
ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 169

PREVENTION OF ZOMBIES ATTACKS IN

DISTRIBUTED NETWORKS USING

DYNAMIC PATH IDENTIFIER

A. George Arokiaraj1,
Assistant Professor/IT

Idhaya Engineering College for Women,

Chinnasalem

Sr. Maria Anand Milani. S2

Assistant Professor/IT

 Idhaya Engineering College for Women,

Chinnasalem

ABSTRACT:

The PIDs used in existing approaches are

static, which makes it easy for attackers to launch

distributed denial-of service (DDoS) flooding attacks.

To address this issue, in this paper, we present the

design, implementation, and evaluation of D-PID, a

framework that uses PIDs negotiated between

neighboring domains as inter-domain routing

objects. In DPID, the PID of an inter-domain path

connecting two domains is kept secret and changes

dynamically. We describe in detail how neighboring

domains negotiate PIDs, how to maintain ongoing

communications when PIDs change.

Keywords: Inter-domain routing, security,

distributed denial-of-service (DDoS) attacks, path

identifiers.

 I.INTRODUCTION

Denial-of-service (DDoS) flooding attacks are

very harmful to the Internet. In a DDoS attack, the

attacker uses widely distributed zombies to send a large

amount of traffic to the target system, thus preventing

legitimate users from accessing to network resources.

Many approaches have been proposed in order to

prevent DDoS flooding attacks, including network

ingress filtering, IP trace back, capability-based designs,

and shut-up messages.

At the same time, in recent years there are

increasing interests in using path identifiers PIDs that

identify paths between network entities as inter-domain

routing objects, since doing this not only helps

addressing the routing scalability and multi-path routing

issues, but also can facilitate the innovation and adoption

of different routing architectures. Luo et al proposed an

information-centric internet architecture called CoLoR

that also uses PIDs as inter-domain routing objects in

order t o enable the innovation and adoption of new

routing architectures.

 There are two different use cases of PIDs in the

aforementioned approaches. In the first case, the PIDs

are globally advertised. As a result, an end user knows

the PID(s) toward any node in the network.

Accordingly, attackers can launch DDoS flooding

attacks as they do in the current Internet. In the second

case, conversely, PIDs are only known by the network

and are secret to end users. In the latter case, the network

adopts an information-centric approach where an end

user (i.e., a content provider) knows the PID(s) toward a

destination (i.e., a content consumer) only when the

destination sends a content request message to the end

user. After knowing the PID(s), the end user sends

packets of the content to the destination by

encapsulating the PID(s) into the packet headers.

Routers in the network then forward the packets to the

destination based on the PIDs. It seems that keeping

PIDs secret to end users makes it difficult for attackers

to launch DDoS flooding attacks since they do not know

the PIDs in the network. However, keeping PIDs secret

to end users is not enough for preventing DDoS flooding

attacks if PIDs are static. For example, Antikainen et al

argued that an adversary can construct novel zFilters

(i.e., PIDs) based on existing ones and even obtain the

link identifiers through reverse-engineering, thus

launching DDoS flooding attacks .attacks by learning

PIDs if they are static.

To address this issue, in this paper, we present

the design, implementation and evaluation of a dynamic

PID (D-PID) mechanism. In D-PID, two adjacent

domains periodically update the PIDs between them and

install the new PIDs into the data plane for packet

forwarding. Even if the attacker obtains the PIDs to its

target and sends the malicious packets successfully,

these PIDs will become invalid after a certain period and

the subsequent attacking packets will be discarded by

the network. Moreover, if the attacker tries to obtain the

new PIDs and keep a DDoS flooding attack going, it not

only significantly increases the attacking cost but also

makes it easy to detect the attacker.

ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 170

 II. INTRODUCTION TO CoLoR

CoLoR is a receiver-driven information centric

network architecture that assigns unique and persistent

content names (or service identifiers, SIDs) to content

chunks. CoLoR assigns intrinsic secure self-certifying

node identifiers (NIDs) to network nodes and ASes so

that authenticating a node/AS does not require an

external authority such as ICANN, thus improving

security and privacy. In addition, two neighboring

domains negotiate a PID for every inter-domain path

between them and the PID is only known by them. The

two domains then use the PIDs assigned to their inter

domain paths to forward packets from one domain to the

other. For this purpose, the routers in a domain

maintains an inter domain routing table, which records

the PID of each inter domain path and the border router

that the PID originates, as illustrated at the upper right

corner in Fig. 1. For instance, the border router in

domain N2 connecting PID2 in Fig. 1 is R5. On the other

hand, each domain is free to choose its preferred intra-

domain routing architecture so that a domain A uses

IPv4for intra-domain routing while another domain B

may use IPv6 for intra-domain routing.

Furthermore, every domain in the Internet maintains a

logically centralized (but may be physically distributed)

resource manager (RM) used to propagate the

reachability information of SIDs. Particularly, when a

content provider wants to provide a content chunk to

consumers, he registers the SID of the content chunk to

its local RM. The local RM then registers the SID to its

providers or peers, by using an approach similar to the

one used in [2]. When a content consumer wants to

obtain a piece of content, it sends out a GET message to

its local RM. If the desired content is hosted by a local

node, the RM forwards the GET message to that node.

Otherwise, the RM forwards the GET message to the

RM in a neighboring domain (toward the content

provider) over a secure channel between the two RMs

(because of the use of intrinsic secure identifiers).

During this process, the PIDs of inter-domain paths from

the content provider to the content consumer are

determined. The content provider then sends the desired

content to the content consumer by embedding the

collected PIDs into headers of packets for the desired

content.

CoLoR offers several features, First as an

information-centric network architecture, routers in the

network can locally cache the popular contents so as to

serve nearby users, thus reducing redundant transmission

and content retrieval delay. Second, it is easy to

accurately, timely estimate the traffic matrices of a

network since an ingress border router of a domain can

know the egress border router of a packet by looking up

the inter-domain routing table. Third, CoLoR makes it

easy to efficiently integrate information centric

networking and software-defined networking. In

addition, the data plane in CoLoR is scalable. Finally,

CoLoR offers some security benefits while avoiding

Interest flooding attacks suffered by both routers and

RMs in CoLoR do not maintain pending Interest tables,

the PIDs carried in GET messages can be used to trace

back attackers.

CoLoR also has some drawbacks that need to

be addressed before its real deployment in the future.

First, carrying the NID of the content consumer and the

desired SID in packet headers reveals user privacy.

Second, border routers need to encapsulate/decapsulate

outer packet headers (e.g., IPv4 headers), which makes it

challenging to realize line-speed packet forwarding.

Third, attackers can learn PIDs in the network and

launch DDoS attacks in the data plane, if PIDs are static.

As an attempt to address these drawbacks, in this paper

we propose D-PID to prevent DDoS attacks in the data

plane.

 Why Dynamically Changing PIDs

In this subsection, we explain why it is

necessary to dynamically change PIDs in CoLoR. To

this end, we first present two approaches to learning

PIDs whey they are static. We then present an example

to show that an attacker can launch DDoS attacks when

he have learnt some PIDs in the network.

1) Two approaches to learning PIDs:

The first approach to learning PIDs is GET

Luring, where an attacker uses an end host to register

normal content names into the network, thus luring GET

messages from content consumers. Since the

corresponding PIDs are carried by the GET messages,

the attacker then can learn a part of PIDs in the network.

We call such a process as the PID learning stage in the

rest of this paper. Fig. 2 illustrates the process of GET

luring.

ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 171

 Another approach to learning PIDs is botnet

cooperation. In botnet cooperation, an attacker is

assumed to have controlled a distributed botnet by using

various methods such as worms or instant messaging

applications. In particular, zombies in the botnet register

content names to the network and send GET messages

mutually, thus learning the PIDs in the network. Fig. 3

illustrates botnet cooperation.

2)

Launching DDoS Attacks:

 Once the attacker has learned a part of PIDs in

the network, it can freely send packets along the paths

represented by the learned PIDs. We assume that the

attacker can compromise a number of computers along

the paths as zombies, by using similar methods with the

ones in the current Internet (e.g., by using worms). Note

that this is a pessimistic assumption since the integrality

of a content in information-centric networking is usually

easy to verify. Then the attacker can order the zombies

to flood a victim that should also be along the learned

paths. We call such a process as the attacking stage.

