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Abstract—Arduino is an open source device that offers a 
clear and simple environment for computing. It is now 
widely used in modern robotics, Home automation 
system and Internet of Things (IoT) applications, due in 
part to its low-cost, ease of programming.  Sensors can 
easily be connected to the analog and digital I/O pins of 
an Arduino, which features an on-board 
microcontroller programmed using the Arduino API. 
The increasing complexity of physical computing 
applications has now led to a series of Arduino 
compatible devices with faster processors, increased 
flash storage, larger memories and more complicated 
I/O architectures.  However, the standard API is 
restricted to the capabilities found on less powerful 
devices, lacking support for multithreaded programs, 
or specification of real-time requirements. In this 
paper, we present Qduino, a system developed for 
Arduino compatible boards. Qduino provides an 
extended Arduino API which, while backward-
compatible with the original API, supports real-time 
applications and event handling. Experiments show the 
performance gains of Qduino compared to other 
boards. 

Keywords-Qduino, Arduino API, Internet of things. 
 I. INTRODUCTION 

Arduino [1] is a popular open-source platform for 

embedded computing. Its success is mainly due to the 
simplicity of its programming interface, the comprehensive 

library support, and the availability of numerous extension 
shields.  

Traditionally, Arduino boards are equipped with the 

AVR ATmega microcontrollers, operating at speeds up to 
20 MHz The relatively low processing capabilities, limited 

SRAM and flash capacity, restricts traditional Arduino 

boards to applications with fairly simple logic and I/O 

capabilities. While these devices are adequate for basic 
sensing and control, they are insufficient for the high 

processing demands of many robotics or Internet of Things 

(IoT) applications, which now run digital image 

processing, location and 3D mapping algorithms. 
Consequently, many Arduino compatible boards with more 
powerful hardware specifications are now emerging. 

Examples include the Intel Galileo and Edison boards, the 

Minnow board MAX, and the 86Duino, amongst others. 

These new boards have inherited the simplicity of the 

original Arduino API, and provide the standard Arduino 

GPIO hardware interface, which makes them compatible 

with most of the existing Arduino extension shields. 

However, they all feature a much  

 

 

more powerful processor and more complex I/O 
architecture. To cope with the complexity of the 
architecture, most of the advanced Arduino compatible 

platforms are shipped with an embedded Linux operating 
system. 

Modern robotics and IoT applications often interact 
with complex I/O peripheral devices and require the 

handling of multiple threads of control. The standard 
Arduino API was designed for programs running directly 
on 8-bit AVR microcontrollers. It provides the interface to 

setup a single thread of execution with a loop() function. 

This is insufficient for use in multi-threaded applications, 

which require processing to continue while other threads 
wait on I/O operations. Additionally, single-threaded 
applications may under-utilize system resources and fail to 
take advantage of the parallelism provided by the 
hardware.  

Even though programming techniques such as event 

loops and coroutines can be used in a single-threaded 

environment to achieve cooperative scheduling, they only 

allow coarse-grained multithreading which often 

complicates the application design and cannot provide true 
parallelism on a multicore platform. To implement true 
preemptive multithreading, a process/thread model and a 

corresponding scheduling framework are required. 

However, because of the real-time nature of many 
embedded applications running on Arduino platforms, a 
multithreading interface for the Arduino API must also 

guarantee timing predictability of different control flows in 

a program sketch. [7] discussed about Intelligent Sensor 
Network for Vehicle Maintenance System. Modern 
automobiles are no longer mere mechanical devices; they 

are pervasively monitored through various sensor networks 

& using integrated circuits and microprocessor based 
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design and control techniques while this transformation has 

driven major advancements in efficiency and safety. In the 

existing system the stress was given on the safety of the 

vehicle, modification in the physical structure of the 

vehicle but the proposed system introduces essential 

concept in the field of automobile industry. It is an 

interfacing of the advanced technologies like Embedded 

Systems and the Automobile world. This “Intelligent 

Sensor Network for Vehicle Maintenance System” is best 

suitable for vehicle security as well as for vehicle’s 

maintenance. Further it also supports advanced feature of 

GSM module interfacing. Through this concept in case of 

any emergency or accident the system will automatically 

sense and records the different parameters like LPG gas 
level, Engine Temperature, present speed and etc. so that at 
the time of investigation this parameters may play 
important role to find out the possible reasons of the 

accident. Further, in case of accident & in case of stealing 
of vehicle GSM module will send SMS to the Police, 
insurance company as well as to the family members. 

To achieve this requires temporal isolation between 

threads, so that they do not interfere with one another’s 
progress. Unfortunately, traditional operating systems 
designed for general applications fail to provide adequate 
predictability. As a result, even though a multithreading 

Arduino API extension can be trivially implemented under 
Linux with Pthreads, our experiments (shown in Section 
III) demonstrate the lack of predictable sketch behavior of 
the approach. This problem becomes even more obvious 

when asynchronous system events such as device interrupts 
have the capability to interfere with thread execution. 

In this paper, we present Qduino, an operating system 
and programming environment that provides support for 

realtime, multithreading extensions to the Arduino API. 
Qduino is built on top of the Quest [2] real-time kernel, 

which runs on multicore x86 platforms and Arduino-

compatible devices such as the Intel Galileo. The 
contributions of Qduino include: 

• An extension to the standard Arduino API, which 

is easy to use and allows the creation of 

multithreaded sketches, as well as synchronization 

and communication between threads. 

• Real-time features that provide temporal isolation 

between different threads and asynchronous system 

events such as device interrupts. 

• An event handling framework that offers 

predictable event delivery for I/O handling in an 

Arduino sketch. 

• A platform with smaller memory footprint and 

improved performance for Arduino sketches as 

compared to embedded computing platforms based 

on Linux.  

 

The rest of this paper is organized as follows: Section II 

describes the Qduino architecture. We introduce the basic 

kernel utilities of Quest and explain how standard Arduino 

APIs are implemented in Qduino, using the Intel Galileo as 

an example. This is then followed by a detailed discussion 

of the design and implementation of the proposed API 

extensions. In Section III, we evaluate the performance and 

effectiveness of the API extensions by comparing Qduino 
with the Clanton Linux distribution shipped with the Intel 
Galileo board. We show the situations under which Qduino 

outperforms Clanton Linux. Related work is then presented 
in Section IV, followed by conclusions and future work. 

 II. QDUINO ARCHITECTURE 

Qduino is a predictable, multithreaded Arduino system 
built on our Quest real-time operating system [2]. Quest is 
a standalone system designed around three main goals: 
safety, predictability, and efficiency.  

