
 

ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 
1 

Managing Big Data Using a Data-Aware HDFS and 

Evolutionary Grouping System 

Dr.P.Baskaran,  

Department of Computer Applications, Voorhees College, Vellore, Tamilnadu 

 

Abstract— The increased use of 

cyber-enabled systems and Internet-

of-Things (IoT) led to a massive 

amount of data with different 

structures. Most big data solutions are 

built on top of the Hadoop eco-system 

or use its distributed file system 

(HDFS). However, studies have 

shown inefficiency in such systems 

when dealing with today’s data. Some 

research overcame these problems for 

specific types of graph data, but 

today’s data are more than one type of 

data. Such efficiency issues lead to 

largescale problems, including larger 

space required in data centers, and 

waste in resources (like power 

consumption), that in turn lead to 

environmental problems (such as more 

carbon emission) [1], as per scholars. 

We propose a data-aware module for 

the Hadoop eco-system. We also 

propose a distributed encoding 

technique for Genetic Algorithms. Our 

framework allows Hadoop to manage 

the distribution of data and its 

placement based on cluster analysis of 

the data itself. We are able to handle a 

broad range of data types as well as 

optimize query time and resource 

usage. We performed our experiments 

on multiple datasets generated via 

LUBM.  

Index Terms— Clustering methods, 

Distributed Computing, Information 

Management, Optimization, Scalability  

 

1 INTRODUCTION 

Building a science out of data faces many 

challenges. One major problem is that today's data 

is big, dynamic, and heterogeneous, collected 

from multiple sources and frequently has no 

standard structure. The majority of modern data 

analytics, management tools and services are 

designed to use Hadoop Distributed File System 

(HDFS) as a data warehouse; sometimes these 

analytic tools use services provided by the 

Hadoop ecosystem for processing. From a 

price/performance standpoint, Hadoop stands 

well. We transformed the data and stored it in 

graph-based scalable stores to give it a sense of 

57 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

structure and to be able to stream changes, 

constructing vertex-to-vertex triples for data 

points, then adding cluster affiliation data to these 

triples to form quadruples as described in the 

architecture section. These techniques allowed us 

to (1) collect data from multiple sources and 

convert them into quads with a sense of structure 

for different data, (2) stream changes dynamically 

and push to the graph database, and (3) pre

the data for application to a new version of Hajeer 

et al. [12]. A novel encoding of chromosomes was 

used to handle the modern data clustering problem 

along with novel crossover, mutation and 

evaluation techniques to deliver the needs of the 

new distributed encoding technique. Later, we 

distributed the sub-graphs over HDFS based on 

the cluster affiliations to produce optimized data 

to query and process. 

 

 

                                                                                                                  ISSN

                                                                                                   Available onli

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

structure and to be able to stream changes, 

vertex triples for data 

points, then adding cluster affiliation data to these 

escribed in the 

architecture section. These techniques allowed us 

to (1) collect data from multiple sources and 

convert them into quads with a sense of structure 

for different data, (2) stream changes dynamically 

and push to the graph database, and (3) prepare 

the data for application to a new version of Hajeer 

et al. [12]. A novel encoding of chromosomes was 

used to handle the modern data clustering problem 

along with novel crossover, mutation and 

evaluation techniques to deliver the needs of the 

ibuted encoding technique. Later, we 

graphs over HDFS based on 

the cluster affiliations to produce optimized data 

 

Fig. 1. Computational steps of the proposed 

framework.  

Fig. 1 illustrates the contribution and modules 

on the proposed framework as follows: 

(1) after collecting the data or gathering old 

datasets, this module converts the data into the 

desired network graphs;  

(2) finding patterns in the graphs, the module 

distributes the data into the right data blocks;

(3) distributes the blocks into the right machine 

accordingly; and  

(4) an optimized DHFS serves as a data source 

for services to execute queries and provide a 

platform to apply graph algorithms efficiently as 

well as reduce resource usage. To summarize the 

above, the proposed framework improves the 

ability of HDFS to handle modern data by 

building data awareness modules that detect, 

distribute, and manage data over the scalable file 

system. Thus, the framework results in 

optimization and efficient resource usage of the 

Hadoop eco-system and other tools and services 

that use HDFS as a distributed storage.Promising 

solutions in next generation analytics and lambda 

architecture have been presented in recent studies. 

Song et al. [13] reviewed the recent research in 

data types, storage models, analysis methods and 

application to network Big Data. They also 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

Available online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

Fig. 1. Computational steps of the proposed 

Fig. 1 illustrates the contribution and modules 

on the proposed framework as follows:  

(1) after collecting the data or gathering old 

datasets, this module converts the data into the 

(2) finding patterns in the graphs, the module 

istributes the data into the right data blocks; 

(3) distributes the blocks into the right machine 

(4) an optimized DHFS serves as a data source 

for services to execute queries and provide a 

platform to apply graph algorithms efficiently as 

well as reduce resource usage. To summarize the 

above, the proposed framework improves the 

le modern data by 

building data awareness modules that detect, 

distribute, and manage data over the scalable file 

system. Thus, the framework results in 

optimization and efficient resource usage of the 

system and other tools and services 

e HDFS as a distributed storage.Promising 

solutions in next generation analytics and lambda 

architecture have been presented in recent studies. 

Song et al. [13] reviewed the recent research in 

data types, storage models, analysis methods and 

network Big Data. They also 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

summarized the challenges and development of 

big data to predict current and future trends. 