From the above descriptions, one can see that it is

possible for an attacker to launch DDoS attacks if PIDs

are kept secret but static. In addition, since the PIDs

carried by data packets are popped out domain-by-

domain, the victim does not know the PIDs to the

attackers. Accordingly, it cannot trace back them. One

may argue that we should not pop out the PIDs when

data packets pass through domains. In that case,

however, an attacker can try to hide himself by

prepending some invalid PIDs at data packets.

Therefore, we propose to defend against DDoS attacks

by dynamically changing PID.

III.THE D-PID DESIGN

A. Overview of D-PID

From Sec. II-B, one can see that an attacker can learn a

part of the PIDs used by domains in the Internet and

launch attacks, if the PIDs are static. Thus, the core idea

of DPID is to dynamically change the PID of an inter-

domain path. In particular, for a given (virtual) path

connecting two neighboring domains A and B, it is

assigned a PID and an update period TPID. The update

period TPID represents how long the PID of the path

should be changed since the PID is assigned. For

instance, if path P1 in Fig. 4 is assigned PID1 at time t,

the RMs in the two domains should negotiate a new PID

(i.e., PID2) for P1 at time t + TPID and a new update

period T′PID, by using the negotiation process described

in Sec. III-B. At time t + TPID + T′ PID, the two RMs

will negotiate another new PID (i.e., PID3) for P1. Once

the new PID (i.e., PID) is assigned to the path, the RMs

in domains A and B then distribute the new PID

(i.e.,PID2) to the routers in domains A and B (Sec. III-

C). After that, the RMs append the new PID (i.e., PID2)

onto GET messages if the path is chosen to carry the

corresponding data packets. At the same time, the border

routers forward data packets based on the new PID (i.e.,

PID2). Since some GET packets are forwarded from

domain A (or B) to domain B (or A) by using the old PID

(i.e., PID1) of the path, the old PID is still valid until t +

TPID + T′PID. Without loss of generality, we assume

that TPID equals to T′PID in the rest of this paper. That

is, the update period of a path is fixed. Note that the new

PID of the path is still known only by the two domains.

However, it is possible that a communication lasts

longer than two update periods. Thus, when the PID of

the path changes to PID3, ongoing communications may

be interrupted. To address this issue, in Sec. III-F we

propose a mechanism similar to the one that the current

Internet collects the minimum MTU of networks so that

a content consumer knows the minimum update period

of PIDs along the path from a content provider to it.

Based on this period, the content consumer then re-sends

a GET message to the network in order to renew the

PIDs along the path. Note also that in D-PID, all

domains should dynamically change the PIDs of its

inter-domain paths. Depending on its local policy, a

domain may simultaneously (or asynchronously) change

these PIDs. In the former case, the cost for updating the

PIDs is fixed since a domain only needs to distribute the

new PIDs to its border routers once every PID update

period. In the latter case, every time the PID of an inter-

domain path is updated, the domain needs to distribute

the new PID to its border routers. However, the cost for

ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 172

updating PIDs in the latter case is significantly less than

the update cost of IP-prefixes in the Internet today.

 IV. PROTOTYPE IMPLEMENTATION

We verified D-PID’s feasibility and

effectiveness by implementing it in a 42-node prototype.

Our implementation effort was instrumental in refining

our design, leading to several revisions. For example, we

initially use the approach discussed in the first paragraph

in Sec. III-B to negotiate PIDs. Below we describe our

implementations and present results from running

experiments on the prototype.

A. Prototype Design
The prototype has six domains (i.e., D1 - D6) that use

different intra-domain routing protocols, as shown in

Fig. 4. The six domains are inter-connected by 11 inter-

domain paths (i.e., P1 - P11) each of which is assigned

with a PID- prefix based on the design in Sec. III. Every

domain has one centralized RM. Every node in the

prototype (including the routers, the RMs, and the end-

hosts) is running on an aTCA-9300 processor blade,

with a four-core Intel Xeon E3 1275V2 processor, an 8

GB DDR3-1600 memory and six Intel I210 Gigabit

Ethernet controllers. The RMs are implemented based on

the DPDK [3] platform for fast packet processing, the

routers are implemented by using the CLICK software

platform [4], and the end-hosts are implemented as a

module in Linux kernel version 2.6.35. We now present

the implementation details of the prototype.

