

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

186
All Rights Reserved © 2018 IJARTET

QDUINO ON MULTICORE PROCESSOR FOR EMBEDDED COMPUTING

1
L. Parimala,

2
C. Bella stary gold,

3
G. Nalini,

4
G. Aalin joys

1,2,3,4
Assistant Professor, Department of ECE, Sriram Engineering College

Abstract—Arduino is an open source device that offers a
clear and simple environment for computing. It is now
widely used in modern robotics, Home automation
system and Internet of Things (IoT) applications, due in
part to its low-cost, ease of programming. Sensors can
easily be connected to the analog and digital I/O pins of
an Arduino, which features an on-board
microcontroller programmed using the Arduino API.
The increasing complexity of physical computing
applications has now led to a series of Arduino
compatible devices with faster processors, increased
flash storage, larger memories and more complicated
I/O architectures. However, the standard API is
restricted to the capabilities found on less powerful
devices, lacking support for multithreaded programs,
or specification of real-time requirements. In this
paper, we present Qduino, a system developed for
Arduino compatible boards. Qduino provides an
extended Arduino API which, while backward-
compatible with the original API, supports real-time
applications and event handling. Experiments show the
performance gains of Qduino compared to other
boards.

Keywords-Qduino, Arduino API, Internet of things.
 I. INTRODUCTION

Arduino [1] is a popular open-source platform for

embedded computing. Its success is mainly due to the
simplicity of its programming interface, the comprehensive

library support, and the availability of numerous extension
shields.

Traditionally, Arduino boards are equipped with the

AVR ATmega microcontrollers, operating at speeds up to
20 MHz The relatively low processing capabilities, limited

SRAM and flash capacity, restricts traditional Arduino

boards to applications with fairly simple logic and I/O

capabilities. While these devices are adequate for basic
sensing and control, they are insufficient for the high

processing demands of many robotics or Internet of Things

(IoT) applications, which now run digital image

processing, location and 3D mapping algorithms.
Consequently, many Arduino compatible boards with more
powerful hardware specifications are now emerging.

Examples include the Intel Galileo and Edison boards, the

Minnow board MAX, and the 86Duino, amongst others.

These new boards have inherited the simplicity of the

original Arduino API, and provide the standard Arduino

GPIO hardware interface, which makes them compatible

with most of the existing Arduino extension shields.

However, they all feature a much

more powerful processor and more complex I/O
architecture. To cope with the complexity of the
architecture, most of the advanced Arduino compatible

platforms are shipped with an embedded Linux operating
system.

Modern robotics and IoT applications often interact
with complex I/O peripheral devices and require the

handling of multiple threads of control. The standard
Arduino API was designed for programs running directly
on 8-bit AVR microcontrollers. It provides the interface to

setup a single thread of execution with a loop() function.

This is insufficient for use in multi-threaded applications,

which require processing to continue while other threads
wait on I/O operations. Additionally, single-threaded
applications may under-utilize system resources and fail to
take advantage of the parallelism provided by the
hardware.

Even though programming techniques such as event

loops and coroutines can be used in a single-threaded

environment to achieve cooperative scheduling, they only

allow coarse-grained multithreading which often

complicates the application design and cannot provide true
parallelism on a multicore platform. To implement true
preemptive multithreading, a process/thread model and a

corresponding scheduling framework are required.

However, because of the real-time nature of many
embedded applications running on Arduino platforms, a
multithreading interface for the Arduino API must also

guarantee timing predictability of different control flows in

a program sketch. [7] discussed about Intelligent Sensor
Network for Vehicle Maintenance System. Modern
automobiles are no longer mere mechanical devices; they

are pervasively monitored through various sensor networks

& using integrated circuits and microprocessor based

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

187
All Rights Reserved © 2018 IJARTET

design and control techniques while this transformation has

driven major advancements in efficiency and safety. In the

existing system the stress was given on the safety of the

vehicle, modification in the physical structure of the

vehicle but the proposed system introduces essential

concept in the field of automobile industry. It is an

interfacing of the advanced technologies like Embedded

Systems and the Automobile world. This “Intelligent

Sensor Network for Vehicle Maintenance System” is best

suitable for vehicle security as well as for vehicle’s

maintenance. Further it also supports advanced feature of

GSM module interfacing. Through this concept in case of

any emergency or accident the system will automatically

sense and records the different parameters like LPG gas
level, Engine Temperature, present speed and etc. so that at
the time of investigation this parameters may play
important role to find out the possible reasons of the

accident. Further, in case of accident & in case of stealing
of vehicle GSM module will send SMS to the Police,
insurance company as well as to the family members.

To achieve this requires temporal isolation between

threads, so that they do not interfere with one another’s
progress. Unfortunately, traditional operating systems
designed for general applications fail to provide adequate
predictability. As a result, even though a multithreading

Arduino API extension can be trivially implemented under
Linux with Pthreads, our experiments (shown in Section
III) demonstrate the lack of predictable sketch behavior of
the approach. This problem becomes even more obvious

when asynchronous system events such as device interrupts
have the capability to interfere with thread execution.

In this paper, we present Qduino, an operating system
and programming environment that provides support for

realtime, multithreading extensions to the Arduino API.
Qduino is built on top of the Quest [2] real-time kernel,

which runs on multicore x86 platforms and Arduino-

compatible devices such as the Intel Galileo. The
contributions of Qduino include:

• An extension to the standard Arduino API, which

is easy to use and allows the creation of

multithreaded sketches, as well as synchronization

and communication between threads.

• Real-time features that provide temporal isolation

between different threads and asynchronous system

events such as device interrupts.

• An event handling framework that offers

predictable event delivery for I/O handling in an

Arduino sketch.

• A platform with smaller memory footprint and

improved performance for Arduino sketches as

compared to embedded computing platforms based

on Linux.

The rest of this paper is organized as follows: Section II

describes the Qduino architecture. We introduce the basic

kernel utilities of Quest and explain how standard Arduino

APIs are implemented in Qduino, using the Intel Galileo as

an example. This is then followed by a detailed discussion

of the design and implementation of the proposed API

extensions. In Section III, we evaluate the performance and

effectiveness of the API extensions by comparing Qduino
with the Clanton Linux distribution shipped with the Intel
Galileo board. We show the situations under which Qduino

outperforms Clanton Linux. Related work is then presented
in Section IV, followed by conclusions and future work.

 II. QDUINO ARCHITECTURE

Qduino is a predictable, multithreaded Arduino system
built on our Quest real-time operating system [2]. Quest is
a standalone system designed around three main goals:
safety, predictability, and efficiency.

It currently operates on 32bit x86 architectures, and

leverages hardware MMU support to provide page-based
memory protection to processes and threads. As with
UNIX-like systems, segmentation is used to separate the
kernel from user-space.

 Quest is an SMP system, operating on multicore and
multiprocessor platforms. It has support for kernel threads,

POSIX threads, and a network protocol stack based on
lightweight IP (lwIP) [3]. The source tree is more than 200
thousand lines of code, including drivers and lwIP.
However, the core kernel code is approximately 11

thousand lines. The system features a novel hierarchical

VCPU scheduling framework that ensures temporal
isolation between system events (e.g., interrupts) and
conventional tasks.

.

