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Abstract 

 A differential Dengue Susceptible-

Infectious-Removed-Susceptible (d-SIRS) 

epidemic model of DengueHaemorrhagic  Fever 

(DHF) in human has been formulated latent 

period and time for self replication have been 

considered , stability of the result is stated in 

terms of the threshold parameters, We have 

derived an explicit formula for the reproductive 

number and have shown that the Dengue-virus-

infection-free equilibrium, whose component of 

the infective is zero is globally asymptotically 

stable if threshold number is less than 1, and 

unstable if it is greater than 1. 

Keywords: Severe DHF compartment –d-SIRS 

epidemic model-self replication-temporary 

immunity, Dengue virus 

 

1 Introduction 

 Dengue, the most prevalent mosquito-

borne viral disease affecting humans, results in 

about 50-100 million cases of dengue fever and 

250,000 to 500,000 cases of the more severe 

dengue hemorrhagic fever/dengue shock syndrome 

each year, with about 20,000 deaths. The research 

team detailed critical changes that take place as the 

virus is assembled and moves from the inner to the 

outer portions of its host cell before being secreted 

so that it can infect other cells. Virus particles are 

exposed to progressively less acidic conditions as 

they traverse this "secretory pathway," and this 

changing acidity plays a vital role in the maturation 

of the virus. The dengue virus moves through 

compartments inside the cell called the 

endoplasmic reticulum and the trans-Golgi 

network. While immature, virus particles are 

incapable of fusing with cell membranes, 

preventing them from infecting their own host cells 

and ensuring their maturation. Once mature, 

however, the virus particle is able to fuse to cell 

membranes, a trait that enables it to infect new host 

cells. As a virus particle matures along the pathway 

through the host cell, it changes the protein 

structure, or “conformation,” in its outer shell. The 

team mimicked the trans-Golgi network 

environment in test tubes, enabling them to study 

the virus’s changing structure with increasing 

acidity. 

There are several computational techniques that 

look to biology for inspiration. Some common 

examples evolutionary algorithms, immunological   

computation. Many  researcher have taken to help 

of the biological  model to understand the 

behaviour of spreading of virus in human body  

The action of virus attack can be studied by using 

epidemiological models for disease propagation[1, 2 

,3, 4, 5] based on the Kermack and McKendick SIR 

classical epidemic model[6 ,7 ,8 ], The kind of 

approach was applied to d-virus propagation 

schemes [9] and modification of SIR models 

generated guides for infection prevention by using 

the concept of epidemiological threshold.Richard et 

al[10] propose an improved SEI(Susceptible-

exposed-infected) model to simulate virus 

propagation. However they do not show the length 

of latency and take into account the impact of anti-

virus- Medicine. The model SEIR proposed by the 

authors[11] assumes that recovery hosts have a 

permanent immunization period with a certain 

probability. Which is not consist wit real 

situationIn order to over- come limitation, Mishra 

and Saini[12]present a SEIRS model with latent and 

temporary immune periods, which can reveal 
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common virus propagation. Recently, more 

research attention has been paid to the combination 

of virus propagation models and antivirus 

countermeasuresto study the prevalence of virus, 

for example, virus immunization[18,19,20,21,22,23] and  

quarantine[24,25,26]. Hyman and Li[27] proposed a 

biological SIR model that describes the 

transmission dynamics of an infectious disease 

assuming susceptible population divided into 

different groups. Individuals in each group have 

homogeneous susceptibility but susceptibility of 

individual from different groups is distinct. 