 Service deployments over HDFS   

As mentioned before, HDFS serves as a 

distributed data source for modern big

solutions, such as Apache Spark [6], Mesos [9

HAMR [8] and hundreds of others. Such solutions 

have many deployments, mostly over HDFS or 

over a service that runs on HDFS (see Fig. 3). 

Fig. 2. Services and applications deployments on 

HDFS.  

2. HDFS PERFORMANCE & EFFICIEN

PROBLEM  

The utilization of the Hadoop eco

process enterprise data and build applications on 

top of it is dependent upon the enterprise use

cases and the data. Since IT BI teams (business 

intelligence) in businesses and enterprises 

configure such systems to meet their goals and 

roadmaps, they focus on the data and use

Most enterprise data are collected for specific use 

cases. Later, these data reside on storages waiting 

for the BI team to make use of them, thus 

                                                                                                                  ISSN

                                                                                                   Available online at

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

summarized the challenges and development of 

big data to predict current and future trends.  

 

As mentioned before, HDFS serves as a 

distributed data source for modern big-data 

Apache Spark [6], Mesos [9], 

HAMR [8] and hundreds of others. Such solutions 

have many deployments, mostly over HDFS or 

over a service that runs on HDFS (see Fig. 3).  

 

. Services and applications deployments on 

HDFS PERFORMANCE & EFFICIENCY 

The utilization of the Hadoop eco-system to 

process enterprise data and build applications on 

top of it is dependent upon the enterprise use-

cases and the data. Since IT BI teams (business 

intelligence) in businesses and enterprises 

uch systems to meet their goals and 

roadmaps, they focus on the data and use-cases. 

enterprise data are collected for specific use 

cases. Later, these data reside on storages waiting 

for the BI team to make use of them, thus 

resulting in data collected from multiple sources 

having multiple structures. As per Huang et al. [1] 

and Rohloff et al. [5], the implementation of 

Hadoop and the services that are designed to run 

on HDFS lack optimization for graphs. Some of 

the causes for HDFS inefficiency include the 

following as per [1]: (1) the default hash 

partitioning provided by Hadoop may lead related 

data to end up far away physically over the set of 

computing resources, effectually resulting in a 

massive amount of data transfer b

resources to finish graph operations. Thus, 

combining related data is a win as per [1]; (2) 

Hadoop considers the same importance for all data 

blocks and partitions, so maintaining the locality 

of inter-cluster neighbors and keeping them 

physically close-by improves efficiency, and (3) 

HDFS is not optimized for graph data. Huang et 

al. [1] showed an efficiency problem with the said 

technique in Rohloff et al. [5] within a Hadoop

based system. However, the manner in which 

Huang et al. [1] and Rohloff e

around the problem can be generalized. Since they 

focus on one particular file type and one simple 

clustering algorithm, we believe that this 

technique has some drawbacks when we deal with 

big and dynamic un/semi/multi

a previous study, Hajeer et al. [12], we confirmed 

such limitations. The study showed how to use 

genetic algorithms to cluster such data. We used 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

resulting in data collected from multiple sources 

having multiple structures. As per Huang et al. [1] 

and Rohloff et al. [5], the implementation of 

Hadoop and the services that are designed to run 

on HDFS lack optimization for graphs. Some of 

r HDFS inefficiency include the 

following as per [1]: (1) the default hash 

partitioning provided by Hadoop may lead related 

data to end up far away physically over the set of 

computing resources, effectually resulting in a 

massive amount of data transfer between 

resources to finish graph operations. Thus, 

combining related data is a win as per [1]; (2) 

Hadoop considers the same importance for all data 

blocks and partitions, so maintaining the locality 

cluster neighbors and keeping them 

by improves efficiency, and (3) 

HDFS is not optimized for graph data. Huang et 

al. [1] showed an efficiency problem with the said 

technique in Rohloff et al. [5] within a Hadoop-

based system. However, the manner in which 

Huang et al. [1] and Rohloff et al. [5] worked 

around the problem can be generalized. Since they 

focus on one particular file type and one simple 

clustering algorithm, we believe that this 

technique has some drawbacks when we deal with 

big and dynamic un/semi/multi-structured data. In 

a previous study, Hajeer et al. [12], we confirmed 

such limitations. The study showed how to use 

genetic algorithms to cluster such data. We used 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

this technique in Hajeer et al. [12], Pizzuti [43] 

and [42] along with a list of other work, such as 

[48], [46], [62], and [63], after building a 

transformation method to convert desired data into 

graph data. The results of extending the work in 

[12] were used to generalize Huang et al. [1] and 

Rohloff et al. [5].In Hadoop, the main idea is to 

bring the computations to the data; for example, 

MapReduce, the Map part, can quickly bring the 

computations to the container that has part of the 

data as its resource. On the other hand, the reduce 

phase collects data from the mappers’ outputs, and 

in most cases, these data parts have to travel over 

the network to the right containers that run some 

specific reducers. Such mappers’ output usually 

gets collected from multiple mappers to each 

reducer. Programmers have to control such 

problems to some extent. That is why even at 

Cloudera's training for developers they tend to 

give a guideline for programmers to use mapper 

side joins rather than reducers. Cloudera's training 

also encourages developers to use Hive [64] query 

planner when possible to take care of such joins. 