Arduino sketches in Qduino are executed as user

processes in the Quest operating system. A Qduino sketch

allows multiple loop() constructs to be declared, with each

loop assigned to a separate thread in a single process.

We developed the Qduino libraries for Quest user
processes in order to support Arduino APIs on platforms

such as the Galileo. The actual API implementations

require various device drivers (including an I2C bus
controller driver, an SPI bus controller driver, and a GPIO

controller driver) in the Quest kernel to control the Galileo
hardware GPIO interface.

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 5, Special Issue 1, January 2018

An overview of the Qduino system architecture is
shown in Figure 1. And also the following diagram shows
that the over

View of an architecture it contains three sections such as

user section, keneral section and finally as SOC section

Fig. 1.Qduino Architecture Overview

Intel Galileo board, we are looking into other x86 SoCs

such as the Intel Edison module and the Minnowboard
MAX.

As stated earlier, Quest features a novel VCPU
scheduler that guarantees predictable behavior of system
events and application tasks. This scheduling framework is

essential to providing temporal isolation between multiple
loops in an Arduino sketch, and predictable interrupt
handling.

A. VCPU Scheduling Framework

For use in real-time systems, Quest must perform
certain tasks by their deadlines. The system does not

require tasks to specify deadlines but instead ensures that
the execution of one task does not interfere with the timely

execution of others. For example, Quest is capable of

scheduling interrupt handlers as threads, so they do
unduly interfere with the execution of higher
While Quest’s scheduling framework is described

elsewhere [4], we briefly explain how it provides temporal

isolation between tasks and system events. This is the basis
for real-time tasks with specific resource requirements to
be executed in bounded time, while allowing non
tasks to execute with specific priorities.

In Quest, virtual CPUs (VCPUs) form the fundamental
abstraction for scheduling and temporal isolation of the

system. The concept of a VCPU is similar to that in virtual

machines [5], [6], where a hypervisor provides the illusion

 ISSN
 Available online at

International Journal of Advanced Research Trends in Engineering and Technology
January 2018

All Rights Reserved © 2018 IJARTET

of the Qduino system architecture is
And also the following diagram shows

View of an architecture it contains three sections such as

user section, keneral section and finally as SOC section

Intel Galileo board, we are looking into other x86 SoCs

such as the Intel Edison module and the Minnowboard

As stated earlier, Quest features a novel VCPU
scheduler that guarantees predictable behavior of system

This scheduling framework is

essential to providing temporal isolation between multiple
loops in an Arduino sketch, and predictable interrupt

time systems, Quest must perform
dlines. The system does not

require tasks to specify deadlines but instead ensures that
the execution of one task does not interfere with the timely

execution of others. For example, Quest is capable of

scheduling interrupt handlers as threads, so they do not
unduly interfere with the execution of higher-priority tasks.
While Quest’s scheduling framework is described

elsewhere [4], we briefly explain how it provides temporal

isolation between tasks and system events. This is the basis
th specific resource requirements to

be executed in bounded time, while allowing non-real-time

(VCPUs) form the fundamental
abstraction for scheduling and temporal isolation of the

he concept of a VCPU is similar to that in virtual

machines [5], [6], where a hypervisor provides the illusion

of multiple physical CPUs (PCPUs)
VCPUs to each of the guest virtual machines. VCPUs exist

as kernel objects to simplify the mana

budgets for potentially many software threads. Quest uses a

hierarchical approach in which VCPUs are scheduled on
PCPUs and threads are scheduled on VCPUs. Each VCPU

acts as a resource container for scheduling and accounting
decisions on behalf of its assigned software threads.

In common with bandwidth preserving servers [8], [9],

[10], each VCPU, V , has a maximum compute time
budget,

Cmax, available in a time period, TV .

no more than the fraction of a physical

in any window of real-time, TV , while running at its normal
(foreground) priority. To avoid situations where PCPUs are
idle when there are threads awaiting service, a VCPU that
has expired its budget may operate at a lower (background)

priority. All background priorities are set below those of
foreground priorities to ensure VCPUs with expired
budgets do not adversely affect those with available
budgets.

Quest defines two classes of VCPUs as shown in Figure
2: (1) Main VCPUs are used to

PCPU usage of conventional software threads, while (2)
I/O VCPUs are used to account for, and schedule the

execution of, interrupt handlers for I/O devices. This
distinction allows for interrupts from I/O devices to be

scheduled as threads, which may be deferred execution
when threads associated with higher priority VCPUs
having available budgets are runnable. Quest allows I/O

VCPUs to be specified for certain devices, or for certain

tasks that issue I/O requests, thereby allowing int
be handled at different priorities and with different CPU
shares than conventional tasks associated with Main

VCPUs.

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)
Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

188

(PCPUs)
1

represented as

VCPUs to each of the guest virtual machines. VCPUs exist

as kernel objects to simplify the management of resource

budgets for potentially many software threads. Quest uses a

hierarchical approach in which VCPUs are scheduled on
PCPUs and threads are scheduled on VCPUs. Each VCPU

acts as a resource container for scheduling and accounting
behalf of its assigned software threads.

In common with bandwidth preserving servers [8], [9],

, has a maximum compute time

. V is constrained to use

no more than the fraction of a physical processor (PCPU)

, while running at its normal
(foreground) priority. To avoid situations where PCPUs are
idle when there are threads awaiting service, a VCPU that
has expired its budget may operate at a lower (background)

iority. All background priorities are set below those of
foreground priorities to ensure VCPUs with expired
budgets do not adversely affect those with available

Quest defines two classes of VCPUs as shown in Figure
are used to schedule and track the

PCPU usage of conventional software threads, while (2)
are used to account for, and schedule the

execution of, interrupt handlers for I/O devices. This
distinction allows for interrupts from I/O devices to be

hreads, which may be deferred execution
when threads associated with higher priority VCPUs
having available budgets are runnable. Quest allows I/O

VCPUs to be specified for certain devices, or for certain

tasks that issue I/O requests, thereby allowing interrupts to

be handled at different priorities and with different CPU
shares than conventional tasks associated with Main

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

189
All Rights Reserved © 2018 IJARTET

By default, each Main VCPU acts like a Sporadic

Server, with a budget and replenishment period. Each I/O

VCPU, Vj, has a dynamically calculated budget and period,

based on a specified utilization bound, Uj. An I/O VCPU’s

service constraints are a function of those of the Main

VCPU bound to it, which is currently running a thread

requiring I/O processing. In Quest, every I/O operation is

associated with an accountable thread. This approach

simplifies the budget management of I/O VCPUs, which

have to deal with potentially many short-lived interrupt

handlers whose execution times are far less than those of

process timeslices.

Local APIC timers are programmed to replenish VCPU
budgets as they are consumed during thread execution.
Sporadic Servers enable a system to be treated as a
collection of equivalent periodic tasks scheduled by a rate-

monotonic scheduler (RMS) [13]. This is significant, given
I/O events can occur at arbitrary (aperiodic) times,
potentially triggering the wakeup of blocked tasks (again,
at arbitrary times) having higher priority than those

currently running. RMS analysis can be applied (See
Equation 1 below), to ensure each VCPU is guaranteed its

share of CPU time, UV .