Fig :4

Fig:5

1) RMs: Fig. 5 (a) shows the structure of the

implemented RMs, where “X-protocol” represents the

local routing protocol used by the domain where the RM

locates. The Registration module is used to process

registration messages, and it stores the reachability

information of the registered content names into the SID

Table. The GET module is used to process GET

messages, and it queries the SID Table in order to

determine the next hop for a GET message. The PID

Table stores the currently used PIDs for the inter-

domain paths associated with the domain where the RM

locates. To support D-PID, an entry in the PID table has

a timer recording the time that a new PID should be

negotiated. When the timer of a PID entry times out, the

PID negotiation module negotiates a new PID for the

inter-domain path with the associated neighbor RM.

When the negotiation completes, the PID distribution

module distributes new PIDs to border routers in a

domain.

2) Border Routers: Fig. 5 (b) shows the structure of the

implemented border routers, where “X-protocol”

represents the local routing protocol used by the domain

where the border router locates. The Packet Processing

module is used to process CoLoR format packets based

on the PIDs, and it queries the PID Table to determine

the operation for an incoming packet (e.g., encapsulating

the packet with an IPv4 packet header and sending it to

another border router). The PID distribution module is

used to process PID update messages from the RM.

When it receives a PID update message, it adds the new

PID into the PID table and sends an acknowledgement

back to the RM. In addition, a PID entry in the PID table

also has a timer recording the time that the PID should

be removed from the PID table. Once the timer of a PID

entry in the PID table expires, the entry is deleted from

the PID table.

3) End Hosts: Fig. 5(c) shows the structure of the

implemented end hosts. We implement CoLoR as an

independent protocol stack (as same as the TCP/IP

stack) in the Linux kernel, and provide APIs

(Application Program Interfaces) for applications to call

the CoLoR socket that can send/receive GET, data, and

registration messages. In particular, we embed several

functionalities into the CoLoR stack in the Linux kernel.

To collect the minimum TPID, the DATA module reads

the MINIMUM PERIOD field when it receives a data

packet, and sets the timer to resend GET messages for

the associated session based on MINIMUM PERIOD.

When the timer for the session times out, the GET

module re-sends the GET message to the content

provider in order to refresh the PIDs. When the source

receives a resent GET message for an active session, the

PID update module refreshes the PID sequence used by

the session based on the PIDs contained in the GET

message.

 VI. RELATED WORK

Because of the complexity and difficulty in

defending against DDoS flooding attacks, many

approaches have been proposed in past two decades. A

ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 173

main reason that DDoS flooding attacks proliferate is a

node can send any amount of data packets to any

destination, regardless whether or not the destination

wants the packets.

To address this issue, several approaches have

been proposed. In the off by default approach two hosts

are not permitted to communicate by default. Instead, an

end host explicitly signals and routers exchange the IP-

prefixes that the end host wants to receive data packets

from them by using an IP-level control protocol. The D-

PID design is similar in spirit, since D-PID dynamically

changes PIDs and a content provider can send data

packets to a destination only when the destination

explicitly sends out a GET message that is routed to the

content provider. However, there are two important

differences. First, the off by default approach works at

the IP-prefix granularity, but D-PID is based on an

information-centric network architecture and works at

the content granularity.

Second, the IP-prefixes that an end host wants

to receive packets from are propagated throughout the

Internet in the “off by default” approach, which may

cause significant routing dynamics if the allowed IP-

prefixes of end hosts change frequently. On the other

hand, the PIDs are kept secret and change dynamically

in D-PID. While this incurs cost since destinations need

to re-send GET messages, the results presented in Sec. V

show that the cost is fairly small. The capability-based

designs also share the same spirt with “off by default”

and D-PID. In these approaches, a sender first obtains

the permission from the destination in order to send data

packets to it. The destination provides the capabilities to

the sender if it wants to receive packets from the sender.