It currently operates on 32bit x86 architectures, and 

leverages hardware MMU support to provide page-based 
memory protection to processes and threads. As with 
UNIX-like systems, segmentation is used to separate the 
kernel from user-space. 

 Quest is an SMP system, operating on multicore and 
multiprocessor platforms. It has support for kernel threads, 

POSIX threads, and a network protocol stack based on 
lightweight IP (lwIP) [3]. The source tree is more than 200 
thousand lines of code, including drivers and lwIP. 
However, the core kernel code is approximately 11 

thousand lines. The system features a novel hierarchical 

VCPU scheduling framework that ensures temporal 
isolation between system events (e.g., interrupts) and 
conventional tasks. 

. 

Arduino sketches in Qduino are executed as user 

processes in the Quest operating system. A Qduino sketch 

allows multiple loop() constructs to be declared, with each 

loop assigned to a separate thread in a single process.  

We developed the Qduino libraries for Quest user 
processes in order to support Arduino APIs on platforms 

such as the Galileo. The actual API implementations 

require various device drivers (including an I2C bus 
controller driver, an SPI bus controller driver, and a GPIO 

controller driver) in the Quest kernel to control the Galileo 
hardware GPIO interface. 
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An overview of the Qduino system architecture is 
shown in Figure 1. And also the following diagram shows 
that the over  

View of an architecture it contains three sections such as 

user section, keneral section and finally as SOC section 

Fig. 1.Qduino Architecture Overview 

Intel Galileo board, we are looking into other x86 SoCs 

such as the Intel Edison module and the Minnowboard 
MAX. 

As stated earlier, Quest features a novel VCPU 
scheduler that guarantees predictable behavior of system 
events and application tasks. This scheduling framework is 

essential to providing temporal isolation between multiple 
loops in an Arduino sketch, and predictable interrupt 
handling. 

A. VCPU Scheduling Framework 

For use in real-time systems, Quest must perform 
certain tasks by their deadlines. The system does not 

require tasks to specify deadlines but instead ensures that 
the execution of one task does not interfere with the timely 

execution of others. For example, Quest is capable of 

scheduling interrupt handlers as threads, so they do 
unduly interfere with the execution of higher
While Quest’s scheduling framework is described 

elsewhere [4], we briefly explain how it provides temporal 

isolation between tasks and system events. This is the basis 
for real-time tasks with specific resource requirements to 
be executed in bounded time, while allowing non
tasks to execute with specific priorities. 

In Quest, virtual CPUs (VCPUs) form the fundamental 
abstraction for scheduling and temporal isolation of the 

system. The concept of a VCPU is similar to that in virtual 

machines [5], [6], where a hypervisor provides the illusion 
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such as the Intel Edison module and the Minnowboard 

As stated earlier, Quest features a novel VCPU 
scheduler that guarantees predictable behavior of system 

This scheduling framework is 

essential to providing temporal isolation between multiple 
loops in an Arduino sketch, and predictable interrupt 

time systems, Quest must perform 
dlines. The system does not 

require tasks to specify deadlines but instead ensures that 
the execution of one task does not interfere with the timely 

execution of others. For example, Quest is capable of 

scheduling interrupt handlers as threads, so they do not 
unduly interfere with the execution of higher-priority tasks. 
While Quest’s scheduling framework is described 

elsewhere [4], we briefly explain how it provides temporal 

isolation between tasks and system events. This is the basis 
th specific resource requirements to 

be executed in bounded time, while allowing non-real-time 

(VCPUs) form the fundamental 
abstraction for scheduling and temporal isolation of the 

he concept of a VCPU is similar to that in virtual 

machines [5], [6], where a hypervisor provides the illusion 

of multiple physical CPUs (PCPUs) 
VCPUs to each of the guest virtual machines. VCPUs exist 

as kernel objects to simplify the mana

budgets for potentially many software threads. Quest uses a 

hierarchical approach in which VCPUs are scheduled on 
PCPUs and threads are scheduled on VCPUs. Each VCPU 

acts as a resource container for scheduling and accounting 
decisions on behalf of its assigned software threads.

In common with bandwidth preserving servers [8], [9], 

[10], each VCPU, V , has a maximum compute time 
budget, 

Cmax, available in a time period, TV . 

no more than the fraction  of a physical 

in any window of real-time, TV , while running at its normal 
(foreground) priority. To avoid situations where PCPUs are 
idle when there are threads awaiting service, a VCPU that 
has expired its budget may operate at a lower (background) 

priority. All background priorities are set below those of 
foreground priorities to ensure VCPUs with expired 
budgets do not adversely affect those with available 
budgets. 

Quest defines two classes of VCPUs as shown in Figure 
2: (1) Main VCPUs are used to 

PCPU usage of conventional software threads, while (2) 
I/O VCPUs are used to account for, and schedule the 

execution of, interrupt handlers for I/O devices. This 
distinction allows for interrupts from I/O devices to be 

scheduled as threads, which may be deferred execution 
when threads associated with higher priority VCPUs 
having available budgets are runnable. Quest allows I/O 

VCPUs to be specified for certain devices, or for certain 

tasks that issue I/O requests, thereby allowing int
be handled at different priorities and with different CPU 
shares than conventional tasks associated with Main 

VCPUs. 
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Quest defines two classes of VCPUs as shown in Figure 
are used to schedule and track the 

PCPU usage of conventional software threads, while (2) 
are used to account for, and schedule the 

execution of, interrupt handlers for I/O devices. This 
distinction allows for interrupts from I/O devices to be 

hreads, which may be deferred execution 
when threads associated with higher priority VCPUs 
having available budgets are runnable. Quest allows I/O 

VCPUs to be specified for certain devices, or for certain 

tasks that issue I/O requests, thereby allowing interrupts to 

be handled at different priorities and with different CPU 
shares than conventional tasks associated with Main 
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By default, each Main VCPU acts like a Sporadic 

Server, with a budget and replenishment period. Each I/O 

VCPU, Vj, has a dynamically calculated budget and period, 

based on a specified utilization bound, Uj. An I/O VCPU’s 

service constraints are a function of those of the Main 

VCPU bound to it, which is currently running a thread 

requiring I/O processing. In Quest, every I/O operation is 

associated with an accountable thread. This approach 

simplifies the budget management of I/O VCPUs, which 

have to deal with potentially many short-lived interrupt 

handlers whose execution times are far less than those of 

process timeslices. 

