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ABSTRACT 

q -derivative operator has wide range of application in mathematics as well as in physics. Recently, we 

can see many papers in the area of Geometric function theory also. In this paper, we introduce and estimating 

first two MacLaurin coefficients for new subclasses of analytic and bi-univalent functions with respect to q

-derivative operator. Moreover we derive another subclass of analytic and bi-univalent functions as a special 

consequences of this results. 
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1  Introduction and preliminaries 

Let A  be the class of functions f  which are analytic in the open unit disc 1}|<:|:{= zzz CU   and 

is of the form: ).(=)(
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 The well-known Koebe one-quarter theorem[5] ensures that the image of U  under every univalent 

function Af  contains a disk of radius 1/4. Hence every univalent function f  has an inverse 
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f  satisfying 
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 A function Af  is said to be bi-univalent in U  if both f  and 
1

f  are univalent in .U  Let   

denote the class of bi-univalent functions in U  given by (1.1). For example, functions in the class   are given 
below[20]:  
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  In 1967, Lewin[14] introduced the class   of bi-univalent functions and shown that 1.51|<| 2a . In 1969, 

Netanyahu[16] showed that 4/3|=| 2amax f   and Suffridge[22] have given an example of f  for which 
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4/3.|=| 2a  Later, in 1980, Brannan and Clunie[3] improved the result as 2|| 2 a . In 1985, Kedzier-awski[12] 

proved this conjecture for a special case when the function f  and 
1

f  are starlike. In 1984, Tan[23] proved that 

1.485|| 2 a  which is the best estimate for the function in the class of bi-univalent functions. 

 Recently, many authors have introduced and studied various subclasses of analytic and bi-univalent 
functions. Some of the recent analysis in this topics are [8, 9, 21, 24] for reference to the readers. Brannan and Taha[4] 

introduced certain subclasses of the bi-univalent function class   for the familiar subclasses )(* S  and )(C . 

Ali et al.[1] widen the result of Brannan and Taha using subordination. 
 The concept of q -analog was first introduced by Jackson[10]. Mohammed and Darus studied the 

geometric analog of some subclasses of analytic functions by means of the q-difference operator )(zfDq
 for 

1,<<0 q  [15].  
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 where h  is the ordinary derivative. 
As a right inverse, Jackson[10, 11] introduced the q-integral  
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 where dtth
z

)(
0  is the ordinary integral. Note that the q-difference operator plays an important role in the theory of 

hypergeometric series and quantum physics (see for instance[2, 6, 7, 13, 19]). One can clearly see that 

)()( zfzfDq
  as .1q  This difference operator helps us to generalize the classes of starlike and convex 
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functions 
*

S  analytically. 

 K.S Padmanabhan and R. Parvatham[18] introduced and studied the class of functions )(mP  for 2m  

and 1<0  , denote the class of analytic univalent functions p  in U  with the normalization 1=(0)p  and 

satisfying the conditions  

 2.,<
1

)(2

0





 mformd
zpRe 



 

  For 0,=  we can write (0).=: mm PP  Paatero[17] proved that every functions mp P  can be written by the 

Stieltjes integral representation  
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 where )(t  is a real valued function with bounded variation on ][0,2  which satisfies  
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  With these brief introduction, we now define the two new subclass of function class   and finding the coefficient 
estimates with the help of q -derivative operator. 

 

Definition 1  For 1<,0  C  and 2m , suppose a function Af  is said to be in the class 
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 where g  is defined in (??) and ., Uwz  

Definition 2  For 1<,0  C  and 2m , suppose a function Af  is said to be in the class 

),,(,  mCq   if it satisfies the condition  
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 The main object of this paper is to find the estimates on the coefficients || 2a  and || 3a  for functions in 

these new subclass of the function class .  
 These two subclasses may also reduce to many of the new subclasses for different choices of parameters 

,,q  and .  We can see the results of these reduced subclass as corollaries. 