Hence, we strongly believe that the Hadoop 

cluster itself should have a sense of data 

awareness, where data from mappers’ outputs for 

the same key should be in the same, or at least a 

nearby, machine as much as possible. Since 

applications and jobs are different from one 

usecase to another, it is impossible to cover all 

cases and future cases. One solution to optimize 

such jobs is to cluster the data as the proposed 

framework does. Not all algorithms are covered in 

such cases, but most graph algorithms specifically 

rely on the data that are related and connected 

(e.g. graph traversing).  

 

3. DATA-AWARE HDFS INDICES   

3.1 Graph Transformation  

We discussed in the introduction the 

sources and problems of modern data. And we 

mentioned that data could come from different 

sources  LMN where SN is source Z and Z. These 

various sources generate or contain data with 

different structures, sometimes for the same 

entities but different data and different structures. 

LM   N where  is the structure of data coming 

from source Z and contained to the infinite 

superset DS (Structure) ⊂ L∞ Data with the 

structure ∈D were transformed into a graph G (V, 

E) as an undirected graph and with the number of 

vertices |V|=m and the number of edges |E|=n. 

This transformation is further explained in the 

Overall Architecture section.  

3.2 Graph Clustering   

We referred to a graph of vertices V and 

edges E as G (V, E), as a directed graph. Also, the 

number of vertices |V|=m, number of edges |E|=n 

and the clustering LM N as a partition of V as 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

disjoint sets. We call C a clustering of 

containing J clusters. The number of clusters 

a minimum of j=1 when C contains only on

subset L, and a maximum of j=m 

cluster  contains only one vertex. We identify the 

cluster Cj as a subgraph of G

QRLMMNN where MNLOOPLO P

?
730%M$Nis the set of intra-cluster edges and 

E/E(C) is the set of inter-cluster edges. The 

number of intra-cluster edges denoted by 

.(C) is the number of inter-cluster edges. In our 

clustering algorithm, we used modularity as a 

fitness measure in Hajeer et al. [12]. Modularity 

is then defined as the fraction of edges that fall 

within group 1 or 2, minus the expected number 

of edges within groups 1 and 2 for a random graph 

with the same node degree distribution a

given network.Hence, the actual number of edges 

between v and w minus expected number of edges 

between them is MN. Modularity can be 

expressed in Equation  

3.3 Graph Distribution and Assumptions 

As described previously, three major 

challenges faced HDFS optimization; two of them 

were about how Hadoop hashes and distributes the 

data. Our assumption and experiments showed 

that (1) storing intra-cluster data together on the 

same machine and (2) storing close inter

data on close-by machines were 

toward optimizing HDFS.  

                                                                                                                  ISSN

                                                                                                   Available online at

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

a clustering of G 

clusters. The number of clusters j has 

contains only one 

j=m when every 

cluster  contains only one vertex. We identify the 

G. The graph 

MNLOOPLO P Then MNL

cluster edges and 

cluster edges. The 

cluster edges denoted by m(C)and 

cluster edges. In our 

modularity as a 

fitness measure in Hajeer et al. [12]. Modularity Q 

is then defined as the fraction of edges that fall 

within group 1 or 2, minus the expected number 

of edges within groups 1 and 2 for a random graph 

with the same node degree distribution as the 

given network.Hence, the actual number of edges 

minus expected number of edges 

. Modularity can be 

.3 Graph Distribution and Assumptions  

As described previously, three major 

HDFS optimization; two of them 

were about how Hadoop hashes and distributes the 

data. Our assumption and experiments showed 

cluster data together on the 

same machine and (2) storing close inter-clusters 

 a huge step 

4. OVERALL ARCHITECTURE  

Our clustering framework (DEGA

a part of the proposed data-

running on top of the distributed data storage as 

shown in Fig. 4. The framework interacts with 

HDFS and its available services to provide 

updated clusters as data flows in

is to achieve optimization by placing related data 

together and reducing overhead on data movement 

between hosts. Data transfer mostly happens in 

aggregation processes or joins. 

 

Fig. 3. Data awareness module and Distributed 

evolutionary clustering algorithm as part of 

Hadoop.  

4.1 Building Distributed RDF Graphs 

The first step performed by the data

HDFS framework is converting datasets into a 

distributed RDF graph. This process was done 

using the open sources Apache Jena and Apache 

Jena Elephas. The proposed dataaware HDFS 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

OVERALL ARCHITECTURE   

Our clustering framework (DEGA-Gen) is 

-awareness module 

running on top of the distributed data storage as 

shown in Fig. 4. The framework interacts with 

HDFS and its available services to provide 

updated clusters as data flows in HDFS. Our goal 

is to achieve optimization by placing related data 

together and reducing overhead on data movement 

between hosts. Data transfer mostly happens in 

aggregation processes or joins.  

 

. Data awareness module and Distributed 

clustering algorithm as part of 

.1 Building Distributed RDF Graphs  

The first step performed by the data-aware 

HDFS framework is converting datasets into a 

distributed RDF graph. This process was done 

using the open sources Apache Jena and Apache 

Jena Elephas. The proposed dataaware HDFS 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

turns the datasets into quadruples rather than 

triples; reasons for this process are explained in 

the Genetic-Based Clustering. Unlike the 

widespread use of quadruple representation, we 

used the extra field in the quads to represent 

cluster affiliation of the triple rather than the 

graph membership of the quad; we called the field 

(Chromosome ID). This process leverages the 

usage of quad stores to enhance the sub-process 

(encoding and representation for distributed 

clustering).  

