

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

178

All Rights Reserved © 2017 IJARTET

Design and Analysis of Inexact Floating Point Multipliers

 Jogadenu Vedavathi
 1

Mrs.T.Nagalaxmi
2

 jogadenuvedavathi1993@gmail.com
1

tnagalaxmi@stanley.edu.in
2

 1
 PG Scholar, Dept of ECE, Stanley College of Engineering and Technology for Women, chapel

road, abids, Ranga reddy,Telangana.
2
Assistant Professor, Phd scholar,osmania university(OU),Stanley College of Engineering and

Technology for Women, chapel road, abids, Ranga reddy,Telangana.

ABSTRACT: Power has become a key constraint

in nano scale integrated circuit design due to the

increasing demands for mobile computing and

higher integration density in static and dynamic

power dissipation. As an emerging computational

paradigm, an inexact circuit offers a promising

approach to significantly reduce both dynamic and

static power dissipation for error-tolerant

applications like image processing. For this, an

inexact floating-point adder is implemented by

approximately designing an exponent subtractor

and mantissa adder. Related operations such as

normalization and rounding are also dealt with in

terms of inexact computing. An upper bound error

analysis for the average case is presented to guide

the inexact design; it shows that the inexact

floating-point adder design is dependent on the

application data range. The exact and inexact

floating point adders has the disadvantage of

occupying more area (8131.20 µ m2 and

5679.36µ m2). In order to reduce the area

occupancy, the wallace tree multiplier and inexact

floating point multiplier has been designed. These

multipliers occupies the area of (5000 µ m2) and

(3451.12 µ m2) respectively and improves the

speed by (10%) and (5%) respectively. The

Wallace tree multiplier and inexact floating point

multiplier are designed and analyzed using

Xilinx 13.2 for synthesis in verilog language.

Key Words—Inexact circuits, floating-point

adder, low power, error analysis, high dynamic

range image

 I.INTRODUCTION

With advancement and development of

innovative digital integrated circuits, power

consumption has dramatically increased; power

has become a key design constraint due to the

high demand for mobile computing and higher

integration density. Traditional designs apply fully

accurate computing to all types of applications;

however, error-tolerant applications involving

human intervention (such as image processing) do

not require full accuracy. So, it is possible to

perform computation with inexact circuits; in

these cases, inexact computing is an attractive

approach to save power and area, while achieving

improved performance compared to accurate

designs. The arithmetic unit is the core of a

processor, and its power largely determines the

power of the whole processor. Recent research on

inexact fixed-point adders has shown that inexact

processing hardware with a relative error of 7.58

percent can be nearly 15 times more efficient in

terms of speed, area and energy product than an

accurate chip. Inexact chips are smaller, faster and

consume less energy. Although fixed-point

arithmetic circuits have been studied in terms of

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

179

All Rights Reserved © 2017 IJARTET

inexact computing, floating-point (FP)

arithmetic circuits are significantly more power

hungry and they have not been fully considered

for inexact computing. The FP format offers a

high dynamic range for computationally intensive

applications; FP adders and multipliers are

commonly used in DSP systems However, its

application to embedded DSP systems is limited

due to the high power consumption. A low power

design of an FP multiplier was investigated by

Tong et al.; this design involves the truncation of

hardware and a reduction of the bit width

representation of the FP data. A probabilistic FP

multiplier was proposed by Gupta et al. mostly as

an energy efficient design. A lightweight FP

design flow using bit-width optimization was

proposed for low power signal processing

applications. Low precision FP numbers have also

been used for MP3 decoding to reduce memory

utilization and power consumption. However, to

the best of the authors’ knowledge, there has been

no research to date on an inexact FP adder design.

In this paper, adder designs are studied as a

starting point for inexact FP arithmetic; several

inexact adder designs are proposed and assessed

for application to high dynamic range images. The

upper bound error due to the inexact design is

analyzed for the average case to guide the design

of inexact FP adders. A subjective visual

difference predictor metric is used to measure the

results of image addition; moreover, a procedure

is introduced for designing inexact FP arithmetic

circuits.

Fixed Point and Floating Point Representations

Every real number has an integer part and

a fraction part; a radix point is used to

differentiate between them. The number of binary

digits assigned to the integer part may be different

to the number of digits assigned to the fractional

part. A generic binary representation with decimal

conversion is shown in Figure 1.