Local APIC timers are programmed to replenish VCPU 
budgets as they are consumed during thread execution. 
Sporadic Servers enable a system to be treated as a 
collection of equivalent periodic tasks scheduled by a rate-

monotonic scheduler (RMS) [13]. This is significant, given 
I/O events can occur at arbitrary (aperiodic) times, 
potentially triggering the wakeup of blocked tasks (again, 
at arbitrary times) having higher priority than those 

currently running. RMS analysis can be applied (See 
Equation 1 below), to ensure each VCPU is guaranteed its 

share of CPU time, UV . 

Temporal Isolation. In Quest, VCPUs are mapped to a 
separate scheduling queue for each PCPU. Under this 
arrangement, our default policies for Main and I/O VCPU 

scheduling allow us to guarantee temporal isolation if the 
Liu-Layland utilization bound is satisfied [13]. For a single 

PCPU with n Main VCPUs and m I/O VCPUs we have: 

   

Here, Ci and Ti are the budget capacity and period of Main 

VCPU Vi, and Uj is the utilization factor of I/O VCPU Vj 

[4]. This bound can be improved with dynamic priority 
scheduling of VCPUs (e.g., using earliest deadline first 

scheduling) but this adds more overhead to the scheduler. 
This is because: (1) dynamic priorities require more 

complex queue management, and (2) Quest uses local 

APIC timers, programmed for oneshot operation, to trigger 

an interrupt in time for the next event to be processed; 
more frequent reprogramming of timers may be necessary 

if priorities change. [11] discussed about a system, GSM 

based AMR has low infrastructure cost and it reduces man 
power. The system is fully automatic, hence the probability 
of error is reduced. The data is highly secured and it not 

only solve the problem of traditional meter reading system 

but also provides additional features such as power 
disconnection, reconnection and the concept of power 
management. The database stores the current month and 

also all the previous month data for the future use. Hence 

the system saves a lot amount of time and energy. Due to 
the power fluctuations, there might be a damage in the 

home appliances. Hence to avoid such damages and to 

protect the appliances, the voltage controlling method can 

be implemented. 

Quest admission control uses Equation 1 to decide 

whether to allow the creation of a new VCPU. In overload, 

static priority scheduling has the advantage that the highest 

priority subset of VCPUs capable of meeting their timing 

requirements will not be affected by lower priority VCPUs. 

This is not the case with dynamic priority scheduling, 

where overload can cause all VCPUs to fail to maintain 

their correct PCPU shares. Similarly, hypervisor 

scheduling using policies such as Borrowed Virtual Time 

(BVT) [14] cannot guarantee temporal isolation between 
VCPUs over specific real-time windows. 

B. Arduino API Support 

The Arduino language reference [15] specifies 40 
functions and various libraries (e.g. WiFi, Servo, etc.) 

available for all Arduino-compatible platforms. Table I 
lists all the functions in different categories. On the 
traditional Arduino boards (e.g. UNO, Duemilanove), all 
the GPIO pins are connected directly to the 
microcontroller. To implement the Arduino digital I/O 

APIs, the software just needs to write 0s and 1s to certain 

memory registers. PWM output (analogWrite()) is 

emulated using digital I/O with the help of a hardware 
timer, and an ADC in the microcontroller can be used to 

support analogRead(). 

 TABLE I.ARDUINO STANDARD API 

 Function Name Category 

loop, setup Structure 

pinMode, digitalWrite, 

digitalRead 
Digital I/O 

analogWrite, analogRead, 

analogReference 
Analog I/O 

tone, noTone, shiftOut, shiftIn, 

pulseIn 
Advanced I/O 

millis, micros, delay, 

delayMicroseconds 
Time 

min, max, abs, constrain, map, 

pow, sqrt 
Math 

sin, cos, tan Trigonometry 

randomSeed, random Random 

Numbers 
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lowByte, highByte, bitRead, 

bitWrite, bitSet, bitClear, bit 

Bits and 

Bytes

attachInterrupt, detachInterrupt External 

Interrupts

 interrupts, noInterrupt Interrupts

however, the GPIO fabric is mostly 

GPIO Expander featuring the Cypress CY8C9540A chipset 

connected to the I2C bus. The I2C bus controller itself is a 

PCI device that can be probed and programmed by the 
processor. Similarly, the Galileo board also features an 
AD7298 ADC device connected to an SPI bus controller 
on the PCI bus to support analog input. Consequently, to 

support the Arduino APIs on the Galileo board, we 

developed drivers for the PCI bus, I2C bus controller, the 
Cypress GPIO Expander chipset, the SPI bus controller
and the ADC. The Galileo board I/O infrastructure 
overview is shown in Figure 3. 

Fig. 3.Intel Galileo I/O Infrastructure Overview

All the Arduino API functions are included in the 

Arduino IDE as shared libraries, and interface with the 

Linux sysfs for GPIO operations. Arduino sketches are then 

converted into Linux user processes for execution.

In Qduino, we developed all the device drivers in the 
Quest kernel and exposed the GPIO interface to sketches 

running as user processes through system calls. Cur

we have implemented most of the frequently used 

functions along with the Serial and Servo libraries with the 
exception of some advanced I/O interfaces. Most of the 

API implementations are wrappers around the GPIO 

system calls and are included in a user library called 

libqduino. In this way, a sketch can be converted into a 

normal Quest user process and loaded for execution. 

Experiments in Section III show that the standard Arduino 
API implemented in Qduino outperforms the one for 

Clanton Linux. 
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All the Arduino API functions are included in the 

Arduino IDE as shared libraries, and interface with the 

GPIO operations. Arduino sketches are then 

converted into Linux user processes for execution. 

In Qduino, we developed all the device drivers in the 
Quest kernel and exposed the GPIO interface to sketches 

running as user processes through system calls. Currently, 

we have implemented most of the frequently used 

functions along with the Serial and Servo libraries with the 
exception of some advanced I/O interfaces. Most of the 

API implementations are wrappers around the GPIO 

user library called 

. In this way, a sketch can be converted into a 

normal Quest user process and loaded for execution. 

Experiments in Section III show that the standard Arduino 
API implemented in Qduino outperforms the one for 

C. Arduino API Extension 

In this section, we discuss the Arduino API extensions 

in Qduino, to support real
applications. 

Multithreaded Sketch. The standard Arduino API offers 

two structure functions: setup() and 

function is called when a sketch starts and usually contains 

code for initialization. After calling the 

the loop() function repeatedly performs a series of tasks. 

While only one loop() function is allowed in the standard 

API, Qduino allows up to 32 loop() 

function is assigned to a Quest thread and scheduled by the 
Quest scheduler. 