Temporal Isolation. In Quest, VCPUs are mapped to a
separate scheduling queue for each PCPU. Under this
arrangement, our default policies for Main and I/O VCPU

scheduling allow us to guarantee temporal isolation if the
Liu-Layland utilization bound is satisfied [13]. For a single

PCPU with n Main VCPUs and m I/O VCPUs we have:

Here, Ci and Ti are the budget capacity and period of Main

VCPU Vi, and Uj is the utilization factor of I/O VCPU Vj

[4]. This bound can be improved with dynamic priority
scheduling of VCPUs (e.g., using earliest deadline first

scheduling) but this adds more overhead to the scheduler.
This is because: (1) dynamic priorities require more

complex queue management, and (2) Quest uses local

APIC timers, programmed for oneshot operation, to trigger

an interrupt in time for the next event to be processed;
more frequent reprogramming of timers may be necessary

if priorities change. [11] discussed about a system, GSM

based AMR has low infrastructure cost and it reduces man
power. The system is fully automatic, hence the probability
of error is reduced. The data is highly secured and it not

only solve the problem of traditional meter reading system

but also provides additional features such as power
disconnection, reconnection and the concept of power
management. The database stores the current month and

also all the previous month data for the future use. Hence

the system saves a lot amount of time and energy. Due to
the power fluctuations, there might be a damage in the

home appliances. Hence to avoid such damages and to

protect the appliances, the voltage controlling method can

be implemented.

Quest admission control uses Equation 1 to decide

whether to allow the creation of a new VCPU. In overload,

static priority scheduling has the advantage that the highest

priority subset of VCPUs capable of meeting their timing

requirements will not be affected by lower priority VCPUs.

This is not the case with dynamic priority scheduling,

where overload can cause all VCPUs to fail to maintain

their correct PCPU shares. Similarly, hypervisor

scheduling using policies such as Borrowed Virtual Time

(BVT) [14] cannot guarantee temporal isolation between
VCPUs over specific real-time windows.

B. Arduino API Support

The Arduino language reference [15] specifies 40
functions and various libraries (e.g. WiFi, Servo, etc.)

available for all Arduino-compatible platforms. Table I
lists all the functions in different categories. On the
traditional Arduino boards (e.g. UNO, Duemilanove), all
the GPIO pins are connected directly to the
microcontroller. To implement the Arduino digital I/O

APIs, the software just needs to write 0s and 1s to certain

memory registers. PWM output (analogWrite()) is

emulated using digital I/O with the help of a hardware
timer, and an ADC in the microcontroller can be used to

support analogRead().

 TABLE I.ARDUINO STANDARD API

 Function Name Category

loop, setup Structure

pinMode, digitalWrite,

digitalRead
Digital I/O

analogWrite, analogRead,

analogReference
Analog I/O

tone, noTone, shiftOut, shiftIn,

pulseIn
Advanced I/O

millis, micros, delay,

delayMicroseconds
Time

min, max, abs, constrain, map,

pow, sqrt
Math

sin, cos, tan Trigonometry

randomSeed, random Random

Numbers

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 5, Special Issue 1, January 2018

lowByte, highByte, bitRead,

bitWrite, bitSet, bitClear, bit

Bits and

Bytes

attachInterrupt, detachInterrupt External

Interrupts

 interrupts, noInterrupt Interrupts

however, the GPIO fabric is mostly

GPIO Expander featuring the Cypress CY8C9540A chipset

connected to the I2C bus. The I2C bus controller itself is a

PCI device that can be probed and programmed by the
processor. Similarly, the Galileo board also features an
AD7298 ADC device connected to an SPI bus controller
on the PCI bus to support analog input. Consequently, to

support the Arduino APIs on the Galileo board, we

developed drivers for the PCI bus, I2C bus controller, the
Cypress GPIO Expander chipset, the SPI bus controller
and the ADC. The Galileo board I/O infrastructure
overview is shown in Figure 3.

Fig. 3.Intel Galileo I/O Infrastructure Overview

All the Arduino API functions are included in the

Arduino IDE as shared libraries, and interface with the

Linux sysfs for GPIO operations. Arduino sketches are then

converted into Linux user processes for execution.

In Qduino, we developed all the device drivers in the
Quest kernel and exposed the GPIO interface to sketches

running as user processes through system calls. Cur

we have implemented most of the frequently used

functions along with the Serial and Servo libraries with the
exception of some advanced I/O interfaces. Most of the

API implementations are wrappers around the GPIO

system calls and are included in a user library called

libqduino. In this way, a sketch can be converted into a

normal Quest user process and loaded for execution.

Experiments in Section III show that the standard Arduino
API implemented in Qduino outperforms the one for

Clanton Linux.

 ISSN
 Available online at

International Journal of Advanced Research Trends in Engineering and Technology
January 2018

All Rights Reserved © 2018 IJARTET

Bits and

Bytes

External

Interrupts

Interrupts

however, the GPIO fabric is mostly controlled by a

GPIO Expander featuring the Cypress CY8C9540A chipset

C bus controller itself is a

PCI device that can be probed and programmed by the
processor. Similarly, the Galileo board also features an

e connected to an SPI bus controller
on the PCI bus to support analog input. Consequently, to

support the Arduino APIs on the Galileo board, we

C bus controller, the
Cypress GPIO Expander chipset, the SPI bus controller,

and the ADC. The Galileo board I/O infrastructure

Intel Galileo I/O Infrastructure Overview

All the Arduino API functions are included in the

Arduino IDE as shared libraries, and interface with the

GPIO operations. Arduino sketches are then

converted into Linux user processes for execution.

In Qduino, we developed all the device drivers in the
Quest kernel and exposed the GPIO interface to sketches

running as user processes through system calls. Currently,

we have implemented most of the frequently used

functions along with the Serial and Servo libraries with the
exception of some advanced I/O interfaces. Most of the

API implementations are wrappers around the GPIO

user library called

. In this way, a sketch can be converted into a

normal Quest user process and loaded for execution.

Experiments in Section III show that the standard Arduino
API implemented in Qduino outperforms the one for

C. Arduino API Extension

In this section, we discuss the Arduino API extensions

in Qduino, to support real
applications.

Multithreaded Sketch. The standard Arduino API offers

two structure functions: setup() and

function is called when a sketch starts and usually contains

code for initialization. After calling the

the loop() function repeatedly performs a series of tasks.

While only one loop() function is allowed in the standard

API, Qduino allows up to 32 loop()

function is assigned to a Quest thread and scheduled by the
Quest scheduler.

Multiple loop support in Qduino makes it easier to write
sketches with parallel tasks. A simple example might be to

process sensor input data from one I/O pin while another
I/O pin is used for output, perhaps to control an actuator. If
the input and output processing require separate rates for
reading and writing data, a single timed loop might be

inadequate. The loop will have a certain period, wh
might satisfy one, but not necessarily both, of the input and
output rates. A similar example is shown for blinking
LEDs in the standard Arduino API [16], suggesting users

to do time accounting on their own. This places the burden
of scheduling on users, making code overly complex and
vulnerable to mistakes when the number of tasks increases.
With the multi-loop feature, separate tasks with different
delays between I/O operations can be assigned to different

loops, with the assurance that their delay se
affect other tasks.