 Integer

part

Binary

point

Fraction

part

Binary 2
3

2
2
 2

1

2
0

 --- 2
-1

2
-2

 2
-

3

Decimal 8 4 2

1

 ---- 1/2 1/4

1/8

Figure1: Binary representation and conversion to

decimal of a numeric

Basic Format

There are two basic formats described in

IEEE 754 format, double-precision using 64-bits

and single-precision using 32-bits. Table 1 shows

the comparison between the important aspects of

the two representations.

For

mat

Precisi

on(P)

Em

ax

E

mi

n

Expo

nent

Bias

Expo

nent

Widt

h

For

mat

Wid

th

Sin

gle

24 +12

7

-

12

6

127 8 32

Dou

ble

53 +10

23

-

10

22

1023 11 64

Table 1: Single and double precision format

summary

To evaluate different adder algorithms,

we are only interested in single precision format.

Single-precision format uses 1-bit for sign bit, 8-

bits for exponent and 23-bits to represent the

fraction as shown in Figure 2.

Figure 2: IEEE 754 single precision format

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

180

All Rights Reserved © 2017 IJARTET

The single- precision floating-point

number is calculated as (-1)S× 1.F × 2(E-127).

The sign bit is either 0 for non-negative number or

1 for negative numbers. The exponent field

represents both positive and negative exponents.

To do this, a bias is added to the actual exponent.

For IEEE single-precision format, this value is

127, for example, a stored value of 200 indicates

an exponent of (200-127), or 73. The mantissa or

significand is composed of an implicit leading bit

and the fraction bits, and represents the precision

bits of the number. Exponent values

(hexadecimal)of 0xFF and 0x00 are reserved to

encode special numbers such as zero, de

normalized numbers, infinity, and NaNs.

 The mapping from an encoding of a single-

precision floating-point number to the number’s

value is summarized in Table 2.

sig

n

exponent fraction value description

s 0*FF 0*00000

000

(-1)
S

∞

Infinity

s 0*FF F -/-0 NaN Not a

Number

s 0*00 0*00000

000

 0 Zero

s 0*00 F -/-0 (-1)
S

*0.F*2
(E-126)

Denormali

zed

Number

s 0*00<E<

FF

 F (-1)
S

*0.F*2
(E-127)

Normalize

d Number

Table 2: IEEE 754 single precision floating-point

encoding

Standard Floating Point Addition Algorithm

This section will review the standard floating

point algorithm architecture, and the hardware

modules designed as part of this algorithm,

including their function, structure, and use. The

standard architecture is the baseline algorithm for

floating-point addition in any kind of hardware

and software design.

II.LITERATURE SURVEY

Although the inexact design of fixed-

point adders has been extensively studied, little

research has been conducted on inexact floating-

point arithmetic design. A low power design of a

floating-point multiplier was investigated by Tong

et al. which involves truncating hardware; the

rounding unit was found to require almost half of

the hardware of an exact floating-point

multiplier. Therefore, the rounding unit is a

candidate for removal to save power, similar to an

inexact design. A probabilistic floating-point

multiplier was proposed by Gupta et al. as an

energy efficient design. However, to the best of

the authors' knowledge, there has been no research

to date on an inexact floating-point adder design,

which has a more complex structure than a

floating-point multiplier. An inherent problem of

binary floating-point arithmetic used in financial

calculations is that most decimal floating point

numbers cannot be represented exactly in binary

floating-point formats, and errors that are not

acceptable may occur in the course of the

computation. Decimal floating-point arithmetic

addresses this problem, but a degradation in

performance will occur compared to binary

floating-point operations implemented in

hardware. Despite its performance disadvantage,

decimal floating-point arithmetic is required by

certain applications that need results identical to

those calculated by hand. This is true for currency

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

181

All Rights Reserved © 2017 IJARTET

conversion, banking, billing, and other

financial applications. Sometimes, these

requirements are mandated by law; other times,

they are necessary to avoid large accounting

discrepancies. Because of the importance of this

problem a number of decimal solutions exist, both

hardware and software. Software solutions include

C#, COBOL, and XML, which provide decimal

operations and data types. Also, Java and C/C++

both have packages, called Big Decimal and dec

Number, respectively. Hardware solutions were

more prominent earlier in the computer age with

the ENIAC and UNIVAC. However, more recent

examples include the CADAC, IBM’s z900 and

z9 architectures, and numerous other proposed

hardware implementations. More hardware

examples can be found, and a more in-depth

discussion is found in Wang’s work.