Assuming homogeneous infectiousness of infected 

individuals so that they can beaggregated into one 

group, infected state, following system of 

differential equations were given. 
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Where 
iHS is the susceptible individual humans 

in the 
th

i group, HI is the infected individuals 

human, HR is the  recovered individual human , 

Hµ is the natural death rate of humans, 
0

HH Sµ  is 

a constant influx, Hλ is the rate at which infective 

are removed human δ and ξ  are the disease-

induced mortality rates for infective and removed 

Individuals respectively, and λ is the infectivity 

rate given by 

H

H
N

cαβ
λ =  where  α  is the 

susceptible rate, β as the infectious rate; as the 

average number of contacts per individuals and 

HN

1
 is the probability that a random contact is 

infectious with HHHH RISN ++= as the total 

population size. In the above model full immunity 

of recovered individuals is assumed such that these 

individuals are no longer susceptible after they 

recovered. But there is no permanent immunity for 

the people. The temporary recovered people enter 

the susceptible class after certain interval of time. 

We propose a differential compartment for d-SIRS 

epidemic model in which susceptible and infected 

population are divided into different groups. People 

are susceptible due to   Dengue virus. Virus in each 

group has homogeneous susceptibility but 

susceptibility of virus from different group 

isdistinct. Virus in each infected group (as per their 

susceptible behavior group) has homogeneous 

infection but infection of virus from different group 

is distinct. We also assume the self-replication 

possibilities of virus. 

 

2 Differential d-SIRS Epidemic Model 

After the virus enters the human body, the 

people become susceptible and in later course of 

time become infected and hence infective. There is 

a certain time lag for the people to become 

infective once it is in the human body and it is 

termed as latent period Hω .After the people 

becomes infected, the malicious object in it 

may/may not self-replicate. Hence after the 

medicine taken to the people recovers and attains 

temporary immunity for a time period termed as 

period of temporary immunity Hτ  

 

Assumptions:  

1. The natural death rate (crashing of the 

human due to the reason other than attack 

of virus) of the human as they are once 

susceptible virus decreases. 

2. Death rate of the human due to dengue 

virus is constant. 

3. Latent period Hω immunity period Hτ

and period of “self-replication 
kHΦ are 

“considered as constants. 

4. When a human  is infected, it may self-

replicate with a probability 
kHp and may 

not self-replicate with a probability 

k
Hp−1  

5. When a person is removed from infected 

class, it may recover with a probability

k
Hq and may not recover with a 

probability 
k

Hq−1  and that recovery is 

temporary. 

6. Susceptible Humans are divided into 

different groups.Human may be 

susceptible due to dengue virus. Dengue 

virus in each group have homogeneous 

susceptibility but susceptibility of dengue 

virus from different group is distinct. 
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7. Infected Humans are also divided into 

different groups (as per their susceptible 

behavior group).  Dengue Virus  in each 

group has homogeneous infection but 

infection of malicious objects from 

different group is distinct. 

 

We assume that the total number of human at 

any instance t is )()()()( tRtItStN HHHH ++=  

 

Dengue Virus is assumed to be in the affected 

Human places for at least a time

( )HHH τωθ ,max= , So that the initial stage of 

dengue virus affected have ceased. The systems of 

equations for the model as per our assumptions take 

the following forms for θ>t . 
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2.1  No dengue virus induced Mortality 

For the simplicity of the model, we neglect the 

dengue virus induced crashing of the Human such 

that HHH O =∈=δ . Thus we have the system of 

the model as  
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As the dynamics of the system is unaffected 

by the equation of R, we omit it. We further 

assume, .
)(

0

0

η=
H

H

S

Sc
System (2) is positively time 

invariant in the set { }.0,0 ≥≥= iiH ISG  

 

2.2 Reproductive Number 

 

System (2) has dengue virus infection-free 

equilibrium in which the components of infective 

are zero and other susceptible components are 

positive. We denote this infection-free equilibrium 

by )0;,...2,1,(:
0

0
==== HHiiHH IniSmSE

Analyzing the local stability of 
0HE gives the 

epidemic threshold conditions under which the 

number of infected person will either increase or 

decrease to zero as a small number of infective 

introduced into a fully susceptible Humans. These 

threshold conditionsare characterized by the 

reproductive number, denoted by
0HR  such that 

0HE  is locally asymptotically stable if 1
0

<HR  

and unstable if 1
0

>HR . The Jacobian of Equation 

(3) at 
0HE  has the form  
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The mean number of contact is zSc H =)(
0

the 

mean duration of the infection is ,
1

HH γµ +
and 

the mean infectivity rate of each group is 
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each group is
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The reproductive number of infection for the entire 

peoples can be expressed as the weighted average 

of the reproductive numbers of the groups such that 
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Theorem 1. Define the reproductive number of 

infection,
0HR , for System (1) as in Equation (3). 