Multiple loop support in Qduino makes it easier to write 
sketches with parallel tasks. A simple example might be to 

process sensor input data from one I/O pin while another 
I/O pin is used for output, perhaps to control an actuator. If 
the input and output processing require separate rates for 
reading and writing data, a single timed loop might be 

inadequate. The loop will have a certain period, wh
might satisfy one, but not necessarily both, of the input and 
output rates. A similar example is shown for blinking 
LEDs in the standard Arduino API [16], suggesting users 

to do time accounting on their own. This places the burden 
of scheduling on users, making code overly complex and 
vulnerable to mistakes when the number of tasks increases. 
With the multi-loop feature, separate tasks with different 
delays between I/O operations can be assigned to different 

loops, with the assurance that their delay se
affect other tasks. 

Communication and Synchronization. One benefit of 
binding loops to threads rather than processes is that 

communication is vastly simplified. Communication 

between loops, on Qduino, can be done via global 
variables, which are automatically shared by all the loops 

within one sketch. However, unrestricted use of shared 
variables is unreliable and unsafe due to multiple update 
problems. Therefore, spinlocks are made available for use 

in Qduino. To hide the complexity of expli

synchronization and to maintain the simplicity of Arduino 
programming, we further provide two asynchronous 
communication facilities: a four-slot [17] channel and a 

ring buffer. Simpson’s four-slot fully asynchronous 

communication mechanism allows a sin
writer to access a shared memory region in such a way that 
the reader always accesses the most recent data stored by 

the writer, and neither entity need wait for the other [18]. 
Thus, data is always fresh, even though some may be over
written and, hence, lost. Fourslot asynchronous 
communication is widely used in real
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In this section, we discuss the Arduino API extensions 

in Qduino, to support real-time, multi-threaded 
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n is called when a sketch starts and usually contains 

code for initialization. After calling the setup() function, 

function repeatedly performs a series of tasks. 
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loop() functions. Each loop() 
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LEDs in the standard Arduino API [16], suggesting users 

to do time accounting on their own. This places the burden 
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loop feature, separate tasks with different 

delays between I/O operations can be assigned to different 

loops, with the assurance that their delay settings will not 

Communication and Synchronization. One benefit of 
binding loops to threads rather than processes is that 

communication is vastly simplified. Communication 

between loops, on Qduino, can be done via global 
are automatically shared by all the loops 

within one sketch. However, unrestricted use of shared 
variables is unreliable and unsafe due to multiple update 
problems. Therefore, spinlocks are made available for use 

in Qduino. To hide the complexity of explicit 

synchronization and to maintain the simplicity of Arduino 
programming, we further provide two asynchronous 

slot [17] channel and a 

slot fully asynchronous 

communication mechanism allows a single reader and 

writer to access a shared memory region in such a way that 
the reader always accesses the most recent data stored by 

the writer, and neither entity need wait for the other [18]. 
, even though some may be over-

n and, hence, lost. Fourslot asynchronous 
communication is widely used in real-time systems to 
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guarantee that actuators always read the latest data from 
sensors. We also provide a single-reader, single

buffer FIFO for applications that want his

values to be preserved. 

Temporal Isolation. Each thread bound to a loop in Qduino 

is associated with a separate VCPU. As explained in the 

Section II-A, Quest partitions CPU resources precisely 

between tasks and thereby ensures temporal isolati
between them. By making use of these properties provided 

by Quest, Qduino guarantees that the execution of one loop 
will not interfere with the timely execution of others.

As also mentioned earlier, Quest is capable of 

scheduling interrupt handlers as time-budgeted threads, to 
avoid interference with other tasks. We exploit this feature 
by creating an I/O VCPU to handle interrupt bottom halves 
associated with the GPIO expander. The I/O VCPU budget 

prevents a high volume of interrupts being handled 
indefinitely, at the cost of other tasks. By careful tuning of 
I/O and Main VCPU budgets, it is possible for a system 
designer to balance CPU time between CPU
intensive tasks. Effectively, when setting the I/O VCPU 

capacity to 0, GPIO interrupt handling is disabled. It is 
possible in Qduino to establish separate I/O VCPUs for 
different devices (or GPIOs), depending on the underlying 
hardware. For situations where the system is configured to 

only have one I/O VCPU for all devices, there is a manyto
one mapping of Main VCPUs (one for each Qduino loop 
thread) to the I/O VCPU. 

Although this paper focuses on single sketches with 
multiple threads, we are considering the support for 

separate co-existent sketches in different processes. One 
idea is to enable process-level control of interrupt delivery 
by allowing a sketch’s Main VCPU(s) to be unbound from 
an I/O VCPU. 

Similarly, when a sketch wants to unblock interrupt 
delivery, its Main VCPU(s) can be rebound to the I/O 
VCPU. This way, the I/O VCPU budget (possi

system administrator) can be made available to other 

sketches that still wish to receive interrupts. In Clanton 
Linux, it is not possible for sketches, which run in user
space processes, to disable interrupts, as this could affect 

the entire system. 

In Section III, we show a 3-loop sketch to demonstrate 

that no loop experiences interference from other loops 

when all of them are performing CPU-intensive tasks. We 

also show that, while the number of interrupts are 
effectively controlled by adjusting the I/O VCPU 
parameters, the performance of a coexisting CPU

loop is always isolated from interrupts. 
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guarantee that actuators always read the latest data from 
reader, single-writer ring 

buffer FIFO for applications that want historical data 

Temporal Isolation. Each thread bound to a loop in Qduino 

is associated with a separate VCPU. As explained in the 

A, Quest partitions CPU resources precisely 

between tasks and thereby ensures temporal isolation 

between them. By making use of these properties provided 

by Quest, Qduino guarantees that the execution of one loop 
will not interfere with the timely execution of others. 