Not all types of data can be transformed into 

graphs. However, Big Data is about the use-case 

and the data in some cases. This transformation is 

direct (SHARD), and relational database records 

(for example) can be represented as an RDF graph 

where each attribute of each record is a relation 

between two nodes, one node represents the value 

of the key field and the other node is the value of 

the attribute field. In other cases, (like text data), 

relations between data points can be defined based 

on the use case. Take natural language processing, 

for example, one can define relations of (word 

comes before) and (word comes after) for each 

word to build a prediction model.  

4.2 Genetic-Based Clustering  

4.2.1 Encoding & Representation  

We used the encoding from [65] to overcome the 

big encoding issues found in previous studies and 

listed in [65]. Such encoding derives from the 

definition of clusters. However, even with such 

encoding in [65], solutions can still have a very 

long representation as the data scales up. 

Eventually, the GA client will run out of memory 

handling solutions itself as the data scales up. 

Another technique we used to reduce the overhead 

of manipulating solutions was to store it as extra 

information along with graph triples on HDFS, by 

converting data points from 

<Node><Predicate><Node> triples, as in Rohloff 

et al. [5], into 

<Chromosome_part><Node><predicate><Node> 

quadruples. We referred to <chromosome_part> 

as a list of solution_IDs that this particular node 

belongs to in the population. This encoding leads 

to a population of a fixed size list of Integers on 

the GA client side called solution_IDs. This 

technique allows the client to scale the clustering 

GA on larger size datasets that the HDFS can 

hold.   

 

The idea was to treat solutions as data and to 

inherit all scalability properties that apply to the 

graph. Thus, the population of a size X on the 

client side has a constant size(X) regardless of the 

data size. We referred to this novel technique as 

Distributed chromosomes, and as a concept, it is 

about the distribution of genes from the solutions 

along with the data. Fig. 5 explains how the graph 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

data were stored in RDF format and how we 

performed the integration of solution encoding on 

RDF data. We used Apache Jena and Jena 

Alephas and modified these open sources to match 

our needs. Convert_to_quads_Chromo class was 

developed to convert RDF graph Triples to Quads 

as in Fig. 5. This class contained Mapper, reducer, 

combiner, and appropriate writables as well as 

input and output classes formatted to deal with 

RDF data. It takes each triple from each block of 

data and converts it into a quad with a random 

gene (part of solutions) that it belongs to then 

stores it back into HDFS.  

 

4.2.2 Objective Functions  

 

In our clustering algorithm, we maximize 

modularity as an objective in Hajeer et al. [65].  

As per [57], Modularity Q is defined then as the 

fraction of edges that fall within group 1 or 2, 

minus the expected number of edges within 

groups 1 and 2 for a random graph with the same 

node degree distribution as the given 

network.Hence, the actual number of edges 

between v and w minus expected number of edges 

between them is Avw-(kvkw)/2m. Please refer to 

Equations 1-5 in the Data-aware HDFS Indices 

section. Note that modularity maximization is not 

the only objective. Another objective is to 

minimize the solution length. Considering intra-

cluster edges as inter-cluster edges results in some 

longer solutions with no difference in modularity. 

Hence, those solutions need to be given a smaller 

fitness but not totally ignored (a combination with 

other solutions may lead to a better clustering). 

Since our evaluation on the datasets used 

considers predicates and relations to work both 

ways (an undirected graph), we used modularity 

in Equation (3). For use cases where the defined 

relationships result in a directed graph, there is an 

extended modularity that was proposed for a 

directed graph that can be utilized. On the other 

hand, the clustering purpose is to find a better 

placement for graph data. Hence, considering 

directed graphs as undirected graphs while 

clustering does not necessarily force the user to 

have the same assumption while querying the 

data. 

4.2.3 Details Steps of Genetic Clustering  

Population Initialization  

Population initialization is the process of 

creating a collection of diverse solutions. As 

described in the Encoding & Representation sub-

section, we transform the triples in RDF data into 

quads, adding the ability to hold a gene (part of 

the solution) for each vertex, where this gene is a 

list of random solution IDs to which a particular 

vertex belongs. For example, if a Quadruple D has 

S1 and S5 as genes, then that is translated as 

solutions S1 and S5; both consider the edge D as 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

an inter-cluster edge connecting two separate 

clusters. In ∀TiT there is a set of solutions ∪STi"(, 

where T is ∪ of triples t that constructs the graph 

G, and S is the set of solutions s in the population. 

It is critical to keep in mind that the maximum 

size of such a list is the integer size of the 

population.  The initialization process for 

populations is shown in Fig. 5. The GA client only 

holds a two-dimensional array of solution-IDs and 

Modularity Fitness (Integers and floats), allowing 

the client to start the selection process and initiate 

the distributed GA operators. Working on a fixed, 

small size two-dimensional array, where the real 

genes are stored in the data blocks in a distributed 

manner taking advantage of HDFS, proved to 

provide more scalability.  

 

5. Solutions Evaluation  

The evaluation was done using the objective 

functions described in the objectives section. Each 

solution is evaluated by computing modularity on 

the analogous graph, a graph where edges in the 

solution are marked as inter-cluster edges. We 

identified the clusters by removing the marked 

edges and considering the disconnected graph 

components as communities. Then, we computed 

the modularity considering the marked edges 

again as intercluster edges.  The process of 

computing the modularity on a large graph is both 

resource and time consuming, so we decided to 

improve it using distributed tasks to be run on the 

quadruple store created with extra data for 

solutions. Using HDFS and distributing the 

dataset over multiple machines, we were able to 

batch process each set of solutions (generation) at 

once.  