Communication and Synchronization. One benefit of
binding loops to threads rather than processes is that

communication is vastly simplified. Communication

between loops, on Qduino, can be done via global
variables, which are automatically shared by all the loops

within one sketch. However, unrestricted use of shared
variables is unreliable and unsafe due to multiple update
problems. Therefore, spinlocks are made available for use

in Qduino. To hide the complexity of expli

synchronization and to maintain the simplicity of Arduino
programming, we further provide two asynchronous
communication facilities: a four-slot [17] channel and a

ring buffer. Simpson’s four-slot fully asynchronous

communication mechanism allows a sin
writer to access a shared memory region in such a way that
the reader always accesses the most recent data stored by

the writer, and neither entity need wait for the other [18].
Thus, data is always fresh, even though some may be over
written and, hence, lost. Fourslot asynchronous
communication is widely used in real

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)
Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

190

In this section, we discuss the Arduino API extensions

in Qduino, to support real-time, multi-threaded

Multithreaded Sketch. The standard Arduino API offers

and loop(). The setup()

n is called when a sketch starts and usually contains

code for initialization. After calling the setup() function,

function repeatedly performs a series of tasks.

function is allowed in the standard

loop() functions. Each loop()

function is assigned to a Quest thread and scheduled by the

Multiple loop support in Qduino makes it easier to write
sketches with parallel tasks. A simple example might be to

m one I/O pin while another
I/O pin is used for output, perhaps to control an actuator. If
the input and output processing require separate rates for
reading and writing data, a single timed loop might be

inadequate. The loop will have a certain period, which

might satisfy one, but not necessarily both, of the input and
output rates. A similar example is shown for blinking
LEDs in the standard Arduino API [16], suggesting users

to do time accounting on their own. This places the burden
s, making code overly complex and

vulnerable to mistakes when the number of tasks increases.
loop feature, separate tasks with different

delays between I/O operations can be assigned to different

loops, with the assurance that their delay settings will not

Communication and Synchronization. One benefit of
binding loops to threads rather than processes is that

communication is vastly simplified. Communication

between loops, on Qduino, can be done via global
are automatically shared by all the loops

within one sketch. However, unrestricted use of shared
variables is unreliable and unsafe due to multiple update
problems. Therefore, spinlocks are made available for use

in Qduino. To hide the complexity of explicit

synchronization and to maintain the simplicity of Arduino
programming, we further provide two asynchronous

slot [17] channel and a

slot fully asynchronous

communication mechanism allows a single reader and

writer to access a shared memory region in such a way that
the reader always accesses the most recent data stored by

the writer, and neither entity need wait for the other [18].
, even though some may be over-

n and, hence, lost. Fourslot asynchronous
communication is widely used in real-time systems to

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 5, Special Issue 1, January 2018

guarantee that actuators always read the latest data from
sensors. We also provide a single-reader, single

buffer FIFO for applications that want his

values to be preserved.

Temporal Isolation. Each thread bound to a loop in Qduino

is associated with a separate VCPU. As explained in the

Section II-A, Quest partitions CPU resources precisely

between tasks and thereby ensures temporal isolati
between them. By making use of these properties provided

by Quest, Qduino guarantees that the execution of one loop
will not interfere with the timely execution of others.

As also mentioned earlier, Quest is capable of

scheduling interrupt handlers as time-budgeted threads, to
avoid interference with other tasks. We exploit this feature
by creating an I/O VCPU to handle interrupt bottom halves
associated with the GPIO expander. The I/O VCPU budget

prevents a high volume of interrupts being handled
indefinitely, at the cost of other tasks. By careful tuning of
I/O and Main VCPU budgets, it is possible for a system
designer to balance CPU time between CPU
intensive tasks. Effectively, when setting the I/O VCPU

capacity to 0, GPIO interrupt handling is disabled. It is
possible in Qduino to establish separate I/O VCPUs for
different devices (or GPIOs), depending on the underlying
hardware. For situations where the system is configured to

only have one I/O VCPU for all devices, there is a manyto
one mapping of Main VCPUs (one for each Qduino loop
thread) to the I/O VCPU.

Although this paper focuses on single sketches with
multiple threads, we are considering the support for

separate co-existent sketches in different processes. One
idea is to enable process-level control of interrupt delivery
by allowing a sketch’s Main VCPU(s) to be unbound from
an I/O VCPU.

Similarly, when a sketch wants to unblock interrupt
delivery, its Main VCPU(s) can be rebound to the I/O
VCPU. This way, the I/O VCPU budget (possi

system administrator) can be made available to other

sketches that still wish to receive interrupts. In Clanton
Linux, it is not possible for sketches, which run in user
space processes, to disable interrupts, as this could affect

the entire system.

In Section III, we show a 3-loop sketch to demonstrate

that no loop experiences interference from other loops

when all of them are performing CPU-intensive tasks. We

also show that, while the number of interrupts are
effectively controlled by adjusting the I/O VCPU
parameters, the performance of a coexisting CPU

loop is always isolated from interrupts.

 ISSN
 Available online at

International Journal of Advanced Research Trends in Engineering and Technology
January 2018

All Rights Reserved © 2018 IJARTET

guarantee that actuators always read the latest data from
reader, single-writer ring

buffer FIFO for applications that want historical data

Temporal Isolation. Each thread bound to a loop in Qduino

is associated with a separate VCPU. As explained in the

A, Quest partitions CPU resources precisely

between tasks and thereby ensures temporal isolation

between them. By making use of these properties provided

by Quest, Qduino guarantees that the execution of one loop
will not interfere with the timely execution of others.

As also mentioned earlier, Quest is capable of

budgeted threads, to
avoid interference with other tasks. We exploit this feature
by creating an I/O VCPU to handle interrupt bottom halves
associated with the GPIO expander. The I/O VCPU budget

prevents a high volume of interrupts being handled
initely, at the cost of other tasks. By careful tuning of

I/O and Main VCPU budgets, it is possible for a system
designer to balance CPU time between CPU- and I/O-

intensive tasks. Effectively, when setting the I/O VCPU

g is disabled. It is
possible in Qduino to establish separate I/O VCPUs for
different devices (or GPIOs), depending on the underlying
hardware. For situations where the system is configured to

only have one I/O VCPU for all devices, there is a manyto-

apping of Main VCPUs (one for each Qduino loop

Although this paper focuses on single sketches with
multiple threads, we are considering the support for

existent sketches in different processes. One
level control of interrupt delivery

by allowing a sketch’s Main VCPU(s) to be unbound from

Similarly, when a sketch wants to unblock interrupt
delivery, its Main VCPU(s) can be rebound to the I/O
VCPU. This way, the I/O VCPU budget (possibly set by a

system administrator) can be made available to other

sketches that still wish to receive interrupts. In Clanton
Linux, it is not possible for sketches, which run in user-
space processes, to disable interrupts, as this could affect

loop sketch to demonstrate

that no loop experiences interference from other loops

intensive tasks. We

also show that, while the number of interrupts are
ing the I/O VCPU

parameters, the performance of a coexisting CPU-intensive

Fig. 4. Qduino GPIO Interrupt Handling Mechanism
Predictable Events. On the Galileo, there is currently one

I/O VCPU for all GPIOs. When an interrupt is raised on a
GPIO pin, the top half (non-deferrable part) of the GPIO
interrupt handler will wakeup a thread associated with the
I/O VCPU. The I/O VCPU is removed from a wait queue

and added to a ready queue where it can be scheduled.
When granted execution, the I/O VCPU thread runs at
kernellevel and serves as the bottom half

handler) for GPIO interrupts. The kernel bottom half

associated with the I/O VCPU queries the GPIO pin
number that triggered the interrupt. This information
then be used to invoke a specific
handler in a Qduino sketch.