As also mentioned earlier, Quest is capable of 

budgeted threads, to 
avoid interference with other tasks. We exploit this feature 
by creating an I/O VCPU to handle interrupt bottom halves 
associated with the GPIO expander. The I/O VCPU budget 

prevents a high volume of interrupts being handled 
initely, at the cost of other tasks. By careful tuning of 

I/O and Main VCPU budgets, it is possible for a system 
designer to balance CPU time between CPU- and I/O-

intensive tasks. Effectively, when setting the I/O VCPU 

g is disabled. It is 
possible in Qduino to establish separate I/O VCPUs for 
different devices (or GPIOs), depending on the underlying 
hardware. For situations where the system is configured to 

only have one I/O VCPU for all devices, there is a manyto-

apping of Main VCPUs (one for each Qduino loop 

Although this paper focuses on single sketches with 
multiple threads, we are considering the support for 

existent sketches in different processes. One 
level control of interrupt delivery 

by allowing a sketch’s Main VCPU(s) to be unbound from 

Similarly, when a sketch wants to unblock interrupt 
delivery, its Main VCPU(s) can be rebound to the I/O 
VCPU. This way, the I/O VCPU budget (possibly set by a 

system administrator) can be made available to other 

sketches that still wish to receive interrupts. In Clanton 
Linux, it is not possible for sketches, which run in user-
space processes, to disable interrupts, as this could affect 

loop sketch to demonstrate 

that no loop experiences interference from other loops 

intensive tasks. We 

also show that, while the number of interrupts are 
ing the I/O VCPU 

parameters, the performance of a coexisting CPU-intensive 

Fig. 4. Qduino GPIO Interrupt Handling Mechanism 
Predictable Events. On the Galileo, there is currently one 

I/O VCPU for all GPIOs. When an interrupt is raised on a 
GPIO pin, the top half (non-deferrable part) of the GPIO 
interrupt handler will wakeup a thread associated with the 
I/O VCPU. The I/O VCPU is removed from a wait queue 

and added to a ready queue where it can be scheduled. 
When granted execution, the I/O VCPU thread runs at 
kernellevel and serves as the bottom half 

handler) for GPIO interrupts. The kernel bottom half 

associated with the I/O VCPU queries the GPIO pin 
number that triggered the interrupt. This information 
then be used to invoke a specific 
handler in a Qduino sketch. 

Qduino provides an attachInterruptVcpu() 

associate an interrupt handler with a user

is bound to a time-budgeted Main VCPU. A user
handler becomes eligible for execution when its Main 
VCPU (with non-zero budget) is moved to the ready queue 

by a wakeup event from the bottom half kernel thread. 
Figure 4 illustrates the GPIO interrupt handling mechanism 
in Qduino. 

On Clanton Linux, a GPIO interrupt is delivered to a 
user-level process as a POSIX signal. There is no 

guaranteed delay between the occurrence of the GPIO pin 
change and the execution of the user

depends on when the process is scheduled. By comparison, 

Qduino ensures that the time interval between the reception 

of the hardware interrupt and the invocation of user
handler is bounded by its worst-case delay (

The WCD happens when the bottom half is invoked at 
the moment when the associated I/O VCPU 

depleted its budget. Let Cio and T
budget and period. According to Quest’s I/O VCPU 

scheduling algorithm, it takes Tio −

VCPU is replenished and is able to run the thread that 
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anted execution, the I/O VCPU thread runs at 
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handler) for GPIO interrupts. The kernel bottom half 

associated with the I/O VCPU queries the GPIO pin 
number that triggered the interrupt. This information can 

then be used to invoke a specific user-level interrupt 

attachInterruptVcpu() function, to 

associate an interrupt handler with a user-level thread that 

budgeted Main VCPU. A user-level 

ndler becomes eligible for execution when its Main 
zero budget) is moved to the ready queue 

by a wakeup event from the bottom half kernel thread. 
Figure 4 illustrates the GPIO interrupt handling mechanism 

interrupt is delivered to a 
level process as a POSIX signal. There is no 

guaranteed delay between the occurrence of the GPIO pin 
change and the execution of the user-level handler, since it 

depends on when the process is scheduled. By comparison, 

no ensures that the time interval between the reception 

of the hardware interrupt and the invocation of user-level 
case delay (WCD). 

The WCD happens when the bottom half is invoked at 
the moment when the associated I/O VCPU has just 

Tio denote I/O VCPU’s 

budget and period. According to Quest’s I/O VCPU 

− Cio time until the I/O 
VCPU is replenished and is able to run the thread that 
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issues a wakeup event. The wakeup event could be 
delivered to the Main VCPU of a userlevel ISR at the 

critical instant when it, too, has just depleted its budget. 

The worst-case delay for the Main VCPU, Vh to resume 

execution is Th−Ch, where Ch and Th are the budget and 

period, respectively. Finally, the WCD has to consider the 

time to execute the bottom half, which can be obtained by 

preprofiling. Let δbh denote the required CPU time of the 

bottom half, and Δbh denote the wall-clock time to execute 
the bottom half. We then have: 

 

New APIs. If a new Arduino API is to be adopted by the 

community it must not require the modification of existing 
sketches and it must maintain the simplicity that made the 

original API so successful. Qduino maintains backward 
compatibility with the original API, while introducing a set 

of new functions as described in Table II. Values of C and 

T are, by default, specified in milliseconds, although 
Qduino can be configured to accept their specification in 
different time units. 

 TABLE II. NEW APIS 

 Function Signatures Category 

loop(loop_id, C, T) Structure 

interruptsVcpu(C, T), 

attachInterruptVcpu(pin, ISR, 

mode, C, T) 

Interrupt 

spinlockInit(lock), spinlockLock(lock), 

spinlockUnlock(lock) 
Spinlock 

channelWrite(channel, item), item 

channelRead(channel) 

Four-

slot 

ringbufInit(buffer, size), ringbufWrite(buffer, item),

 Ring buffer ringbufRead(buffer, item) 

Qduino requires real-time loops to be specified with 

loop identifiers and VCPU parameters. For backward 

compatibility, Qduino also supports the standard loop() 

function. attachInterruptVcpu() extends the standard 

attachInterrupt() function by requiring the specification of 

Main VCPU timing constraints for a user-level ISR. 

interruptsVcpu() is the API to control the I/O VCPU 

associated with the kernel thread serving as the bottom half 

of a GPIO interrupt. Though not listed in Table II, 

noInterrupts() and interrupts() disable and re-enable 

interrupts, respectively. These two functions are currently 

implemented as wrappers around the interruptsVcpu() 

function. noInterrupts() sets the I/O VCPU budget to zero 

so that the kernel thread dedicated to a bottom half is never 

executed. Finally, interrupts() simply restores the I/O 

VCPU budget cleared by noInterrupts(). In a future multi-

sketch system, we plan to enable and disable interrupt 

delivery to individual sketches by binding/unbinding Main 
and I/O VCPUs as described earlier. 