 

Fig. 4. Distributed evaluation of solutions (map 

task).  

 

After the client side of the algorithm injects 

current population solutions data into the 

quadruples stored in HDFS, it sends the list of 

solution IDs (list of integers) to be evaluated. Fig. 

6 illustrates the evaluation Map tasks. The map 

function is called for each Quad in the graph 

chunk that represents part of the graph. Jena 

Elephas is used with modified input and output 

Given a Population_ID list S that contain 

ID’s of solutions to be evaluated  

 

   Map(Key index, Value Quad): 

ForEachsolutionIDin S: 

 IfQuad.GetGenesin 

solution: Quad.marked 

= True   Emit 

(solutionID , Quad)  

  Else:  

  Quad.marked = False  



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

class to use Chromosome quads rather than 

default graph quads. Each container on the HDFS 

cluster performs a map operation on the graph 

chunks it has been assigned. After mapping all the 

chunks into pairs of <Keys, Values> representing 

solution IDs and Quads that are part of the 

corresponding solution, the shuffling task takes 

place. All values for the same key are grouped 

together as <Key, List of Values> that represent 

each solution and the list of marked and unmarked 

Quads (Graphs where inter-cluster edges are 

marked). The final stage consists of the reduce 

tasks that are described  

Given a solution S and a set of Quads 

marked based on S, as mappers’ 

outputs and reducers’ input for a 

graph G with N Quads  

Reduce (Solution S, EdgesQuads 

[E1,E2,E3,….EN]):  

ForEach Quad E inQuadssList:  

IfE.marked = True:  

MarkedQuads.append(E)  

Else:  

UnMarkedQuads.append(E)  

Endfor 

     Communities = 

FindComponents(MarkedQuads, 

UnMarked- 

Quads) 

     Modularity = 0  

ForEach Community C in Communities:  

M46@@<A5;=<B!1249DCC<A5;=<BN 

DegreeFraction 

=  

M1!8N 

          Modularity += (C. InnerEdges /N)-

(DegreeFraction)^2      Endfor 

Emit(S, Modularity) 

Fig. 5. Distributed evaluation of solutions (reduce 

task).  

The FindComponents function was 

implemented using a modified linear finding 

component algorithm to store also the number of 

intra-cluster edges and the number of inter-cluster 

edges for each community. When reduce tasks 

finish, the results of reducers are written to HDFS, 

and the results contain each solution with its 

modularity. The results consist of a fixed size two-

dimensional array of integer solution IDs and a 

fitness for each solution. The evolutionary 

algorithm reads this file and continues working on 

an evaluated generation ready for selection, 

crossover and mutation processes. In the last 

generation, an extra piece of information 

controlled by a boolean configuration variable is 

written to HDFS as well; this piece contains the 

clustering affiliation for each node. The reason 

they are only written in the last generation is to 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

lower the write overhead on HDFS while 

affiliations are not needed any time before it. 

 

6. Crossover, Mutation and Selection  

Since we stored the chromosomes in a 

distributed manner, we needed to modify the GA 

operators used in Jmetal open source to be able to 

run them on the corresponding quadruples that 

represent the graph. This procedure was done by 

developing distributed crossover and distributed 

mutation modules, which in return created jobs of 

crossover and mutations to be performed on the 

corresponding population. After evaluating the 

population, the selection process starts based on 

each solution ID and its fitness. Tournament 

selection is the selection used, and the rea

avoid converging to locally optimal solutions, 

which are a lot based on our encoding technique. 

By ranking the population and choosing solutions 

from each class, a set of parents along with the 

new offspring IDs were constructed. Fig. 8 is a 

high-level diagram showing the steps in which the 

algorithm creates GA operator’s tasks.  

 

                                                                                                                  ISSN

                                                                                                   Available onli

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

lower the write overhead on HDFS while 

affiliations are not needed any time before it.  

Crossover, Mutation and Selection   

Since we stored the chromosomes in a 

manner, we needed to modify the GA 

operators used in Jmetal open source to be able to 

run them on the corresponding quadruples that 

represent the graph. This procedure was done by 

developing distributed crossover and distributed 

return created jobs of 

crossover and mutations to be performed on the 

corresponding population. After evaluating the 

population, the selection process starts based on 

each solution ID and its fitness. Tournament 

selection is the selection used, and the reason is to 

avoid converging to locally optimal solutions, 

which are a lot based on our encoding technique. 

By ranking the population and choosing solutions 

from each class, a set of parents along with the 

new offspring IDs were constructed. Fig. 8 is a 

level diagram showing the steps in which the 

algorithm creates GA operator’s tasks.   

Fig. 6. Distributed genetic algorithm for RDF 

clustering.  

Encoding and storing solutions in a distributed 

manner delivered the advantage of small and fixed 

size populations on a client side. However, GA 

operators in the open source Jmetal needed to be 

modified as well as NSGAII, which was used in 

our case. The original NSGAII creates a 

population's and offspring's solutions and 

evaluates it one solution at a time; such a situation 

creates an overhead of tasks on HDFS. Rather, we 

modified NSGAII to DNSGAII (Distributed 

NSGAII) by creating a set of solutions then 

performing evaluation and GA operators at once 

in one MR2 task. Fig. 9 illustrates the task of 

distributed crossover and distributed mutation. 