Then the infection free-equilibrium 
0HE is 

globally asymptotically if 1
0

<HR  and unstable if 

1
0

>HR [13]. 

 

The node takes a time period of 0≥ω
before it gets infective [14, 15, 16]. The self replication 

of dengue virus starts after the human 
kHφ gets 

infected and thus it is infective only after the time 

for self-replication. The human gains a temporary 

immunity 0≥Hτ  before it gets susceptible again. 

We have the following non-negative conditions 

for a shift of time θ to new time 
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Our e-SIRS model formulated in Equation (1) is 

different from SIR model proposed by Hyman and 

Li [13] which only temporary immunity is assumed 

for recovered person such that a recovered persons 

again gets susceptible after certain interval of time. 

We also assume the infected people to be divided 

into different groups in which individual persons 

are a group and have homogeneous infectiousness 

which is different from that of individuals in other 

group. The self replication behavior of the 

malicious virus is also considered in infected stage. 

When it undergoes temporary immunity period.  

The infection is initially very less andas the 

person spends time to have medicine, the 

infectivityincreases exponentially and at a certain 

time increasesabruptly before it reaches a 

maximum level. As thetemporary recovery starts 

after the run of anti-malicious medicine, the 

infection decreases and reaches a minimumpoint 

and the person body remains there for a short time 

whichis due to the immunity and latency periods. 

In order to set an efficient strategy in controlling 

dengue virustransmission in the human body, we 

canidentify more susceptible groups and make 

efforts to reduce the influx into those groups with 

the help of theformula developed in Equation (3) 

for 
.0iHR [17]

 
 
3. Conclusion 

We have formulated a differential d-SIRS 

epidemic model in which susceptible and infected 

humanare divided into different groups. The 

susceptible and infected human is subdivided into n 

subgroups based on the attack due to dengue virus. 

Dengue Virus in each group has homogeneous 

susceptibility but susceptibility of dengue virus 

from different group is distinct. Dengue Virus in 

each infected group (as per their susceptible 

behavior group) has homogeneous infection but 

infection of malicious objects from different group 

is distinct. For the case where the number of 

contacts is proportional to the total population, we 

derived an explicit formula for the reproductive 

number
.0

HR , and had shown that the infection-

free equilibrium, whose component of infective is 

zero, is globally asymptotically stable if 1
0

<HR

and unstableif 1
0

>HR . Also we have defined the 

reproductive number in each subgroup, mean 

infectivity, and the mean duration of infection. The 

reproductive number for the whole population, 

.0
HR , is defined as a weighted averageof those 

.0
HR

,
 weighted by the distribution of the influx 

into the susceptible subgroups.  

 

For a class of population, d-SIRS model with 

constant latent period Hω , immunity period Hτ and 

replication period
kHΦ is developed keeping in 

view the replication concept of malicious agents. 

Whenever a human is infected there is chance of 

malware getting replicated with replication factor
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kHr  . After a node has been included in the 

infective class, it may self replicate with a 

probability 
kHp and may not self-replicate with a 

probability
k

Hp−1 . In our model when a node is 

removed from infected class it recovers temporarily 

and acquires temporary immunity with probability 

k
Hq or the node may vanish with probability 

k
Hq−1 which considered the recovery from 

infected class acquiring permanent immunity with 

probability .Hq The recovered human remains in 

state of temporary immunity for a time period of 

Hτ before it becomes susceptible again. The future 

work will address on the endemic equilibriumand 

its stability & Disease-induced mortality. 
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