The sender then embeds the obtained capabilities into

packets. Routers along the path from the sender to the

destination verify the capabilities in order to check

whether or not the destination wants to receive the

packets. If not, the routers simply discard the packets. D-

PID differentiates from the capability-based approaches

in two aspects. On one hand, communications are

initiated by receivers in D-PID but by senders in

capability based approaches. On the other hand, the

capability-based approaches are vulnerable to “denial-of

capability” attacks, where compromised computer(s)

sends plenty of capability requests to a victim, thus

preventing normal users to obtain the capability from the

victim. By contrast, D-PID effectively mitigates such

attacks because of three reasons. First, the GET

messages carry the PIDs along the paths from the

compromised computers to the victim. Second, the PIDs

are negotiated by neighboring domains that can verify

the authenticity of PIDs when they forward GET

messages. These two reasons makes it convenient to

trace back the attackers.

Third, the ubiquitous in-network caching in

CoLoR reduces the GET messages sent to the target

victim. Named data networking (NDN) [1] is another

approach closely related to our work. In NDN, a content

consumer sends out an Interest packet when it wants a

piece of content. The Interest is routed (by the content

name) to the content provider by routers in the Internet.

When a router forwards the Interest toward the content

provider, it inserts an entry into its pending Interest table

(PIT) that stores the content name and the incoming

interface of the Interest packet. When the content

provider receives the Interest packet, it sends the

corresponding Data packet back to the subscriber. The

routers then forward the Data packet back to the content

consumer according to the PIT entries stored by them.

Unfortunately, maintaining a PIT table at routers makes

NDN vulnerable to Interest flooding attacks [5]. By

contrast, routers in D-PID do not maintain any

forwarding state.

In addition, as stated in the previous paragraph,

carrying PIDs along the path from attackers to the victim

makes it convenient to trace back the attackers, thus help

preventing them from launching attacks by sending

plenty of GET messages.

 VII. CONCLUSION

In this paper, we have presented the design,

implementation and evaluation of D-PID, a framework

that dynamically changes path identifiers (PIDs) of

inter-domain paths in order to prevent DDoS flooding

attacks, when PIDs are used as inter-domain routing

objects. We have described the design details of D-PID

and implemented it in a 42-node prototype to verify its

feasibility and effectiveness. We have presented

numerical results from running experiments on the

prototype. The results show that the time spent in

negotiating and distributing PIDs are quite small (in the

order of ms) and D-PID is effective in preventing DDoS

attacks. We have also conducted extensive simulations

to evaluate the cost in launching DDoS attacks in D-PID

and the overheads caused by D-PID. The results show

that D-PID significantly increases the cost in launching

DDoS attacks while incurs little overheads, since the

extra number of GET messages is trivial (only 1.4% or

2.2%) when the retransmission period is 300 seconds,

and the PID update rate is significantly less than the

update rate of IP prefixes in the current Internet. To the

best of our knowledge, this work is the first step toward

ISSN2394-3777 (Print)
ISSN2394-3785 (Online)

 Available online atwww.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 9, March 2018

All Rights Reserved © 2018 IJARTET 174

using dynamic PIDs to defend against DDoS flooding

attacks. We hope it will stimulate more researches in this

area.

References:

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,

kc claffy, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang,

“Named data networking,” ACM Comput. Commun. Rev., vol. 44, no.

3, pp. 66 - 73, Jul. 2014.

[2] T. Koponen, M. Chawla, B. C G. Chun, A. Ermolinskiy, K. H.

Kim, S.

Shenker, I. Stoica, “A data-oriented (and beyond) network

architecture,” in Proc. SIGCOMM’07, Aug. 2007, Kyoto, Japan, pp.

181 - 192.

[3] Data Plane Development Kit.http://www.dpdk.eu/.

[4] Click Router. http://www.read.cs.ucla.edu/click/.

[5] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS&DDoS in

named-data networking,” in Proc. IEEE ICCCN’13, Aug. 2013,

Nassau, Bahamas.