Qduino provides an attachInterruptVcpu()

associate an interrupt handler with a user

is bound to a time-budgeted Main VCPU. A user
handler becomes eligible for execution when its Main
VCPU (with non-zero budget) is moved to the ready queue

by a wakeup event from the bottom half kernel thread.
Figure 4 illustrates the GPIO interrupt handling mechanism
in Qduino.

On Clanton Linux, a GPIO interrupt is delivered to a
user-level process as a POSIX signal. There is no

guaranteed delay between the occurrence of the GPIO pin
change and the execution of the user

depends on when the process is scheduled. By comparison,

Qduino ensures that the time interval between the reception

of the hardware interrupt and the invocation of user
handler is bounded by its worst-case delay (

The WCD happens when the bottom half is invoked at
the moment when the associated I/O VCPU

depleted its budget. Let Cio and T
budget and period. According to Quest’s I/O VCPU

scheduling algorithm, it takes Tio −

VCPU is replenished and is able to run the thread that

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)
Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

191

Fig. 4. Qduino GPIO Interrupt Handling Mechanism
Predictable Events. On the Galileo, there is currently one

n interrupt is raised on a
deferrable part) of the GPIO

interrupt handler will wakeup a thread associated with the
I/O VCPU. The I/O VCPU is removed from a wait queue

and added to a ready queue where it can be scheduled.
anted execution, the I/O VCPU thread runs at

bottom half (deferrable

handler) for GPIO interrupts. The kernel bottom half

associated with the I/O VCPU queries the GPIO pin
number that triggered the interrupt. This information can

then be used to invoke a specific user-level interrupt

attachInterruptVcpu() function, to

associate an interrupt handler with a user-level thread that

budgeted Main VCPU. A user-level

ndler becomes eligible for execution when its Main
zero budget) is moved to the ready queue

by a wakeup event from the bottom half kernel thread.
Figure 4 illustrates the GPIO interrupt handling mechanism

interrupt is delivered to a
level process as a POSIX signal. There is no

guaranteed delay between the occurrence of the GPIO pin
change and the execution of the user-level handler, since it

depends on when the process is scheduled. By comparison,

no ensures that the time interval between the reception

of the hardware interrupt and the invocation of user-level
case delay (WCD).

The WCD happens when the bottom half is invoked at
the moment when the associated I/O VCPU has just

Tio denote I/O VCPU’s

budget and period. According to Quest’s I/O VCPU

− Cio time until the I/O
VCPU is replenished and is able to run the thread that

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

192
All Rights Reserved © 2018 IJARTET

issues a wakeup event. The wakeup event could be
delivered to the Main VCPU of a userlevel ISR at the

critical instant when it, too, has just depleted its budget.

The worst-case delay for the Main VCPU, Vh to resume

execution is Th−Ch, where Ch and Th are the budget and

period, respectively. Finally, the WCD has to consider the

time to execute the bottom half, which can be obtained by

preprofiling. Let δbh denote the required CPU time of the

bottom half, and Δbh denote the wall-clock time to execute
the bottom half. We then have:

New APIs. If a new Arduino API is to be adopted by the

community it must not require the modification of existing
sketches and it must maintain the simplicity that made the

original API so successful. Qduino maintains backward
compatibility with the original API, while introducing a set

of new functions as described in Table II. Values of C and

T are, by default, specified in milliseconds, although
Qduino can be configured to accept their specification in
different time units.

 TABLE II. NEW APIS

 Function Signatures Category

loop(loop_id, C, T) Structure

interruptsVcpu(C, T),

attachInterruptVcpu(pin, ISR,

mode, C, T)

Interrupt

spinlockInit(lock), spinlockLock(lock),

spinlockUnlock(lock)
Spinlock

channelWrite(channel, item), item

channelRead(channel)

Four-

slot

ringbufInit(buffer, size), ringbufWrite(buffer, item),

 Ring buffer ringbufRead(buffer, item)

Qduino requires real-time loops to be specified with

loop identifiers and VCPU parameters. For backward

compatibility, Qduino also supports the standard loop()

function. attachInterruptVcpu() extends the standard

attachInterrupt() function by requiring the specification of

Main VCPU timing constraints for a user-level ISR.

interruptsVcpu() is the API to control the I/O VCPU

associated with the kernel thread serving as the bottom half

of a GPIO interrupt. Though not listed in Table II,

noInterrupts() and interrupts() disable and re-enable

interrupts, respectively. These two functions are currently

implemented as wrappers around the interruptsVcpu()

function. noInterrupts() sets the I/O VCPU budget to zero

so that the kernel thread dedicated to a bottom half is never

executed. Finally, interrupts() simply restores the I/O

VCPU budget cleared by noInterrupts(). In a future multi-

sketch system, we plan to enable and disable interrupt

delivery to individual sketches by binding/unbinding Main
and I/O VCPUs as described earlier.

Example Sketch for Autonomous Vehicle. Listing 1 (in the

Appendix) presents a sample sketch written with Qduino’s

new API. It is for a rover equipped with an HC-SR04

ultrasonic sensor and the Intel Galileo board. The sketch

contains two loops: (1) a sensing loop detects the rover’s

distance to an obstacle, and (2) an actuation loop controls

the motors. The sensing loop communicates the measured

distance to the actuation loop via a four-slot channel. If a

distance less than 1 meter is detected, the rover will back
off and turn right to avoid a collision. This sample sketch

only serves as a proofof-concept. A more realistic
autonomous vehicle, however, might be equipped with
many more sensors and actuators. For example, a vehicle
might use rotary encoders to measure speed, a PID control
to stabilize movement, LIDAR sensors to compute

localization and mapping values, and other audiovisual
sensors to warn of potential collisions. Each task can be
arranged into separate loops or interrupt handlers with
appropriate VCPUs.

In this example, a four-slot communication channel is
not entirely necessary, if sensor data is stored in global
variables accessible to both loop threads. However, if
sensor data is larger than the architecture word size (e.g.,

64-bits on a 32-bit architecture) multiple memory fetches
might see inconsistent updates to the values without using
explicit synchronization. Such synchronization could
unduly affect the timing of both sensing and actuation

loops, which can otherwise proceed independently using
four-slot communication.

 III.EXPERIMENTAL EVALUATION

We conducted a series of experiments to investigate the
performance of the standard Arduino API and the

effectiveness of our API extensions in the Qduino

environment. All experiments used a first generation Intel

Galileo board with GPIO logic level set to 3.3V
2
. We

compared Qduino to Clanton Linux 3.8.7, which is shipped
with the Intel Galileo board. The Linux sketches are

created and uploaded with the Intel Arduino IDE v1.0.0.

Sketches running on Qduino are built using Quest’s
toolchain and loaded through the Qduino shell. Quest’s

toolchain is based on GCC 4.7.2, with the same

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 5, Special Issue 1, January 2018

optimization flag (-Os) as the Intel Arduino IDE. All clock

cycle timing measurements used the Quark process
TimeStamp Counter.