Design tradeoff analysis of floating-point adder

in FPGAs[3]:Field Programmable Gate Arrays

(FPGA) are increasingly being used to design

high end computationally intense microprocessors

capable of handling both fixed and floating point

mathematical operations. Addition is the most

complex operation in a floating-point unit and

offers major delay while taking significant area.

Over the years, the VLSI community has

developed many floating-point adder algorithms

mainly aimed to reduce the overall latency. An

efficient design of floating-point adder onto an

FPGA offers major area and performance

overheads. With the recent advancement in FPGA

architecture and area density, latency has been the

main focus of attention in order to improve

performance. Our research was oriented towards

studying and implementing standard, Leading One

Predictor (LOP), and far and close data-path

floating-point addition algorithms. Each algorithm

has complex sub-operations which lead

significantly to overall latency of the design.

Design Of inexact floating-Point adders[4]:

The inexact design of an FP adder

originates at an architectural level. It consists of

designing both the mantissa adder and exponent

subtractor by using approximate fixed-point

adders. At the same time, related logic including

the normalizer and the rounder should also be

considered according to the inexact mantissa and

exponent parts. The circuit level inexact designs

are discussed in detail in the following sections.

Fig.3. The accurate FP adder architecture

Exponent Subtractor

The exponent subtractor is used for exponent

comparison and can be implemented as an adder.

An inexact fixed-point adder has been extensively

studied and can be used in the exponent adder;

inexact adders such as lower-part-OR adders

(LOA), approximate mirror adders, approximate

XOR/XNOR-based adders, and equal

segmentation adders can be found in the literature.

For a fast FP adder, a revised LOA adder is used,

because it significantly reduces the critical path by

ignoring the lower carry bits. A k-bit LOA

consists of two parts, i.e., an m-bit exact adder

and an n-bit inexact adder. The m-bit adder is

used for the m most significant bits of the sum,

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

182

All Rights Reserved © 2017 IJARTET

while then-bit adder consists of OR gates

to compute the addition of the least significant n

bits (i.e., the lower n-bit adder is an array of n

two-input OR gates). In the original LOA design,

an additional AND gate is used for generating the

most significant carry bit of then-bit adder; in this

work, all carry bits in then-bit inexact adder are

ignored to further reduce the critical path. The

exponent is dominant in the FP format, because it

determines the dynamic range. The approximate

design of the exponent subtractor must be

carefully considered due to its importance in the

number format. The results of the addition are

significantly affected by applying an approximate

design to only a few of the least significant bits of

the exponent subtractor under a small data range

Fig.4.The revised LOA adder structure.

The revised LOA adder can also be used

in the mantissa adder for an inexact design.

Compared to an exponent subtractor, the mantissa

adder offers a larger design space for inexact

design, because the number of bits in the mantissa

adder is significantly larger than the exponent

subtractor. As shown in Table 1, the number of

mantissa bits is larger than the number of

exponent bits. For the IEEE single precision

format, the exponent subtractor is an 8-bit adder,

while the mantissa adder is a 25-bit adder (for two

24-bit significances). Furthermore, the inexact

design in the mantissa adder has a lower impact

on the error than its exponent counterpart in the

lower data range, because the mantissa part is less

significant than the exponent part. Therefore, an

inexact design of a mantissa adder is more

appropriate. A detailed analysis of errors

introduced by each part is further discussed in the

next section. [3] proposed a system in which the

complex parallelism technique is used to involve

the processing of Substitution Byte, Shift Row,

Mix Column and Add Round Key. Using S- Box

complex parallelism, the original text is converted

into cipher text. From that, we have achieved a

96% energy efficiency in Complex Parallelism

Encryption technique and recovering the delay

232 ns. The complex parallelism that merge with

parallel mix column and the one task one

processor techniques are used. In future, Complex

Parallelism single loop technique is used for

recovering the original message.

Normalizer

Normalization is required to ensure that

the addition results fall in the correct range; the

sum or difference may be too small and a multi-

bit left shift process may be required. A reduction

of the exponent is also necessary. The

normalization is performed by a leading zeros

counter that determines the required number of

left shifts. As the mantissa adder is already not

exact for then least significant bits, the detection

of the leading zeros can also be simplified in the

inexact design, i.e., approximate leading zero

counting logic can be used.

