the android
application updates.We use compression tool to reduce the usage of network bandwidth. We use bzip2
compression tool to implement our method.We can achieve 50% additional traffic reduction compared to
Google Smart Application Update. Increased battery discharge from DELTA++ was found to be
negligible.
Keywords- Android applications, data compaction, data compression, delta encoding, bzip2

I. INTRODUCTION

The introduction of new features and bug fixes make it usual for an application to have updates
released every few weeks. Figure 1 shows a system level view of application updating for smartphones.
Application updates result in traffic on the cellular network and generate load to data centers that serves

http://www.ijartet.com/
mailto:p.rakshitha7296@gmail.com
mailto:p.rakshitha7296@gmail.com
mailto:amthullaayesha1234@gmail.com
mailto:subhashini050@gmail.com
mailto:itzradha@gmail.com

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 146

Figure 1. System view of application updating

these updates. Mobile operators spend billions of dollars on network upgrades every year in order to keep
up with the increasing amount of mobile traffic.

In June 2012 Google announced a new technology – Google Smart Application Update – that
reduces application update traffic. Google play store has 2.7 million applications available in 2017,82
billion downloads to date.This technology enables savings in cellular networks, decreases the load on
application servers in data centers that serve applications, and increases battery lifetime in mobile
devices. In this article we demonstrate a new mechanism,that provides further reduction of traffic
generated by application updates. DELTA++ is an extension of our previous work (we note that the
initial submission of predated Google’s Smart Application Update release).
 Delta encoding is a technique that is used to compute the difference, or “diff”, between two
files. This difference can be used to construct the newer version of a file from the old one. Thus, a
smartphone application can be updated by transferring only the difference between the old and new
versions and then applying the delta patch locally in the smartphone. A key difference between Google
Smart Application Update and our method is that we decompress the Android APK package and perform
compression on individual modules within the APK. Google’s method, to the best of our observational
knowledge, does not do this. Our experimental results show that application updates can be reduced in
size by 77% on average with DELTA++ compared to a reduction in size of 55% on average for Google
Smart Application Update. Such reduction in network bandwidth use comes with a trade-off. Because of
the increased patch complexity, more time has to be spent to deploy the application patch on the
smartphone when using DELTA++. This delay can be tolerated for smartphone application updates as
users typically do not need an update immediately after its release. Additional battery use is shown to be
negligible.
 Our contributions in this article include an implementation of DELTA++, a comparison of
DELTA++ with Google Smart Application Update, evaluation of the additional energy use of
DELTA++, and estimation of largescale savings that could be achieved with a full-scale deployment of
DELTA++.

I. Google Smart Application Update
At the Google I/O developer conference held in June 2012 Google announced that their Smart

Application Update technology had been introduced to the Google Play Store and would be seamlessly
used to update all applications on Android devices. Google Smart Application Update is transparent to
application developers and Android users. To enable Google Smart Application Update, changes were
made in the Google Play application and to the server software that handles users’ requests. The Google
Play application is now able to construct new versions of updated applications by applying a received
patch to an old version of an application installed on an Android device.In our work in this paper, we
assume that Google Smart Application Update is only performing a clean update process as a single task
with no other statistics collection, accounting, sanity/integrity check, and alike.

II. RELATED WORK

Delta encoding is a well-known method of traffic reduction. [1] showedthatdelta encoding

algorithms can be used to download only the difference between the two versions of an app. Size of the
update files is reduced and the app update traffic is reduced by about 50% which leads to significant cost
and energy savings. According to J. Wortham [2], AT&T says that the majority of the nearly $18 billion
it will spend this year on its networks will be diverted into upgrades and expansion to meet the surging
demands on the 3G network. An average iPhone owner can use ten times the network capacity used by
the average smart phone user. As a result, more data is used. S.Musil [3] showedGoogle is now offering
the ability to download delta updates from its google play for app users.The new smart downloads allow
users to avoid downloading the entire app send only the incremental difference between the old and new
versions thereby saving data for the app user and Google. [4]In mobile devices, delta encoding based
Over-The-Air(OTA) wireless downloads are widely used to distribute operating system update. With
dynamic OTA download mobile devices can connect to any type of wireless network, download the
required radio software and reconfigure on demand.
 Developers can use Update Direct for Android to update their android apps. [5] With Update
Direct, a new library is included in application, which allows it to update itself using a delta encoding
based method. Support for a variety of update interfaces, including mandatory updates, notice-only and

http://www.ijartet.com/

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 147

update/ignore option for clients. [6] Google developed Courgette for encoding patches for its chrome
browser.It benefits from exploring specifics of the transferred binary executable files, which makes
patches 10 times smaller when compared to other delta encoding techniques.[7] The authors showed that
Potential Benefits of Delta Encoding and Data Compression for HTTP:The Delta Encoding can be
successfully used to reduce HTTP traffic by eliminating redundancy between the cached copy of file and
its new version that needs to be downloaded. He also reported that 85% byte savings can be achieved for
cached files. C.Percieval proposed [8] The Naive method produces competitively small patches for any
executable files. If changes are done to the files data pointers will be modified throughout the file,to
solve this pointer problem, bsdiff is used.The bsdiff probably attains close to the best possible
performance from a platform independent tool.