2  main results 
 In order to prove our main results we need the following Lemma:  
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Lemma 1  Let U zzhzhz ,1=)( 2
21  , such that )(mP  having the normalization 

1=(0)  then  
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Theorem 1  If the function f  given by (1.1) be in the class ),,(*
,  mSq   then  
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Proof. Since ),,(*
,  mSf q   and 

1= 
fg , then there exists the functions , having the Taylor 

series expansion  
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 On equating the like powers of z  and w  from equations (??),(??),(??) and (??) we get  
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 Since   and   clearly satisfy the condition of Lemma 1 we have  
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 Hence equations (??) and (??) gives the estimates of .|| 2a  

Next to find the bounds on || 3a , by further computations from (??), (??) and (??), we can easily get  
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 which completes the proof of Theorem 1.  
 

 We obtain the following corollary by setting 1.=  

Corollary 1  Let Af  given by (1.1) be in the class ),(1,*
, mSq  , then  
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 Setting ,1q  we get the following corollary.  

Corollary 2 Let Af  given by (1.1) be in the class ),,(*  mS , then  
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 Setting 0=  in Theorem 1, we have  

Corollary 3 Let Af  given by (1.1) be in the class ),(*
, mSq  , then  

 ,
1)([2]

||
,

)[2]([3]

||
|| 2
















qqq

mm
mina


 

 .
1)([2]1)([3]

1
||||

23



















qq

m
ma   

If 1=  and ,1q  then we have the following corollary.  

Corollary 4 Let Af  given by (1.1) be in the class ),(1,* mS , then  
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 By setting 0=  and 1=  in Theorem 1, we have obtain the following result.  
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 Choosing 1=0,=   and ,1q  in Theorem 1, we have  
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Corollary 6 Let Af  given by (1.1) be in the class )(1,*
mS , then  
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 Now using the same procedure as in Theorem 1 we get the desired results of || 2a  and .|| 3a  

This completes the proof of Theorem 2.  
 

 Let 1=  and Af  given by (1.1) be in the class ),(, mCq   we have obtain the following 

corollary.  
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 Setting 
1q  in Theorem 2, we get the result as follows.  

Corollary 8 Let Af  given by (1.1) be in the class ),,(  mC , then  
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 Setting 0=  in Theorem 2, we obtain the following corollary.  

Corollary 9 Let Af  given by (1.1) be in the class ),(, mCq  , then  
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 Let 0=  and 
1q  in Theorem 2, we have  

Corollary 10 Let Af  given by (1.1) be in the class ),( mC  , then  
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 If 0=  and 1=  then we have the following corollary.  

Corollary 11 Let Af  given by (1.1) be in the class )(1,, mCq  , then  
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 Setting 1=0;=   and 
1q  in Theorem 2, we have the following corollary.  
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Corollary 12 Let Af  given by (1.1) be in the class )(1,mC , then  
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As a special consequences of our results, we now define the following:  

Definition 3  For 1<01,<01,<<0  q , a function Af  is said to be in the class 

),,(, kq M  if it satisfy the following conditions  
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 where 
1= 

fg  defined in (??) and Uwz, .  

 For the function Af  be in the class ),,(, mq M , the following estimation holds. 

 

Theorem 3  If the function f  given by (1.1) be in the class ),,(, mq M  then  
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Proof. Since ),,(, mf q M  and 
1= 

fg , consider the functions ,  with 1=(0)  and 

1=(0)  satisfying the conditions  
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 Now simple calculation yields,  
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 On equating the like powers of z  and w  from equations (??),(??),(??) and (??) we have  
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 Now considering (??) and (??), we obtain  
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 Adding (??) and (??), and from the inequalities (??) and (??) we can reduce,  
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 also from (??) and (??), we have  
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 Hence equations (??) and (??) gives the estimates of .|| 2a  

In order to find the bounds on || 3a , we can make use of equations (??), (??) and (??), which gives  
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 this completes the proof of Theorem 3.  
 
 

Remark 1 If 0= , then the function f  be in the class ),,(, mq M  reduces to the subclass 

),(*
, mSq   defined in Corollary 1.  

Remark 2 If 1= , then the function f  be in the class ,1),(, mq M  reduces to the subclass 
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),(, mCq   defined in Corollary 7.  

Setting 0=  and 
1q  then we get the following corollary.  

Corollary 13 If Af  be in the class ),( mM  then  
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