Example Sketch for Autonomous Vehicle. Listing 1 (in the 

Appendix) presents a sample sketch written with Qduino’s 

new API. It is for a rover equipped with an HC-SR04 

ultrasonic sensor and the Intel Galileo board. The sketch 

contains two loops: (1) a sensing loop detects the rover’s 

distance to an obstacle, and (2) an actuation loop controls 

the motors. The sensing loop communicates the measured 

distance to the actuation loop via a four-slot channel. If a 

distance less than 1 meter is detected, the rover will back 
off and turn right to avoid a collision. This sample sketch 

only serves as a proofof-concept. A more realistic 
autonomous vehicle, however, might be equipped with 
many more sensors and actuators. For example, a vehicle 
might use rotary encoders to measure speed, a PID control 
to stabilize movement, LIDAR sensors to compute 

localization and mapping values, and other audiovisual 
sensors to warn of potential collisions. Each task can be 
arranged into separate loops or interrupt handlers with 
appropriate VCPUs. 

In this example, a four-slot communication channel is 
not entirely necessary, if sensor data is stored in global 
variables accessible to both loop threads. However, if 
sensor data is larger than the architecture word size (e.g., 

64-bits on a 32-bit architecture) multiple memory fetches 
might see inconsistent updates to the values without using 
explicit synchronization. Such synchronization could 
unduly affect the timing of both sensing and actuation 

loops, which can otherwise proceed independently using 
four-slot communication. 

 III.EXPERIMENTAL EVALUATION 

We conducted a series of experiments to investigate the 
performance of the standard Arduino API and the 

effectiveness of our API extensions in the Qduino 

environment. All experiments used a first generation Intel 

Galileo board with GPIO logic level set to 3.3V 
2
. We 

compared Qduino to Clanton Linux 3.8.7, which is shipped 
with the Intel Galileo board. The Linux sketches are 

created and uploaded with the Intel Arduino IDE v1.0.0. 

Sketches running on Qduino are built using Quest’s 
toolchain and loaded through the Qduino shell. Quest’s 

toolchain is based on GCC 4.7.2, with the same 
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optimization flag (-Os) as the Intel Arduino IDE. All clock 

cycle timing measurements used the Quark process
TimeStamp Counter. 

The Standard Arduino I/O API. To evaluate the efficiency 
of the standard Arduino API implementation in Qduino, we 

compared the performance of digitalWrite()

and the maximum interrupt frequency with 

attachInterrupt() between Clanton Linux and Qduino.

 For the digitalWrite(), we toggled digital pin 13 for 4000 

times, while for the digitalRead(),we read the value on pin 

13 without delay for 4000 times. We tested both functions 
on Clanton Linux and Qduino and recorded the

CPU cycles needed to perform a single operation. The 

results shown demonstrate that our implementation of basic 
GPIO operations in Qduino does not incur any additional 
overhead compared to Clanton Linux. Moreover, the 

digitalWrite() in Qduino is more efficient than in Clanton 

Linux. 

Fig. 5.Arduino API Performance Comparison

In the next experiment, we wrote a sketch that 

registered an interrupt service routine (ISR) for a pin 

change event on digital pin 2, using attachInterrupt()

then toggled the pin setting 4000 times. By tuning the 

delay between each pin change (using digitalWrite()

recorded the minimum delay that guarantees the reception 
of all the interrupts. From this, we calculated the 

corresponding maximum interrupt frequency for both 
Linux and Qduino. The results are also shown in Figure 5. 

We observed that Qduino is able to handle a higher rate of 

interrupts via its attachInterrupt() implementation.

We next used an oscilloscope to test the effectiveness of 

analog I/O in Qduino. Figure 6 is a screenshot of 

analogWrite(pin,120) running on Clanton Linux and 

Qduino. The information in the right column shows that 

both platforms have almost identical maximum and 

average voltage, and the same frequency and calculated 
duty cycles. 
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cycle timing measurements used the Quark processor’s 

The Standard Arduino I/O API. To evaluate the efficiency 
of the standard Arduino API implementation in Qduino, we 

digitalWrite(), digitalRead(), 

and the maximum interrupt frequency with 

between Clanton Linux and Qduino. 

, we toggled digital pin 13 for 4000 

,we read the value on pin 

13 without delay for 4000 times. We tested both functions 
on Clanton Linux and Qduino and recorded the average 

CPU cycles needed to perform a single operation. The 

results shown demonstrate that our implementation of basic 
GPIO operations in Qduino does not incur any additional 
overhead compared to Clanton Linux. Moreover, the 

ore efficient than in Clanton 

 

Arduino API Performance Comparison 

In the next experiment, we wrote a sketch that 

registered an interrupt service routine (ISR) for a pin 

attachInterrupt(), and 

then toggled the pin setting 4000 times. By tuning the 

digitalWrite()), we 

recorded the minimum delay that guarantees the reception 
of all the interrupts. From this, we calculated the 

pt frequency for both 
Linux and Qduino. The results are also shown in Figure 5. 

We observed that Qduino is able to handle a higher rate of 

implementation. 

We next used an oscilloscope to test the effectiveness of 

I/O in Qduino. Figure 6 is a screenshot of 

running on Clanton Linux and 

Qduino. The information in the right column shows that 

both platforms have almost identical maximum and 

average voltage, and the same frequency and calculated 

Multithreaded Sketch. We next constructed a sketch with a 
mixture of CPU and I/O operations. For the CPU 

workload, we constructed a findPrime 

calculates all prime numbers smaller than 80000. For I/O, 

we issued 2000 digitalWrite() requests. In the single

version, both CPU and I/O operations are combined in one 

loop() function. In the multithreaded version, we have two 

loops: one runs findPrime and the other issues the 

digitalWrite() requests. Table III lists all four experimenta

cases. We conducted this group of experiments on both 

Qduino and Clanton Linux. For Qduino, the single
case uses a Main VCPU with 

C = 498mS and T = 500mS 3. In the multi

 

 TABLE III.CASE DESCRIPTIONS

Case 

# 

Description

Case 

1 

single-loop digitalWrite()

Case 

2 

single-loop findPrime

Case 

3 

single-loop 

digitalWrite()+findPrime

Case 

4 

multi-loop 

digitalWrite()+findPrime

established a Main VCPU with C = 495

to run findPrime. For the I/O operations, we assigned an 

I/O VCPU with 3/500 fraction of CPU time. In both cases, 
the leftover CPU time is reserved for the shell so that the 
sketch can be loaded. When running on Clanton, the 
multithreaded sketch uses the Pthread library.