The Standard Arduino I/O API. To evaluate the efficiency
of the standard Arduino API implementation in Qduino, we

compared the performance of digitalWrite()

and the maximum interrupt frequency with

attachInterrupt() between Clanton Linux and Qduino.

 For the digitalWrite(), we toggled digital pin 13 for 4000

times, while for the digitalRead(),we read the value on pin

13 without delay for 4000 times. We tested both functions
on Clanton Linux and Qduino and recorded the

CPU cycles needed to perform a single operation. The

results shown demonstrate that our implementation of basic
GPIO operations in Qduino does not incur any additional
overhead compared to Clanton Linux. Moreover, the

digitalWrite() in Qduino is more efficient than in Clanton

Linux.

Fig. 5.Arduino API Performance Comparison

In the next experiment, we wrote a sketch that

registered an interrupt service routine (ISR) for a pin

change event on digital pin 2, using attachInterrupt()

then toggled the pin setting 4000 times. By tuning the

delay between each pin change (using digitalWrite()

recorded the minimum delay that guarantees the reception
of all the interrupts. From this, we calculated the

corresponding maximum interrupt frequency for both
Linux and Qduino. The results are also shown in Figure 5.

We observed that Qduino is able to handle a higher rate of

interrupts via its attachInterrupt() implementation.

We next used an oscilloscope to test the effectiveness of

analog I/O in Qduino. Figure 6 is a screenshot of

analogWrite(pin,120) running on Clanton Linux and

Qduino. The information in the right column shows that

both platforms have almost identical maximum and

average voltage, and the same frequency and calculated
duty cycles.

 ISSN
 Available online at

International Journal of Advanced Research Trends in Engineering and Technology
January 2018

All Rights Reserved © 2018 IJARTET

) as the Intel Arduino IDE. All clock

cycle timing measurements used the Quark processor’s

The Standard Arduino I/O API. To evaluate the efficiency
of the standard Arduino API implementation in Qduino, we

digitalWrite(), digitalRead(),

and the maximum interrupt frequency with

between Clanton Linux and Qduino.

, we toggled digital pin 13 for 4000

,we read the value on pin

13 without delay for 4000 times. We tested both functions
on Clanton Linux and Qduino and recorded the average

CPU cycles needed to perform a single operation. The

results shown demonstrate that our implementation of basic
GPIO operations in Qduino does not incur any additional
overhead compared to Clanton Linux. Moreover, the

ore efficient than in Clanton

Arduino API Performance Comparison

In the next experiment, we wrote a sketch that

registered an interrupt service routine (ISR) for a pin

attachInterrupt(), and

then toggled the pin setting 4000 times. By tuning the

digitalWrite()), we

recorded the minimum delay that guarantees the reception
of all the interrupts. From this, we calculated the

pt frequency for both
Linux and Qduino. The results are also shown in Figure 5.

We observed that Qduino is able to handle a higher rate of

implementation.

We next used an oscilloscope to test the effectiveness of

I/O in Qduino. Figure 6 is a screenshot of

running on Clanton Linux and

Qduino. The information in the right column shows that

both platforms have almost identical maximum and

average voltage, and the same frequency and calculated

Multithreaded Sketch. We next constructed a sketch with a
mixture of CPU and I/O operations. For the CPU

workload, we constructed a findPrime

calculates all prime numbers smaller than 80000. For I/O,

we issued 2000 digitalWrite() requests. In the single

version, both CPU and I/O operations are combined in one

loop() function. In the multithreaded version, we have two

loops: one runs findPrime and the other issues the

digitalWrite() requests. Table III lists all four experimenta

cases. We conducted this group of experiments on both

Qduino and Clanton Linux. For Qduino, the single
case uses a Main VCPU with

C = 498mS and T = 500mS 3. In the multi

 TABLE III.CASE DESCRIPTIONS

Case

Description

Case

1

single-loop digitalWrite()

Case

2

single-loop findPrime

Case

3

single-loop

digitalWrite()+findPrime

Case

4

multi-loop

digitalWrite()+findPrime

established a Main VCPU with C = 495

to run findPrime. For the I/O operations, we assigned an

I/O VCPU with 3/500 fraction of CPU time. In both cases,
the leftover CPU time is reserved for the shell so that the
sketch can be loaded. When running on Clanton, the
multithreaded sketch uses the Pthread library.

Results in Figure 7 show that the multithreaded sketch

achieves approximately 28% performance increase over the
single-loop version on Clanton Linux, and 31% increase

over a single-loop version on Qduino. The multithreaded
sketches are both only slightly s

findPrime alone. This is because digitalWrite()

of its time blocking on I/O commands from the I

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)
Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

193

Multithreaded Sketch. We next constructed a sketch with a
mixture of CPU and I/O operations. For the CPU

findPrime benchmark that

calculates all prime numbers smaller than 80000. For I/O,

equests. In the single-loop

version, both CPU and I/O operations are combined in one

function. In the multithreaded version, we have two

and the other issues the

requests. Table III lists all four experimental

cases. We conducted this group of experiments on both

Qduino and Clanton Linux. For Qduino, the single-loop

. In the multi-loop version, we

CASE DESCRIPTIONS

Description

digitalWrite()

loop findPrime

+findPrime

+findPrime

= 495mS and T = 500mS

. For the I/O operations, we assigned an

fraction of CPU time. In both cases,
the leftover CPU time is reserved for the shell so that the
sketch can be loaded. When running on Clanton, the
multithreaded sketch uses the Pthread library.

Results in Figure 7 show that the multithreaded sketch

achieves approximately 28% performance increase over the
loop version on Clanton Linux, and 31% increase

loop version on Qduino. The multithreaded
sketches are both only slightly slower than running

digitalWrite() spends most

of its time blocking on I/O commands from the I2C bus.

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

194
All Rights Reserved © 2018 IJARTET

Fig 6.Multithreaded Sketch Benchmarks

Predictability. We conducted two groups of experiments to
verify the predictability of loop execution and event
delivery in Qduino. In the first group, we wrote a series of
multiloop sketches, in which one foreground loop per
sketch repeatedly increments a counter. At the end of the

foreground loop’s period the counter value is recorded and
then reset to 0. Additionally, two or more background
loops per sketch serve as potential interference sources by
performing CPUintensive tasks shows the VCPU

parameters for each foreground loop, and the number of
background loops in each case. The background loops in
each case equally consume all remaining CPU capacity not
used by the foreground loop. The lack of hardware

performance counters on the Quark processor meant that
we periodically sampled a counter value to track each
foreground loop’s progress in real-time.

The standard loop() function runs in a separate thread and

does the same work as the foreground loop in Qduino’s

setup. Clanton’s lack of real-time support meant that the

threads were not able to be specified with time constraints.

Consequently, we only varied the number of background

threads according to the cases.

It shows the value of the foreground loop counter in
each case (with 2 or 4 background threads). The counter is

incremented to about the same value in every period for a

given VCPU constraint using Qduino. This is due to the

guaranteed execution time of the loop within each VCPU
period. However, due to the lack of predictability in the

Linux scheduler, the progress of the loop() function is

variable, as seen by the spikes in counter values above and

below the average. It is also sensitive to the number of
background threads, which are not temporally isolated

from the foreground loop.