III. THE DELTA++ METHOD

 In previous work we showed that DELTA (Delta Encoding for Less Traffic for Apps) based on
the bsdiff delta encoding tool can be successfully used to decrease application update traffic and enable
savings in mobile networks and datacenters. Here we introduce a new DELTA++ method and
implementation that further decreases the transmitted package size and thus achieves even greater
savings.

The size of a patch computed by a delta differencing algorithm primarily depends on the amount
of difference between two files. However usage of compression in files also affects the resulting patch
size. If two files have very few differences it is possible that the compressed versions of these files might
be highly different on a binary level because of the ways they were processed during compression. The
same happens with the APK application package which is basically just a compressed archive of all the
files that comprise an Android application. The main idea of DELTA++ is to determine the difference
between the application files within an APK and not between the compressed APK packages themselves.
Our original DELTA method generates a patch as a delta difference between the application’s old
version APK file and the new version APK. The bsdiff delta encoding tool is used to produce this delta
patch in the server and in the smartphone the patch is deployed using the bspatch tool. DELTA does not
unpack the APK file and works in a generally similar fashion, we believe, to Google Smart Application
Update. DELTA++ improves on DELTA by decompressing APK package and exploiting its specific
structure. This allows it to produce much smaller patch sizes. The DELTA++ method can be divided into
two parts, which are 1) patch computation and 2) patch deployment. Patch computation is done on the
server side in the data center and needs to be done only once for each application patch version. Patch
deployment is done on the user smartphone and is done each time an application is updated. The
DELTA++ patch procedure is as follows:

1) The APK packages of the old and the new versions of an application are decompressed.

2) The manifest files of both versions are traversed to get the names, paths, and SHA-1 hash
digests of all the files in two APK packages.

3) The files contained in the new version are marked as NEW (if the file is present in the new
version but not present in the old one), UPDATED (if the file is present in both versions but its SHA-1
sums differ), SAME (if the file is present in both versions and the SHA-1 digests are the same) or
DELETED (if the file is present in the old version but was deleted in the new one).

4) The files from the latest version that are marked as NEW are copied into the constructed patch.

5) The files from the latest version that are marked as UPDATED are given as input to the bsdiff
delta encoding algorithm to compute differences between the old and new versions. This difference is
then copied into the constructed patch. Sometimes the difference between small files can be greater than
size of the files themselves because of the overhead associated with the delta file creation. In such cases,
the new file is remarked as NEW and is copied into the patch.

6) The files that are marked as SAME remain untouched.

7) PatchManifest.xml file is created and included in the patch. It serves as a patch description and
comprises information about which application version can be updated using the patch and what NEW
files and delta differences between UPDATED files are contained in the patch. Information about files
marked
DELETED is also included in PatchManifest.xml.

8) Finally, the constructed patch is compressed into a ZIP archive using bzip2. The compressed
patch is then ready to be sent to an Android device for deployment.

http://www.ijartet.com/

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 148

DELTA++ patch deployment in the user smartphone (Android device) is as follows:

1) The received patch is decompressed into a temporary directory.

2) The APK package of the current application version is loaded using ApplicationInfo class.

3) The PatchManifest.xml file contained in the patch is used to delete all the files that are no longer
required from the old application version.

4) All the differences in the patch are applied to the proper files thus updating them.

5) All NEW files from the patch are copied to the old application version. At this point, the old
version contains exactly the same files as the new version of application.

6) The APK package is constructed by compressing all the files into a ZIP archive with an .apk
extension.

7) Finally, the resulting APK package is installed using the Android PackageInstaller built-in
application completing the application update.

 We implemented DELTA++ as server side software, which constructs patches and
serves them by request, and an Android application that deploys the received patches and updates the
installed applications.