The distributed crossover and mutation task takes 

the population as inputs along with the selection 

results, then for each quad in the data changes the 

partial chromosomes accordingly. The task 

removes any solution ID (gene) that does not 

belong to the current population to save space and 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

Available online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

 

. Distributed genetic algorithm for RDF 

Encoding and storing solutions in a distributed 

manner delivered the advantage of small and fixed 

size populations on a client side. However, GA 

operators in the open source Jmetal needed to be 

modified as well as NSGAII, which was used in 

iginal NSGAII creates a 

population's and offspring's solutions and 

evaluates it one solution at a time; such a situation 

creates an overhead of tasks on HDFS. Rather, we 

modified NSGAII to DNSGAII (Distributed 

NSGAII) by creating a set of solutions then 

rforming evaluation and GA operators at once 

in one MR2 task. Fig. 9 illustrates the task of 

distributed crossover and distributed mutation. 

The distributed crossover and mutation task takes 

the population as inputs along with the selection 

or each quad in the data changes the 

partial chromosomes accordingly. The task 

removes any solution ID (gene) that does not 

belong to the current population to save space and 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

computations. Then, as shown in Fig. 8, the new 

offspring population is sent to evaluation. Here we 

have to note that solutions that belong to a 

previous generation will not be evaluated since 

they already have fitnesses. This copy technique 

of fitnesses saved an enormous amount of 

computations when we dealt with big data for a 

long series of generations. The processes of 

representation, population initialization, 

evaluation, selection and offspring evaluation to 

population are illustrated in Fig. 10. The numbers 

represent the processes and tasks order. Since we 

were dealing with dynamic data as one of the Big

Data five V limitations (Velocity, Variety, 

Veracity, Value and Volume), the algorithm gets 

suspended when it converges to the same solution 

for a sequence of generations then continues 

working as new data arrives to start from the

generation reached.   

                                                                                                                  ISSN

                                                                                                   Available online at

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

computations. Then, as shown in Fig. 8, the new 

valuation. Here we 

have to note that solutions that belong to a 

previous generation will not be evaluated since 

they already have fitnesses. This copy technique 

of fitnesses saved an enormous amount of 

computations when we dealt with big data for a 

ries of generations. The processes of 

representation, population initialization, 

evaluation, selection and offspring evaluation to 

population are illustrated in Fig. 10. The numbers 

represent the processes and tasks order. Since we 

c data as one of the Big-

Data five V limitations (Velocity, Variety, 

Veracity, Value and Volume), the algorithm gets 

suspended when it converges to the same solution 

for a sequence of generations then continues 

working as new data arrives to start from the last 

 

Fig. 7. Distributed genetic algorithm clustering 

process flow.  

Suspension of the algorithm ensures that 

clustering will apply to the new data while old 

data have the best affiliation found, so there is no 

need for the clustering process to start from the 

beginning.  

7. Partitioning and Placement 

After clustering the RDF data, the last step was 

to repartition the data and place graph quadruples 

accordingly. The goal in this step was to place 

quadruples that belong to the same 

have a high degree of connectivity into the same 

partition to ensure locality of intra

quadruples. Another goal was to place highly 

connected inter-clusters into a close partition 

physically, to map the inter-cluster distance onto 

the physical distance of partitions. Fig. 11 

illustrates the desired allocation of quadruples, 

assuming that the horizontal distance in the figure 

represents the physical distance between the 

computing nodes (the distance of network 

routing). We account for the 

nodes by how many routing hops between them 

(networks, routers, switches…). We set up HDFS 

over machines connected using multiple networks 

to create a distance in routing. The placement 

script placed quadruples. [7] discussed about a 

Secure system to Anonymous Blacklisting. The 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

. Distributed genetic algorithm clustering 

Suspension of the algorithm ensures that 

clustering will apply to the new data while old 

data have the best affiliation found, so there is no 

ing process to start from the 

Partitioning and Placement  

After clustering the RDF data, the last step was 

to repartition the data and place graph quadruples 

accordingly. The goal in this step was to place 

quadruples that belong to the same cluster and 

have a high degree of connectivity into the same 

partition to ensure locality of intra-cluster 

quadruples. Another goal was to place highly 

clusters into a close partition 

cluster distance onto 

hysical distance of partitions. Fig. 11 

illustrates the desired allocation of quadruples, 

assuming that the horizontal distance in the figure 

represents the physical distance between the 

computing nodes (the distance of network 

 distance of HDFS 

nodes by how many routing hops between them 

(networks, routers, switches…). We set up HDFS 

over machines connected using multiple networks 

to create a distance in routing. The placement 

] discussed about a 

re system to Anonymous Blacklisting. The 



                                                                                                            
                                                                                                   

               International Journal of Advanced Research Trends in Engineering and Technology 

               Vol. 5, Special Issue 4, February 2018

 

secure system adds a layer of accountability to 

any publicly known anonymizing network is 

proposed. Servers can blacklist misbehaving users 

while maintaining their privacy and this system 

shows that how these properties can be attained in 

a way that is practical, efficient, and sensitive to 

the needs of both users and services. This work 

will increase the mainstream acceptance of 

anonymizing networks such as Tor, which has, 

thus far, been completely blocked by severa

services because of users who abuse their 

anonymity. In future the Nymble system can be 

extended to support Subnet-based blocking. If a 

user can obtain multiple addresses, then nymble

based and regular IP-address blocking not 

supported. In such a situation subnet

blocking is used. Other resources include email 

addresses, client puzzles and e-cash, can be used, 

which could provide more privacy. The system 

can also enhanced by supporting for varying time 

periods. 