In the second group of experiments, we tested the
predictability of Qduino’s event delivery framework. We

used two Intel Galileo boards. Board A’s pin 13 was

connected to Board B’s pin 2. Board A ran Clanton Linux

and flipped pin 13 in fast mode with a random delay,

ranging from 0 to 2.3 milliseconds. It thus generated

interrupts on Board B’s pin 2 with a variable frequency

from 477kHz to approximately 434Hz
4
. On Board

 we ran a sketch that attaches an interrupt handler to pin 2

using the attachInterruptVcpu() function with different

VCPU parameters in each case. We also, in each case,
adjusted the I/O VCPU parameters using the

interruptsVcpu() function. The parameter combinations of

the I/O VCPU bound to the bottom-half kernel thread, and
the Main VCPU associated with the user-level interrupt

handler. We instrumented the Quest kernel to measure the
predicted worst-case delay

 which is the time interval between the invocation of the
top half and the invocation of the user-level interrupt
handler. We also measured the execution time of the
bottom half to be 2.33 milliseconds without any

interruption from external interrupts or CPU scheduling.

 We calculated the predicted worst-case delay (WCD) for
event delivery using Equation 3 in Section II-C. Figure 9

compares the predicted WCD’s with the observed event
delivery times under different VCPU combinations. As can
be seen, the observed value is always within the prediction
bounds.

Temporal Isolation. Loops in Qduino sketches are
guaranteed to be temporally isolated from other loops and
asynchronous system events, e.g. interrupts. We conducted
another set of experiments to verify temporal isolation.

We first wrote a sketch with 3 loops, each running

findPrime with different VCPU parameters, as shown in

Table IV. We then split the 3-loop sketch into three single-
loop

 TABLE IV.VCPU PARAMETERS

Loop # Loop

1

Loop

2

Loop

3

VCPU

parameters

40/100 20/100 10/100

 0

 2

 4

 6

 8

 10

 12

Case 1 Case 2 Case 3 Case 4

C

P

U

Cy

cl

es

(x

10

^9

)

Clanton
Qduino

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

195
All Rights Reserved © 2018 IJARTET

 Sketch Each contains one of the three loops
respectively. We ran each single-loop sketch with the same

VCPU parameters it used in the 3-loop version. We

compared each loop’s execution time in the 3-loop sketch

to that in the corresponding singleloop sketch (averaged

over 5 runs). The results in Figure show that Qduino
maintains temporal isolation between loops.

In a further experiment, we investigated the use of I/O

VCPUs in Qduino. We used a similar setup to the

predictable

Fig7. Temporal Isolation between Loops

event delivery experiment, except that Board A toggles pin
13 repeatedly, without any delay, and interrupts generated

on B’s pin 2 thus have a frequency of 220Hz. On Board B,

we ran findPrime using a Main VCPU with parameters

70mS/100mS. The sketch also attaches an interrupt
handler to pin 2, which counts the number of interrupts

received during the execution of findPrime. Five cases

were studied, all using Qduino. I/O VCPU parameters are

adjusted via the interruptsVcpu() function before the

interrupt handler is attached. Case 1 serves as the base case

to show the execution time when external interrupts are
disabled

4
. using a kernel-level interrupt handler, which is

not associated with any I/O VCPU. This case is intended to

show the interrupt processing interference when an I/O
VCPU is not used.

 Each cluster of bars, the bar on the left shows the

execution time of the loop in CPU cycles. As can be seen,
when the I/O VCPU is enabled, the loop has approximately

the same execution time with the base case where external

interrupts are turned off, thereby demonstrating the

expected temporal isolation between loops and interrupts.
The bar on the right represents the number of interrupts

received. Though the loop has guaranteed execution time

whatever I/O VCPU parameters are used, the number of

interrupts received varies accordingly. The larger the I/O

VCPU budget is, the more interrupts the sketch receives. It

demonstrates that interrupts can be flexibly controlled by

the budget of the I/O VCPU. Users can effectively disable

external interrupt delivery by setting the I/O VCPU budget
to 0

We performed the same experiment with Clanton

Linux. In this case, findPrime’s performance degrades to

30.4% of its peak value while 2402 interrupts are received.
For comparison, we divided the CPU cycles between the
Main VCPU and the I/O VCPU in Qduino to achieve the

similar performance drop for findPrime. We found that

when using a 40mS/100mS I/O VCPU and a

48mS/100mS Main VCPU, 5369 interrupts are received
when the performance drop is about 34%.

Autonomous Vehicle Application. Apart from
microbenchmarks, we also created a simple collision
avoidance application for an autonomous vehicle, as
described earlier at the end of Section II-C. The sketch

code for Qduino is shown in Listing 1 while the single-loop
Clanton version is shown in Listing 2. We measured the
time interval between two consecutive calls to the motor
actuation code when there was a change in the distance to

an obstacle as observed by the sensing logic. That with the
multi-loop sketch in Qduino the time interval is stable at
about 103ms. This includes an explicit 100ms to keep the
motor settings at their current values, plus several digital
I/O operations to subsequently change the motor values. In

Clanton, the time interval varies from 383ms to 591ms.

The Linux delay is a combination of the same 100ms
programmed delay we used in Qduino plus the time to do
one iteration of the sensing and actuation code.

Note that in both Linux and Qduino there is a 200ms

sampling delay in the sensing code, to avoid the ultrasonic

trigger pulse being incorrectly detected as an echo signal.
However, in Linux this delay is included in a single loop
for both sensing and actuation. Although Pthreads could be

used to separate the sensing and actuation code, Clanton

does not allow multiple threads to simultaneously access

the I/O subsystem, because it serializes access to sysfs. In

Clanton, the digital I/O pins on the Arduino are exposed to

user-space code via the sysfs filesystem interface.

Consequently, when the safe distance to an obstacle is set

to 1m, an autonomous vehicle running Qduino can move at

about 9.7m/s (>21 mph), while still having time to react

before a collision. This compares to only 1.7m/s (3.8 mph)
using a Clanton single-loop sketch.

 0

 20

 40

 60

 80

 100

Loop 1 Loop 2 Loop 3

C

P

U

Cy

cl

es

(x

10

^9

)

single-loop
3- loop

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

196
All Rights Reserved © 2018 IJARTET

For completeness, a single-loop sketch in Qduino,
which shows similar jitter to the same sketch running in

Clanton Linux. However, Qduino has slightly less

overhead because digital I/O is more efficient. The I/O

operations in Qduino are system calls as opposed to being
built on top of a filesystem abstraction in Linux.Finally,

 we include results for a Clanton sketch that uses an

interrupt handler to time the ultrasonic signal within each

iteration of the main motor-controlling loop. We also

removed the delay(200) instruction at the cost of false

echoes, to minimize the time spent in the sensing code.

Even so, a Clanton sketch with interrupts still incurs more

overhead than a multi-loop Qduino sketch. With multiple
loops, the actuation code is not serialized with the sensing
code.

Finally, we measured the memory footprint of the
sketches and kernels on both platforms.