IV. EXPERIMENTAL EVALUATION

 We compared DELTA++ to Google Smart Application Update by conducting an experiment.
We took the 110 most popular Google Play Store applications in November 2012 generated and deployed
delta patches based on previous versions of the apps. The most popular apps are tabulated in the Google
Play store. We manually collected previous versions and archived them locally. The summary statistics
for the 110 apps are: average app size = 6.21 MB, average number of downloads = 58 million, and
average time since last update = 29 days.We generated and deployed patches using both DELTA++ and
Google Smart Application Update. We used a PC with an Intel Core i5 2.30 GHz processor and 8 GB
RAM to generate delta patches

Figure 2 shows the size of the patch, as generated by DELTA++ and by Google Smart
Application Update for the top 110 most popular apps (ordered by the total number of app downloads).
The patch size is compared to the size of the latest version of the application. For Google Smart
Application Update (patch size shown by green bar), the average patch size was 45% of the latest
application version’s size, the minimum was 4% (for Bike Race Free application) and the maximum was
100% (for the Adobe Air application). For DELTA++ (patch size shown by red hash mark) the average
patch size was 23% of the latest version size, the minimum was 0.1% (for Brightest Flashlight Free
application) and the maximum was 81% (for WatchESPN application.The size of other patches is
significantly affected by the differences in the application code between versions.Experimental results
show that DELTA++ outperforms Google Smart Application Update in terms of reduction of patch size,
which correlates directly to reduction of transmitted data.The average measured savings was 50%, the
minimum was -75% (that is, there was an increase in patch size compared to the size of the full
application itself), and the maximum was 97%. It can be SEEN that DELTA++ significantly reduces
application update size and increases data savings from 55% (for Google Smart Application Update) to
77% (DELTA++). Application updating can be divided into four steps, which are 1) patch construction,
2) transmission of patch, 3) patch deployment on the device, and 4) installation of the updated
application version. DELTA++ decreases the transmission time by reducing the transferred file size but
requires more time to deploy a patch. Figure 3 shows the time to apply a DELTA++ patch and install
updated application compared to the same time for Google Smart

http://www.ijartet.com/

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 149

Figure 2. Patch size for DELTA++ compared to Google Smart Application Update

Figure 3. Patch deployment and installation time for DELTA++ compared to Google Smart

Application Update

Application Update. For DELTA++, the average time was 62.5 seconds, the minimum was 4.6 seconds
(for Barcode Scanner app) and the maximum was 212.3 seconds (for Angry Birds app). For Google
Smart Application Update, the average time was 12.3 seconds, the minimum was 1.0 seconds (for ESPN
Fantasy Football app) and the maximum was 57.5 seconds (for Temple Run app). The average patch
deployment and app installation time for Google Smart Application Update is consistent with our
assumption that Google’s method does not compress or decompress APK files, which often takes tens of
seconds (for the average APK size of 6.2 MB) in smartphone due to its limited resources.

V. USER CHARACTERIZATION

To estimate how much actual savings could be achieved with DELTA++ it is necessary to

understand how users update applications on their devices. The average number of apps per Android
smartphone in the U.S. at the end of 2011 was 32 and growing at 10% per year. Cisco reported that 33%
of global mobile traffic was offloaded to Wi-Fi networks in 2012.

The 20 devices were owned by students at the University of South Florida. We found that the
average number of apps per smartphone was 47, the average number of days between updates was 41,
and the fraction of updates deployed via Wi-Fi was 37%.

http://www.ijartet.com/

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 150

VI. BANDWIDTH SAVINGS ESTIMATE

Table 1. Estimate of annual traffic reduction in the US

 *Derived from Google Play Store

Table 1 shows a first order estimate of the traffic generated by app updates in the U.S. and the savings
that could be achieved with full deployment of our proposed DELTA++ scheme in the Google Play
store.. The average application size for the top 110 free apps in Google Play is 6.2 MB, which leads to
approximately 2.4 GB in yearly applications update traffic for each user considering the average of 32
applications on an Android smartphone updated every 29 days. Google’s Smart Application Update
provides 55% savings and reduces this traffic down to 66 PB, while DELTA++ enables 77% savings that
further decreases application updates traffic by 32 PB resulting in 34 PB yearly traffic. If 33% of updates
are done using Wi-Fi then the extra savings in cellular networks is then approximately 21 PB.

VII. BATTERY DISCHARGE EVALUATION

 DELTA++ reduces Android application update traffic by half compared to Google Smart
Application Update. However, it takes DELTA++ approximately 50 seconds longer on average to deploy
and install the received patch. Both methods use the Android PackageInstaller application to install the
update so the additional 50 seconds are spent on patch deployment.

This application allows every Android user to get a first order estimate of how much power is
used by certain device components (such as CPU, 4G, screen, etc.). Power consumption is estimated by
maintaining certain conditions (for example, screen turned on) and measuring battery level every 30
seconds during a long period of time (in our case, 40 minutes for experiments with 4G radio and 60
minutes for other experiments). To understand the extra power draw during DELTA++ updates we
measured power consumption during the following activities:

• Idle. Device is awake with its screen turned off, only background routines are running.