 Rounder

A rounding mode is required to accommodate the

inexact number that an FP format can represent. A

proper rounding maintains three extra bits (i.e.,

guard bit, round bit and sticky bit). The adder may

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

183

All Rights Reserved © 2017 IJARTET

require a further normalization and

exponent adjustment after the rounding step,

therefore the hardware for rounding is significant.

However, it does not affect the results of the

inexact addition as the lower significant n bits are

already inexact. Therefore, rounding can be

ignored in the inexact design of an FP adder.

Overall Inexact FP Adder Architecture

Based on the previous discussion, an

inexact FP adder can be designed by using

approximate adders in the exponent subtractor and

mantissa adders, an approximate leading zero

counter in the normalizer and by ignoring the

rounder. The inexact FP adder architecture is

shown in Fig. 5.

Fig5.The inexact FP adder architecture.

III.PROPOSED SYSTEM

In floating point multipliers the area occupied by

the rounding will be reduced by dadda multiplier.

This is one of the best multiplier used this

reduces the occupancy of area and power

because it contains only three stepsProposed

Dadda multiplier has 3 steps:

 1. Perform Multiplication operation and get

partial product matrix.

 2. Reduce the number of partial products to

two layers of full and half adders.

 3. Group them into two numbers, and add

them with a conventional adder.

Floating point Multiplier:

Two floating point numbers the following is

done:

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1 + E2 – Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the

MSB of the results’ significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

A. Sign bit calculation

 Multiplying two numbers results in a negative

sign number iff one of the multiplied numbers is

of a negative value. By the aid of a truth table we

find that this can be obtained by XORing the sign

of two inputs.

B. Unsigned Adder (for exponent addition)

 This unsigned adder is responsible for adding

the exponent of the first input to the exponent of

the second input and subtracting the Bias (127)

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

184

All Rights Reserved © 2017 IJARTET

from the addition result (i.e. A_exponent

+ B_exponent - Bias). The result of this stage is

called the intermediate exponent.. An 8-bit ripple

carry adder is used to add the two input

exponents. As shown in Fig. 3 a ripple carry adder

is a chain of cascaded full adders and one half

adder; each full adder has three inputs (A, B, Ci)

and two outputs (S, Co). The carry out (Co) of

each adder is fed to the next full adder (i.e. each

carry bit "ripples" to the next full adder).

Fig 6: Ripple Carry Adder

The addition process produces an 8 bit

sum (S7 to S0) and a carry bit (Co,7). These bits

are concatenated to form a 9 bit addition result

(S8 to S0) from which the Bias is subtracted. The

Bias is subtracted using an array of ripple borrow

subtractors.

A normal subtractor has three inputs (minuend

(S), subtrahend (T), Borrow in (Bi)) and two

outputs (Difference (R), Borrow out (Bo)).The

subtractor logic can be optimized if one of its

inputs is a constant value which is our case, where

the Bias is constant (127|10 = 001111111|2).

Table I shows the truth table for a 1-bit subtractor

with the input T equal to 1 which we will call

“one subtractor (OS)”

TABLE I. 1-BIT SUBTRACTOR WITH THE

INPUT T = 1

The Boolean equations (2) and (3)

represent this subtractor:

Fig 7:1-bit subtractor with the input T = 1

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

185

All Rights Reserved © 2017 IJARTET

Table II shows the truth table for a 1-bit

subtractor with the input T equal to 0 which we

will call “zero subtractor (ZS)” TABLE II. 1-BIT

SUBTRACTOR WITH THE INPUT T = 0

The Boolean equations (4) and (5)

represent this subtractor:

Fig 8:1-bit subtractor with the input T = 0

 Fig. 6 shows the Bias subtractor which is a

chain of 7 one subtractors (OS) followed by 2

zero subtractors (ZS); the borrow output of each

subtractor is fed to the next subtractor. If an

underflow occurs then Eresult < 0 and the number

is out of the IEEE 754 single precision normalized

numbers range; in this case the output is signaled

to 0 and an underflow flag is asserted.

Fig 9:Ripple Borrow Subtractor

C. Unsigned Multiplier (for significand

multiplication)

This unit is responsible for multiplying

the unsigned significand and placing the decimal

point in the multiplication product. The result of

significand multiplication will be called the

intermediate product (IP). The unsigned

significand multiplication is done on 24 bit.

Multiplier performance should be taken into

consideration so as not to affect the whole

multiplier’s performance. A 24x24 bit carry save

multiplier architecture is used as it has a moderate

speed with a simple

architecture. In the carry save multiplier, the carry

bits are passed diagonally downwards (i.e. the

carry bit is propagated to the next stage). Partial

products are made by ANDing the inputs together

and passing them to the appropriate adder.