IV. RELATED WORK

Contiki [19] is a small footprint operating system for
use with Internet of Things (IoT) devices. It supports

perprocess preemptive multi-threading by linking
applications with a protothread library. Protothreads [20]
function as stackless, lightweight threads and are
cooperatively scheduled. This means that any protothread

that fails to yield control back to the kernel will inevitably
lock up the system. RIOT OS [21] is another multi-
threaded operating system designed for IoT devices. RIOT
enforces constant periods for kernel tasks fulfill strong
real-time requirements, but user-level threads are

scheduled by a minimized scheduler without real-time
guarantees. Both Contiki and RIOT aim to bridge the gap
between OSes for wireless sensor networks and traditional
fully-fledged OSes. However, Qduino is a system that

focuses more on physical computing with hard real-time
requirements.

sketches requiring real-time performance, and an The

Arduino Yun [22] is a hardware approach to realtime and
multi-threaded computing. Yun has an ATmega32u4

microcontroller for Arduino Atheros AR9331 SoC running

a Linux based OS for more complex multi-threaded
applications. A bridging library is required for

communication between applications on the two chips. In

contrast, Qduino makes it possible to create Arduino

sketches with both real-time and multi-threading support
on a single SoC. The communication between tasks is
much more efficient and the programming interface is

cleaner.

RT-Arduino is a software-based Arduino extension that

provides real-time multitasking support. It is built upon the
OSEK/VDX certified ERIKA Enterprise RTOS . Arduino

loops are mapped to OSEK-tasks that are statically
configured at compile-time. By comparison, Qduino

provides the basis for Arduino sketches with multiple loops

and interrupt handlers to be associated with multi-threaded

processes. This approach makes it possible to support real-

time and parallel thread execution on multicore
architectures.

Qduino is built on the assumption that the underlying

OS support for a SCHED_DEADLINE real-time class, with

CPU reservations [9], for tasks based on the Constant

Bandwidth Server [8]. This is similar to resource reserves

in Linux/RK. Qduino uses Quest’s VCPU scheduling

framework, which provides temporal isolation between
both tasks and system events, such as interrupts.

 Quest uses a novel approach to dynamically calculate
the budgets for handling short-lived and highly-frequent
interrupts. These types of system events have been shown

to severely fragment the replenishment lists of other types
of bandwidth preserving scheduling algorithms, making
their effective CPU utilizations lower than desired.
Consequently, Quest’s scheduling framework is ideally

suited to support real-time CPU and I/O processing in
Qduino.

 V.CONCLUSION AND FUTURE WORK

In this paper, we describe Qduino, an extension to the
Arduino API for the Quest real-time operating system.

Qduino is designed for Arduino-compatible devices with
greater capabilities than those based on the Atmel
MegaAVR. Qduino leverages Quest’s VCPU scheduling
approach to provide processor reservations over specific
windows of time, for both tasks and I/O events. It also

provides support for multithreading by allowing Arduino

sketches to specify multiple loops, each with their own
timing requirements.

 Experiments show that Qduino has similar performance

efficiency to a implementation on the Intel Galileo.

However, it is shown to offer greater predictability and
temporal isolation between separate threads in Qduino, but

this is not ensured in Linux. Multi-threaded real-time
programming is made simple with the Qduino API.

REFERENCES

[1] Arduino Homepage: http://arduino.cc.

[2] “Quest Operating System: http://www.questos.org.”

[3] “lwIP: http://savannah.nongnu.org/projects/lwip/.”

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 5, Special Issue 1, January 2018

197
All Rights Reserved © 2018 IJARTET

[4] M. Danish, Y. Li, and R. West, “Virtual-CPU

Scheduling in the Quest Operating System,” in

Proceedings of the 17th Real-Time and Embedded

Technology and Applications Symposium, 2011, pp.

169– 179.

[5] K. Adams and O. Agesen, “A Comparison of

Software and Hardware

Techniques for x86 Virtualization,” in Proceedings of

the 12th Intl. Conf. on Architectural Support for

Programming Languages and Operating Systems,

2006, pp. 2–13.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the Art of Virtualization,” in

Proceedings of the 19th ACM Symposium on

Operating Systems Principles, 2003, pp. 164–177.

[7] Christo Ananth, C.Sudalai@UtchiMahali, N.Ebenesar

Jebadurai, S.Sankari@Saranya, T.Archana,

“Intelligent sensor Network for Vehicle Maintenance

system”, International Journal of Emerging Trends in

Engineering and Development (IJETED), Vol.3, Issue

4, May 2014, pp-361-369

[8] L. Abeni and G. Buttazzo, “Integrating Multimedia

Applications in Hard Real-Time Systems,” in

Proceedings of the 19th IEEE Real-time Systems

Symposium, 1998, pp. 4–13.

[9] Z. Deng, J. W. S. Liu, and J. Sun, “A Scheme for

Scheduling Hard Real-Time Applications in Open

System Environment,” in Proceedings of the 9th

Euromicro Workshop on Real-Time Systems, 1997.

[10] M. Spuri and G. Buttazzo, “Scheduling Aperiodic

Tasks in Dynamic Priority Systems,” Real-Time

Systems, vol. 10, pp. 179–210, 1996.

[11] Christo Ananth, G.Poncelina, M.Poolammal,

S.Priyanka, M.Rakshana, Praghash.K., “GSM Based

AMR”, International Journal of Advanced Research

in Biology, Ecology, Science and Technology

(IJARBEST), Volume 1,Issue 4,July 2015, pp:26-28

[12] M. Stanovich, T. P. Baker, A. I. Wang, and M. G.

Harbour, “Defects of the POSIX Sporadic Server and

How to Correct Them,” in Proceedings of the 16th

IEEE Real-Time and Embedded Technology and

Applications Symposium, 2010.

[13] C. L. Liu and J. W. Layland, “Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time

Environment,” Journal of the ACM, vol. 20, no. 1, pp.

46–61, 1973.

[14] K. J. Duda and D. R. Cheriton, “Borrowed-Virtual-

Time (BVT)

Scheduling: Supporting Latency-Sensitive Threads in

a General-Purpose Scheduler,” in Proceedings of the

7th ACM Symposium on Operating Systems

Principles, 1999, pp. 261–276.

[15] Arduino Language Reference:

http://arduino.cc/en/Reference/HomePage.

[16] Blink Without Delay:

http://arduino.cc/en/Tutorial/BlinkWithoutDelay.

[17] H. Simpson, “Four-slot Fully Asynchronous

Communication Mechanism,” IEEE Computers and

Digital Techniques, vol. 137, pp. 17–30, January

1990.

[18] J. Rushby, “Model Checking Simpsons Four-slot

Fully Asynchronous Communication Mechanism,”

Computer Science Laboratory–SRI International,

Tech. Rep. Issued, 2002.

[19] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A

Lightweight and Flexible Operating System for Tiny

Networked Sensors,” in Local Computer Networks,

2004. 29th Annual IEEE International Conference on.

IEEE, 2004, pp. 455–462.

[20] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali,

“Protothreads: Simplifying Event-driven

Programming of Memory-constrained Embedded

Systems,” in Proceedings of the 4th international

conference on Embedded networked sensor systems.

Acm, 2006, pp. 29–42.

[21] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T.

C. Schmidt, “RIOT OS: Towards an OS for the

Internet of Things,” in Computer Communications

Workshops (INFOCOM WKSHPS), 2013 IEEE

Conference on. IEEE, 2013, pp. 79–80.

[22] Arduino Yun:

 http://arduino.cc/en/Main/ArduinoBoardYun?

from=Products.ArduinoYUN.