Results in Figure 7 show that the multithreaded sketch 

achieves approximately 28% performance increase over the 
single-loop version on Clanton Linux, and 31% increase 

over a single-loop version on Qduino. The multithreaded 
sketches are both only slightly s

findPrime alone. This is because digitalWrite() 

of its time blocking on I/O commands from the I
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Multithreaded Sketch. We next constructed a sketch with a 
mixture of CPU and I/O operations. For the CPU 

findPrime benchmark that 

calculates all prime numbers smaller than 80000. For I/O, 

equests. In the single-loop 

version, both CPU and I/O operations are combined in one 

function. In the multithreaded version, we have two 

and the other issues the 

requests. Table III lists all four experimental 

cases. We conducted this group of experiments on both 

Qduino and Clanton Linux. For Qduino, the single-loop 

. In the multi-loop version, we 

CASE DESCRIPTIONS 

Description 

digitalWrite() 

loop findPrime 

+findPrime 

+findPrime 

= 495mS and T = 500mS 

. For the I/O operations, we assigned an 

fraction of CPU time. In both cases, 
the leftover CPU time is reserved for the shell so that the 
sketch can be loaded. When running on Clanton, the 
multithreaded sketch uses the Pthread library. 

Results in Figure 7 show that the multithreaded sketch 

achieves approximately 28% performance increase over the 
loop version on Clanton Linux, and 31% increase 

loop version on Qduino. The multithreaded 
sketches are both only slightly slower than running 

digitalWrite() spends most 

of its time blocking on I/O commands from the I2C bus. 
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Fig 6.Multithreaded Sketch Benchmarks 

Predictability. We conducted two groups of experiments to 
verify the predictability of loop execution and event 
delivery in Qduino. In the first group, we wrote a series of 
multiloop sketches, in which one foreground loop per 
sketch repeatedly increments a counter. At the end of the 

foreground loop’s period the counter value is recorded and 
then reset to 0. Additionally, two or more background 
loops per sketch serve as potential interference sources by 
performing CPUintensive tasks shows the VCPU 

parameters for each foreground loop, and the number of 
background loops in each case. The background loops in 
each case equally consume all remaining CPU capacity not 
used by the foreground loop. The lack of hardware 

performance counters on the Quark processor meant that 
we periodically sampled a counter value to track each 
foreground loop’s progress in real-time. 

The standard loop() function runs in a separate thread and 

does the same work as the foreground loop in Qduino’s 

setup. Clanton’s lack of real-time support meant that the 

threads were not able to be specified with time constraints. 

Consequently, we only varied the number of background 

threads according to the cases. 

It shows the value of the foreground loop counter in 
each case (with 2 or 4 background threads). The counter is 

incremented to about the same value in every period for a 

given VCPU constraint using Qduino. This is due to the 

guaranteed execution time of the loop within each VCPU 
period. However, due to the lack of predictability in the 

Linux scheduler, the progress of the loop() function is 

variable, as seen by the spikes in counter values above and 

below the average. It is also sensitive to the number of 
background threads, which are not temporally isolated 

from the foreground loop. 
 

In the second group of experiments, we tested the 
predictability of Qduino’s event delivery framework. We 

used two Intel Galileo boards. Board A’s pin 13 was 

connected to Board B’s pin 2. Board A ran Clanton Linux 

and flipped pin 13 in fast mode with a random delay, 

ranging from 0 to 2.3 milliseconds. It thus generated 

interrupts on Board B’s pin 2 with a variable frequency 

from 477kHz to approximately 434Hz 
4
. On Board 

 

 

 we ran a sketch that attaches an interrupt handler to pin 2 

using the attachInterruptVcpu() function with different 

VCPU parameters in each case. We also, in each case, 
adjusted the I/O VCPU parameters using the 

interruptsVcpu() function. The parameter combinations of 

the I/O VCPU bound to the bottom-half kernel thread, and 
the Main VCPU associated with the user-level interrupt 

handler. We instrumented the Quest kernel to measure the 
predicted worst-case delay 

  

 which is the time interval between the invocation of the 
top half and the invocation of the user-level interrupt 
handler. We also measured the execution time of the 
bottom half to be 2.33 milliseconds without any 

interruption from external interrupts or CPU scheduling. 
 
 We calculated the predicted worst-case delay (WCD) for 
event delivery using Equation 3 in Section II-C. Figure 9 

compares the predicted WCD’s with the observed event 
delivery times under different VCPU combinations. As can 
be seen, the observed value is always within the prediction 
bounds. 

Temporal Isolation. Loops in Qduino sketches are 
guaranteed to be temporally isolated from other loops and 
asynchronous system events, e.g. interrupts. We conducted 
another set of experiments to verify temporal isolation. 

We first wrote a sketch with 3 loops, each running 

findPrime with different VCPU parameters, as shown in 

Table IV. We then split the 3-loop sketch into three single-
loop 

 

 TABLE IV.VCPU PARAMETERS 

Loop # Loop 

1 

Loop 

2 

Loop 

3 

VCPU 

parameters 

40/100 20/100 10/100 
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                  Sketch Each contains one of the three loops 
respectively. We ran each single-loop sketch with the same 

VCPU parameters it used in the 3-loop version. We 

compared each loop’s execution time in the 3-loop sketch 

to that in the corresponding singleloop sketch (averaged 

over 5 runs). The results in Figure show that Qduino 
maintains temporal isolation between loops. 

In a further experiment, we investigated the use of I/O 

VCPUs in Qduino. We used a similar setup to the 

predictable 

 

 

 

Fig7. Temporal Isolation between Loops  

event delivery experiment, except that Board A toggles pin 
13 repeatedly, without any delay, and interrupts generated 

on B’s pin 2 thus have a frequency of 220Hz. On Board B, 

we ran findPrime using a Main VCPU with parameters 

70mS/100mS. The sketch also attaches an interrupt 
handler to pin 2, which counts the number of interrupts 

received during the execution of findPrime. Five cases 

were studied, all using Qduino. I/O VCPU parameters are 

adjusted via the interruptsVcpu() function before the 

interrupt handler is attached. Case 1 serves as the base case 

to show the execution time when external interrupts are 
disabled

4
. using a kernel-level interrupt handler, which is 

not associated with any I/O VCPU. This case is intended to 

show the interrupt processing interference when an I/O 
VCPU is not used. 