Carry save multiplier has three main stages:

1- The first stage is an array of half adders.

2- The middle stages are arrays of full

adders. The number of middle stages is

equal to the significand size minus two.

3- The last stage is an array of ripple carry

adders. This stage is called the vector

merging stage.

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

186

All Rights Reserved © 2017 IJARTET

The number of adders (Half adders and

Full adders) in each stage is equal to the

significand size minus one. For example, a

4x4 carry save multiplier is shown in Fig. 7

and it has the following stages:

 1- The first stage consists of three half

adders.

 2- Two middle stages; each consists of three

full adders.

 3- The vector merging stage consists of one

half adder and two full adders.

The decimal point is between bits 45 and 46 in the

significand multiplier result. The multiplication

time taken by the carry save multiplier is

determined by its critical path. The critical path

starts at the AND gate of the first partial products

(i.e. a1b0 and a0b1), passes through the carry

logic of the first half adder and the carry logic of

the first full adder of the middle stages, then

passes through all the vector merging adders. The

critical path is marked in bold in F

D. Normalizer

 The result of the significand multiplication

(intermediate product) must be normalized to have

a leading ‘1’ just to the left of the decimal point

(i.e. in the bit 46 in the intermediate product).

Since the inputs are normalized numbers then the

intermediate product has the leading one at bit 46

or 47

1- If the leading one is at bit 46 (i.e. to the left of

the decimal point) then the intermediate product is

already a normalized number and no shift is

needed.

2- If the leading one is at bit 47 then the

intermediate product is shifted to the right and the

exponent is incremented by 1.

 .

IV. UNDERFLOW/OVERFLOW DETECTION

 Overflow/underflow means that the result’s

exponent is too large/small to be represented in

the exponent field. The exponent of the result

must be 8 bits in size, and must be between 1 and

254 otherwise the value is not a normalized one.

An overflow may occur while adding the two

exponents or during normalization. Overflow due

to exponent addition may be compensated during

subtraction of the bias; resulting in a normal

output value (normal operation). An underflow

may

occur while subtracting the bias to form the

intermediate exponent. If the intermediate

exponent < 0 then it’s an underflow that can never

be compensated; if the intermediate exponent = 0

then it’s an underflow that may be compensated

during normalization by adding 1 to it.

 When an overflow occurs an overflow

flag signal goes high and the result turns to

±Infinity (sign determined according to the sign of

the floating point multiplier inputs). When an

underflow occurs an underflow flag signal goes

high and the result turns to ±Zero (sign

determined according to the sign of the floating

point multiplier inputs). Denormalized numbers

are signaled to Zero with the appropriate sign

calculated from the inputs and an underflow flag

is raised. Assume that E1 and E2 are the

exponents of the two numbers A and B

respectively; the result’s exponent is calculated by

 Eresult = E1 + E2 - 127

 E1 and E2 can have the values from 1 to 254;

resulting in Eresult having values from -125 (2-

127) to 381 (508-127); but for normalized

numbers, Eresult can only have the values from 1

to 254. Table III summarizes the Eresult different

values and the effect of normalization on it.

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

187

All Rights Reserved © 2017 IJARTET

IV.RESULTS

The floating point adder and multiplier

Verilog HDL Modules have successfully

simulated and verified using Xilinx ise13.2

 SIMULATION RESULT OF INEXACT

FLOATING POINT ADDER:

Fig 12 simulation results of inexact floating point

adder

Clk=1,rst=0,input=11100000000011111,y=00011

RTL SCHEMATIC:

Fig 13 RTL schematic of inexact floating point

adder

TECHNOLOGY SCHEMATIC:

Fig 14 Technology schematic diagram of inexact

floating point adder

DESIGN SUMMARY:

For the given inputs the number of slices occupied

is 189 out of 3584 and number of 4 input LUTs is

331 out of 7168 and number of bonded IOBs is

128 out of 221

Fig 15 Design summary of inexact floating point

adder

WALLACE TREE MULTIPLIER :

SIMULATION RESULTS:

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

188

All Rights Reserved © 2017 IJARTET

Fig 16 simulation results of Wallace tree

multiplier.