• Screen. Device is idle, but its screen is turned on (maximum brightness).

• 4G. Device downloads a file using 4G radio.

• Patch Deployment. Device applies delta encoded patch.

Measurement Estimate

Number of Android
smartphones [8]

60 million

Number of apps per
smartphone[6]

32

Average size of an app
update*

6.2 MB

Average days between
updates*

29 days

App update traffic per
year per phone

2.4 GB

Total app update traffic 146 PB

Total app update traffic
w/ Google Smart

66 PB

Total app update traffic
w/ DELTA++

34 PB

Extra savings with
DELTA++

32 PB

Extra savings with
DELTA++ in
Cellular

21 PB

http://www.ijartet.com/

ISSN2394-3777 (Print)

ISSN2394-3785 (Online)
 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology

(IJARTET) Vol. 5, Special Issue 14, April 2018

All Rights Reserved © 2018 IJARTET 151

The results showed that the extra 50 seconds spent on deployment of a single DELTA++ patch consumed
about 0.15% of the smartphone’s battery. We found that this same amount of battery charge is consumed
by the screen in under 30 seconds. Considering that an average user updates about one application per
day (average of 32 apps per smartphone updated every 29 days), DELTA++ consumes a negligible
portion of the daily battery use of a smartphone.

VIII. SUMMARY AND FUTURE DIRECTIONS

As there is a exponential growth of mobile devices, this leads to huge network traffic for

Android and Application updates. Delta++ have remarkable improvement in generating 50% smaller
patches. Delta++ for android application could reduce yearly traffic in cellular networks by about 1.8%
.This result would lead to remarkable savings for mobile operators and data centers. Hence less resources
such as network bandwidth and number of servers would be require for serving patches. This has both
economic and environmental benefits.

If we consider also Apple iPhone applications the overall savings could be much larger. Apple
market share in 2012 was 33% of all smartphones. Our study of the top 110 application in the Apple App
Store shows that the average iPhone application size is 26 MB with 64 days from the last update this
leads to 6.8 GB annual update traffic for each user. Multiplied by the number of iPhones this results in
247 PB yearly traffic in the U.S. Initial experiments show that DELTA++ can be successfully used for
iPhone apps (distributed using an IPA file, which is similar to an APK file) and can achieve 70% smaller
iPhone updates on average. This means that approximately 180 PB in overall cellular traffic could be
saved with DELTA++ if it were to be applied to iPhones. We note that changing technologies (for
example, a move to microcells) and user behaviour’s (for example, a move to using Wi-Fi more often)
may change the estimates made in this paper for traffic savings in the cellular infrastructure. The savings,
however, are still of benefit to microcells and to the data centers that serve updates.

IX. REFERENCES

[1] N. Samteladze and K. Christensen, “DELTA++: Reducing Application Updates size for Android Devices ,”
Proceedings of IEEE Conference on Local Computer Networks, pp. 212-215, October 2012.

[2] J. Wortham, “Customers Angered as iPhones Overload AT&T,” September 26, 2009. URL:
http://www.nytimes.com/2009/09/03/technology/companies/03att.html.

[3] S. Musil, “Google Play Enables Smart App Updates, Conserving Batteries,” CNET News, August 16, 2012. URL:
 http://news.cnet.com/8301-1023_3-57495096-93/google-play-enables-smart-app-updatesconservingbatteries/.

[4] B. Bing, “A Fast and Secure Framework for Over-the-Air Wireless Software Download Using Reconfigurable Mobile
Devices,” Communications Magazine, IEEE, 44, no. 6, pp. 58-63, 2006. [14] Update Direct for Android, Pocket Soft. URL:
http://pocketsoft.com/android_updatedirect.html.

[5] Update Direct for Android, Pocket Soft. URL: http://pocketsoft.com/android_updatedirect.html.

[6] “The Chromium Project, Software Updates: Courgette,” URL: http://dev.chromium.org/ developers/design-
documents/software-updates-courgette.

[7] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential Benefits of Delta Encoding and Data
Compression for HTTP,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 4, pp. 181-194, ACM, 1997.

[8] C. Percival, “Naive Differences of Executable Code,” draft paper dated 2003. URL:
http://www.daemonology.net/bsdiff.

http://www.ijartet.com/
http://pocketsoft.com/android_updatedirect.html

	I. Google Smart Application Update
	IV. EXPERIMENTAL EVALUATION
	VI. BANDWIDTH SAVINGS ESTIMATE
	Table 1. Estimate of annual traffic reduction in the US
	VIII. SUMMARY AND FUTURE DIRECTIONS
	IX. REFERENCES