 

                                                                                                                  ISSN

                                                                                                   Available onli

International Journal of Advanced Research Trends in Engineering and Technology 

February 2018 

secure system adds a layer of accountability to 

any publicly known anonymizing network is 

proposed. Servers can blacklist misbehaving users 

while maintaining their privacy and this system 

ties can be attained in 

a way that is practical, efficient, and sensitive to 

the needs of both users and services. This work 

will increase the mainstream acceptance of 

anonymizing networks such as Tor, which has, 

thus far, been completely blocked by several 

services because of users who abuse their 

anonymity. In future the Nymble system can be 

based blocking. If a 

user can obtain multiple addresses, then nymble-

address blocking not 

on subnet-based 

blocking is used. Other resources include email 

cash, can be used, 

which could provide more privacy. The system 

can also enhanced by supporting for varying time 

Fig. 8. Quadruples placement in different HDFS 

nodes.  

Partitions are created based on the number of 

machines; each machine has its own partition. A 

MapReduce job scans the quadruples and places 

quadruples related to one random cluster in one 

partition then emits the placed quadruples, leading 

to where all connected clusters’ IDs are stored for 

the next scan. The second scan places the 

quadruples for the closest inter

same partition and emits from the original dataset. 

Further, the second closest 

placed into the next closest partition. When there 

are no more interconnected clusters left, another 

random cluster is chosen from the dataset until no 

more data is available. Fig. 11, for example, 

illustrates how clusters with three int

connectivity are placed in the same HDFS node, 

and with two inter-cluster connectivity are placed 

ISSN 2394-3777 (Print) 
ISSN 2394-3785 (Online)    

Available online at www.ijartet.com 

 
International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

 

. Quadruples placement in different HDFS 

Partitions are created based on the number of 

machines; each machine has its own partition. A 

MapReduce job scans the quadruples and places 

quadruples related to one random cluster in one 

s the placed quadruples, leading 

to where all connected clusters’ IDs are stored for 

the next scan. The second scan places the 

quadruples for the closest inter-clusters in the 

same partition and emits from the original dataset. 

Further, the second closest inter-clusters are 

placed into the next closest partition. When there 

are no more interconnected clusters left, another 

random cluster is chosen from the dataset until no 

more data is available. Fig. 11, for example, 

illustrates how clusters with three inter-cluster 

connectivity are placed in the same HDFS node, 

cluster connectivity are placed 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

in the next HDFS node, further clusters are placed 

in further nodes.  

8. EXPERIMENTS AND RESULTS  

We divided the experiment into two sections: 

the first section is the design and the testing of the 

clustering algorithm on the graph store to test the 

clustering results, and the second section is about 

the tests and comparisons of the effect of 

optimization framework on HDFS. All graphs and 

trend models are processed using Tableau [66].  

9. System Performance Experiments   

In this section, we measure the performance of 

our system against multiple RDF stores including 

SHARD after clustering and placement. We used 

Cloudera Impala to create a table on the data. We 

focused mainly on time and resource usage.  

10. Clustering and Load Time   

The results of loading 270 million RDF triples 

into a twenty-machine HDFS cluster as per Huang 

et al. [1]. For a ten-machine cluster, as per 

Alexzander et al. [24], the loading time was 40 

minutes. Because of the differences in resources, 

for benchmarking queries in the Query 

Performance Comparison section, we normalize 

results to be able to compare query response time. 

There is a noticeable workload in terms of time to 

prepare the Cluster-based partitioned RDF against 

hash partitioning the data. However, the effect on 

optimization during query time and storage is a 

trade off, as we describe in the Query 

Performance Comparison section. It is critical to 

point out that the number of triples has a larger 

effect than the storage size in GB; since different 

compression can solve the storage size issue but 

not the amount of information needed to be 

processed. It is also very important to note that 

clustering results are stored by our proposed 

architecture, so when new data and changes 

become available, the algorithm does not need to 

start over. In other words, adding changes to data, 

to some extent, happens in close to real time by 

adding the new triples to the physical server that 

has the data-cluster it connects to.   

 

11. CONCLUSION   

In this article, we presented a data-aware HDFS 

and the services running on top of HDFS that 

optimize state-ofthe-art RDF stores. We proposed 

a cluster-based data partitioning to manipulate the 

physical locality of the data to match the graph 

locality as well as the causality in HDFS 

processes. This allowed parallel processing of 

queries for data on HDFS that required less 

resource usage. Our framework was able to 

perform faster than some attempts and slightyly 

slower than other attempts for scalable RDF data 

stores. However, with less resource usage. Studies 

in next-generation analytics and lambda 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

architecture [15], [16], [17] and [18], along with 

Apache Kudu [20] and a set of studies in [21] 

proved to be fast and more efficient in processing 

of OLAP workloads and showed a strong 

performance in running time-critical workloads. It 

is worth the effort, however, to study the impact 

of intelligent data placement on such methods. For 

future work, we plan to further improve the 

distributed encoding and the genetic operators to 

reduce computation overhead. We also plan to 

experiment with dynamic updates for a larger 

velocity of data flow and to utilize tools and 

frameworks of the lambda architecture and next-

generation analytics presented in the recent 

studies.  