When clk=1-0 at 100ps and reset=0 and

intermediate results are stored in a1, a2 in

full adders.

a=11111100001111110000000000000000

 b= 0111110000000001111111111111111

 c= 10110111011111110010111111111011

RTL SCHEMATIC:

Fig 17 RTL schematic of Wallace tree multiplier

TECHNOLOGY SCHEMATIC:

Fig 18 Technology schematic of Wallace tree

multiplier

 DESIGN SUMMARY:

For the given input number of slices is 812

out of 4656 and the number of slice flip flops

is 25 out of 9312 and the number of 4 input

LUTs is 1447 out of 9312 and the number of

bonded IOBs is 98 out of 232 and the number

of GCLKs 1 out of 24.

Fig 19 Design summary of Wallace tree

multiplier.

INEXACT FLOATING-POINT

MULTIPLIER:

SIMULATION RESULTS:

Clk=1,rst=0,input=1111111000000000,y=11000

Fig 20 simulation results of inexact floating point

adder

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

189

All Rights Reserved © 2017 IJARTET

RTL SCHEMATIC:

Fig 21 RTL schematic of inexact floating point

multiplier

TECHNOLOGY SCHEMATIC:

Fig 22 Technology schematic of inexact

floating point multiplier.

DESIGN SUMMARY:

For the given inputs the number of slices occupied

is 184 out of 4656 and number of 4 input LUTs is

336 out of 9312 and number of bonded IOBs is

128 out of 232

Fig 23 Design summary of inexact floating

point multiplier

CONCLUSION

Dadda inexact multiplier is designed in

the project. Due to the drawback of more space

occupancy in exact and inexact adders the

Wallace tree multiplier and floating point

multiplier has been designed. The Wallace tree

multiplier is also having drawbacks of area

occupancy inorder to overcome this the dadda

exact and inexact floating point multiplier has

been designed. The dadda inexact multiplier,

which occupies less space and area and other

parameters has been compared with floating point

adder and Wallace tree multiplier. The output of

dadda inexact floating point multiplier results in

less power consumption as 0.1999mW and area

occupied is 2545.36µ m2 and the delay factor is

5.76ns.

FUTURE SCOPE

 In the future work, pipelined double

precision floating point multiplier operates on

64-bit operands. It can be designed for

quadruple precision floating point multiplier

operates on 128-bit operands to enhance

precision. Future work can also further extend

to increase the more speed and reduce area. It

can be extended to have more mathematical

operations like adder/ subtractor, divider and

exponential functions.

REFERENCES

[1] K. Palem and A. Lingamneni, “Ten years of

building broken chips: The physics and

engineering of inexact computing,”ACM Trans.

Embedded Comput. Syst., vol. 12, no. 2, article

87, 2013.

[2] A. Lingamneni, K. Muntimadugu, C. Enz, R.

Karp, K. Palem, and C. Piguet, “Algorithmic

methodologies for ultra-efficient inexact

architectures for sustaining technology scaling,”

inProc. ACM Int. Conf. Comput. Frontiers, 2012,

pp. 3–12.

[3] Christo Ananth, H.Anusuya Baby,

“Encryption and Decryption in Complex

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

190

All Rights Reserved © 2017 IJARTET

Parallelism”, International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET), Volume 3, Issue 3,

March 2014,pp 790-795

[4] V. Gupta, D. Mohapatra, S. Park, A.

Raghunathan, and K. Roy, “IMPACT: IMPrecise

adders for low-power approximate computing,” in

Proc. Int. Symp. Low Power Electron. Des., 2011,

pp. 1–3.

Authors Biography:

1.J.VEDAVATHI received

B-Tech degree in

Electronic and

Communication

Engineering from

Turbomachinery Institute

Of Science and Technology Engineering

College, under JNTU Hyderabad, India. I am

pursuing Masters in Embedded Systems from

Stanley College of Engineering and

Technology for Woman, Hyderabad, India.

e-mail id:jogadenuvedavathi1993@gmail.com

2.T.NAGALAXMI

working as an Assistant

professor, Phd scholar,

osmania university(OU),

STANLEY COLLEGE

OF ENGINEERING

AND TECHNOLOGY

FOR WOMEN,

Hyderabad till date.

She worked as Asst.Prof in Vidya Jyothi

Engineering and Tech. And pursued M.TECH

(Embedded systems), affiliated college by

JNTUH. She is having nine years of teaching

experience. Her areas of research interests are

embedded systems, VLSI, embedded and real

time systems, digital signal processing and

architectures, Microprocessor & Micro

controller, data communication systems.