 

         Each cluster of bars, the bar on the left shows the 

execution time of the loop in CPU cycles. As can be seen, 
when the I/O VCPU is enabled, the loop has approximately 

the same execution time with the base case where external 

interrupts are turned off, thereby demonstrating the 

                                                             

 

 

expected temporal isolation between loops and interrupts. 
The bar on the right represents the number of interrupts 

received. Though the loop has guaranteed execution time 

whatever I/O VCPU parameters are used, the number of 

interrupts received varies accordingly. The larger the I/O 

VCPU budget is, the more interrupts the sketch receives. It 

demonstrates that interrupts can be flexibly controlled by 

the budget of the I/O VCPU. Users can effectively disable 

external interrupt delivery by setting the I/O VCPU budget 
to 0 

We performed the same experiment with Clanton 

Linux. In this case, findPrime’s performance degrades to 

30.4% of its peak value while 2402 interrupts are received. 
For comparison, we divided the CPU cycles between the 
Main VCPU and the I/O VCPU in Qduino to achieve the 

similar performance drop for findPrime. We found that 

when using a 40mS/100mS I/O VCPU and a 

48mS/100mS Main VCPU, 5369 interrupts are received 
when the performance drop is about 34%. 

Autonomous Vehicle Application. Apart from 
microbenchmarks, we also created a simple collision 
avoidance application for an autonomous vehicle, as 
described earlier at the end of Section II-C. The sketch 

code for Qduino is shown in Listing 1 while the single-loop 
Clanton version is shown in Listing 2. We measured the 
time interval between two consecutive calls to the motor 
actuation code when there was a change in the distance to 

an obstacle as observed by the sensing logic. That with the 
multi-loop sketch in Qduino the time interval is stable at 
about 103ms. This includes an explicit 100ms to keep the 
motor settings at their current values, plus several digital 
I/O operations to subsequently change the motor values. In 

Clanton, the time interval varies from 383ms to 591ms. 

The Linux delay is a combination of the same 100ms 
programmed delay we used in Qduino plus the time to do 
one iteration of the sensing and actuation code. 

Note that in both Linux and Qduino there is a 200ms 

sampling delay in the sensing code, to avoid the ultrasonic 

trigger pulse being incorrectly detected as an echo signal. 
However, in Linux this delay is included in a single loop 
for both sensing and actuation. Although Pthreads could be 

used to separate the sensing and actuation code, Clanton 

does not allow multiple threads to simultaneously access 

the I/O subsystem, because it serializes access to sysfs. In 

Clanton, the digital I/O pins on the Arduino are exposed to 

user-space code via the sysfs filesystem interface. 

Consequently, when the safe distance to an obstacle is set 

to 1m, an autonomous vehicle running Qduino can move at 

about 9.7m/s (>21 mph), while still having time to react 

before a collision. This compares to only 1.7m/s (3.8 mph) 
using a Clanton single-loop sketch. 
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For completeness, a single-loop sketch in Qduino, 
which shows similar jitter to the same sketch running in 

Clanton Linux. However, Qduino has slightly less 

overhead because digital I/O is more efficient. The I/O 

operations in Qduino are system calls as opposed to being 
built on top of a filesystem abstraction in Linux.Finally, 

 we include results for a Clanton sketch that uses an 

interrupt handler to time the ultrasonic signal within each 

iteration of the main motor-controlling loop. We also 

removed the delay(200) instruction at the cost of false 

echoes, to minimize the time spent in the sensing code. 

Even so, a Clanton sketch with interrupts still incurs more 

overhead than a multi-loop Qduino sketch. With multiple 
loops, the actuation code is not serialized with the sensing 
code. 

Finally, we measured the memory footprint of the 
sketches and kernels on both platforms.  

IV. RELATED WORK 

Contiki [19] is a small footprint operating system for 
use with Internet of Things (IoT) devices. It supports 

perprocess preemptive multi-threading by linking 
applications with a protothread library. Protothreads [20] 
function as stackless, lightweight threads and are 
cooperatively scheduled. This means that any protothread 

that fails to yield control back to the kernel will inevitably 
lock up the system. RIOT OS [21] is another multi-
threaded operating system designed for IoT devices. RIOT 
enforces constant periods for kernel tasks fulfill strong 
real-time requirements, but user-level threads are 

scheduled by a minimized scheduler without real-time 
guarantees. Both Contiki and RIOT aim to bridge the gap 
between OSes for wireless sensor networks and traditional 
fully-fledged OSes. However, Qduino is a system that 

focuses more on physical computing with hard real-time 
requirements. 

sketches requiring real-time performance, and an The 

Arduino Yun [22] is a hardware approach to realtime and 
multi-threaded computing. Yun has an ATmega32u4 

microcontroller for Arduino Atheros AR9331 SoC running 

a Linux based OS for more complex multi-threaded 
applications. A bridging library is required for 

communication between applications on the two chips. In 

contrast, Qduino makes it possible to create Arduino 

sketches with both real-time and multi-threading support 
on a single SoC. The communication between tasks is 
much more efficient and the programming interface is 

cleaner. 

RT-Arduino is a software-based Arduino extension that 

provides real-time multitasking support. It is built upon the 
OSEK/VDX certified ERIKA Enterprise RTOS . Arduino 

loops are mapped to OSEK-tasks that are statically 
configured at compile-time. By comparison, Qduino 

provides the basis for Arduino sketches with multiple loops 

and interrupt handlers to be associated with multi-threaded 

processes. This approach makes it possible to support real-

time and parallel thread execution on multicore 
architectures. 

Qduino is built on the assumption that the underlying 

OS support for a SCHED_DEADLINE real-time class, with 

CPU reservations [9], for tasks based on the Constant 

Bandwidth Server [8]. This is similar to resource reserves 

in Linux/RK. Qduino uses Quest’s VCPU scheduling 

framework, which provides temporal isolation between 
both tasks and system events, such as interrupts. 

 Quest uses a novel approach to dynamically calculate 
the budgets for handling short-lived and highly-frequent 
interrupts. These types of system events have been shown 

to severely fragment the replenishment lists of other types 
of bandwidth preserving scheduling algorithms, making 
their effective CPU utilizations lower than desired. 
Consequently, Quest’s scheduling framework is ideally 

suited to support real-time CPU and I/O processing  in 
Qduino. 

 V.CONCLUSION AND FUTURE WORK 

In this paper, we describe Qduino, an extension to the 
Arduino API for the Quest real-time operating system. 

Qduino is designed for Arduino-compatible devices with 
greater capabilities than those based on the Atmel 
MegaAVR. Qduino leverages Quest’s VCPU scheduling 
approach to provide processor reservations over specific 
windows of time, for both tasks and I/O events. It also 

provides support for multithreading by allowing Arduino 

sketches to specify multiple loops, each with their own 
timing requirements. 

 

 Experiments show that Qduino has similar performance 

efficiency to a implementation on the Intel Galileo. 

However, it is shown to offer greater predictability and 
temporal isolation between separate threads in Qduino, but 

this is not ensured in Linux. Multi-threaded real-time 
programming is made simple with the Qduino API. 
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