 

12. REFERENCES  

[1] J. Huang, D. J. Abadi and K. Ren, "Scalable 

SPARQL querying of large RDF graphs," 

Proceedings of the VLDB Endowment, vol. 4, 

no. 11, pp. 1123-113, 2011.   

[2] K. Bajda-Pawlikowski, D. J. Abadi, A. 

Silberschatz and E. Paulson, "Efficient 

processing of data warehousing queries in a 

split execution environment," in Proceedings 

of the 2011 ACM SIGMOD International 

Conference on Management of data, 2011.   

[3] M. Walker, "Data Science Central," 19 Dec 

2012. [Online].  

Available:  

http://www.datasciencecentral.com/profiles/bl

ogs/structure d-vs-unstructured-data-the-rise-

of-data-anarchy. [Accessed 16 Oct 2015].  

[4] J. Gantz and D. Reinsel, "The digital universe 

in 2020: Big data, bigger digital shadows, and 

biggest growth in the far east," IDC iView: 

IDC Analyze the future, vol. 2007, no. 2012, 

pp. 1--16.   

[5] K. Rohloff and R. E. Schantz, "Clause-

iteration with MapReduce to scalably query 

datagraphs in the SHARD graphstore," in 

Proceedings of the fourth international 

workshop on Dataintensive distributed 

computing, 2011.  

[6] T. A. S. Foundation, "Apache Spark," The 

Apache Software Foundation, [Online]. 

Available: http://spark.apache.org. [Accessed 

Jan 2016].  

[7] Christo Ananth, A.Regina Mary, V.Poornima, 

M.Mariammal, N.Persis Saro Bell, “Secure 

system to Anonymous Blacklisting”, 

International Journal of Advanced Research in 

Biology, Ecology, Science and Technology 

(IJARBEST), Volume 1,Issue 4,July 

2015,pp:6-9 

[8] .E. I. Inc., "HAMR - Faster than the speed of 

data," ET  



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

International, Inc., [Online]. Available: 

http://www.hamrtech.com/index.html. 

[Accessed 19 Jan  

2016].  

[9] Apache  Storm,  "Apache  STORM," 

 Apache  Software  

Foundation , [Online]. Available: 

http://storm.apache.org. [Accessed 16 9 

2016].  

[10] L. Aniello, R. Baldoni and L. Querzoni, 

"Adaptive online scheduling in storm," in 

Proceedings of the 7th ACM international 

conference on Distributed event-based 

systems, 2013.   

[11] P. Basanta-Val, N. Fernandez-Garcia, A. 

Wellings and N.  

Audsley, "Improving the predictability of 

distributed stream processors," Future 

Generation Computer Systems, vol. 52, pp. 22-

36, 2015.   

[12] M. Hajeer, D. Dasgupta, A. Semenov and J. 

Veijalainen, "Distributed evolutionary 

approach to data clustering and modeling," in 

Computational Intelligence and Data Mining 

(CIDM), 2014 IEEE Symposium, 2014.   

[13] H. Song, P. Basanta-Val, A. Steed, M. Jo and 

Z. Lv, "Nextgeneration big data analytics: 

State of the art, challenges, and future research 

topics," IEEE Transactions on Industrial  

Informatics, p. In Press, 2017.   

[14] N. Agnihotri and A. K. Sharma, "Proposed 

algorithms for effective real time stream 

analysis in big data," in Image Information 

Processing (ICIIP), 2015 Third International 

Conference on, 2015.   

[15] L. Aniello, R. Baldoni and L. Querzoni, 

"Adaptive online scheduling in storm," in 

Proceedings of the 7th ACM international 

conference on Distributed event-based 

systems, 2013.   

[16] P. Basanta-Val, N. Fernandez-Garcia, A. J. 

Wellings and N. C. Audsley, "Improving the 

predictability of distributed stream 

processors," Future Generation Computer 

Systems, vol. 52, pp. 22-36, 2015.   

[17] P. Basanta-Val and M. Garcia-Valls, "A 

distributed real-time java-centric architecture 

for industrial systems," IEEE Transactions on 

Industrial Informatics, vol. 10, no. 1, pp. 27--

34, 2014.   

[18] P. Basanta-Val, N. C. Audsley, A. J. a. G. I. 

Wellings and N. Fernandez-Garcia, 

"Architecting Time-Critical Big-Data 

Systems," IEEE Transactions on Big Data, 

vol. 2, no. 4, pp. 310-324, 2016.   

[19] M. Congosto, P. Basanta-Val and L. Sanchez-

Fernandez, "THoarder: A framework to 

process Twitter data streams," Journal of 



ISSN 2394-3777 (Print) 
                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

 
               International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)         

               Vol. 5, Special Issue 4, February 2018 

 

Network and Computer Applications, vol. 83, 

pp. 28--39, 2017.   

[20] T. A. S. Foundation, "Introducing Apache 

Kudu," The Apache Software Foundation, 

2017. [Online]. Available: 

https://kudu.apache.org/docs/. [Accessed 5 

April 2017].  

[21] N. Marz and J. Warren, Big Data: Principles 

and best practices of scalable realtime data 

systems, Manning Publications Co., 2015.   

[22] M. Ferron-Jones, "It Peer Network," 16 May 

2017. [Online]. Available: 

https://itpeernetwork.intel.com/newbreakthrou

gh-persistent-memory-first-public-demo/. 

[Accessed 1 June 2017].  

70 


