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ABSTRACT: Power has become a key constraint 

in nano scale integrated circuit design due to the 

increasing demands for mobile computing and 

higher integration density in static and dynamic 

power dissipation. As an emerging computational 

paradigm, an inexact circuit offers a promising 

approach to significantly reduce both dynamic and 

static power dissipation for error-tolerant 

applications like image processing. For this, an 

inexact floating-point adder is implemented by 

approximately designing an exponent subtractor 

and mantissa adder. Related operations such as 

normalization and rounding are also dealt with in 

terms of inexact computing. An upper bound error 

analysis for the average case is presented to guide 

the inexact design; it shows that the inexact 

floating-point adder design is dependent on the 

application data range. The exact and inexact 

floating point adders has the disadvantage of 

occupying more area (8131.20 µ m2  and 

5679.36µ m2). In order to reduce the area 

occupancy, the wallace tree multiplier and inexact 

floating point multiplier has been designed. These 

multipliers occupies the area of (5000 µ m2) and 

(3451.12 µ m2) respectively and improves the 

speed by (10%) and (5%) respectively. The 

Wallace tree multiplier and inexact floating point 

multiplier are designed and analyzed  using  

Xilinx 13.2 for synthesis  in verilog language. 

Key Words—Inexact circuits, floating-point 

adder, low power, error analysis, high dynamic 

range image 

                I.INTRODUCTION 

With advancement and development of 

innovative digital integrated circuits, power 

consumption has dramatically increased; power 

has become a key design constraint due to the 

high demand for mobile computing and higher 

integration density. Traditional designs apply fully 

accurate computing to all types of applications; 

however, error-tolerant applications involving 

human intervention (such as image processing) do 

not require full accuracy. So, it is possible to 

perform computation with inexact circuits; in 

these cases, inexact computing is an attractive 

approach to save power and area, while achieving 

improved performance compared to accurate 

designs. The arithmetic unit is the core of a 

processor, and its power largely determines the 

power of the whole processor. Recent research on 

inexact fixed-point adders has shown that inexact 

processing hardware with a relative error of 7.58 

percent can be nearly 15 times more efficient in 

terms of speed, area and energy product than an 

accurate chip. Inexact chips are smaller, faster and 

consume less energy. Although fixed-point 

arithmetic circuits have been studied in terms of 
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inexact computing, floating-point (FP) 

arithmetic circuits are significantly more power 

hungry and they have not been fully considered 

for inexact computing. The FP format offers a 

high dynamic range for computationally intensive 

applications; FP adders and multipliers are 

commonly used in DSP systems However, its 

application to embedded DSP systems is limited 

due to the high power consumption. A low power 

design of an FP multiplier was investigated by 

Tong et al.; this design involves the truncation of 

hardware and a reduction of the bit width 

representation of the FP data. A probabilistic FP 

multiplier was proposed by Gupta et al. mostly as 

an energy efficient design. A lightweight FP 

design flow using bit-width optimization was 

proposed for low power signal processing 

applications. Low precision FP numbers have also 

been used for MP3 decoding to reduce memory 

utilization and power consumption. However, to 

the best of the authors’ knowledge, there has been 

no research to date on an inexact FP adder design. 

In this paper, adder designs are studied as a 

starting point for inexact FP arithmetic; several 

inexact adder designs are proposed and assessed 

for application to high dynamic range images. The 

upper bound error due to the inexact design is 

analyzed for the average case to guide the design 

of inexact FP adders. A subjective visual 

difference predictor metric is used to measure the 

results of image addition; moreover, a procedure 

is introduced for designing inexact FP arithmetic 

circuits. 

Fixed Point and Floating Point Representations  

Every real number has an integer part and 

a fraction part; a radix point is used to 

differentiate between them. The number of binary 

digits assigned to the integer part may be different 

to the number of digits assigned to the fractional 

part. A generic binary representation with decimal 

conversion is shown in Figure 1. 

 Integer 

part 

Binary 

point 

Fraction 

part 

Binary 2
3      

2
2
  2

1   
 

2
0     

          --- 2
-1      

2
-2

  2
-
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Decimal 8     4    2    

1 

         ---- 1/2  1/4 

1/8      

Figure1: Binary representation and conversion to 

decimal of a numeric 

Basic Format  

There are two basic formats described in 

IEEE 754 format, double-precision using 64-bits 

and single-precision using 32-bits. Table 1 shows 

the comparison between the important aspects of 

the two representations. 
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Table 1: Single and double precision format 

summary 

 

To evaluate different adder algorithms, 

we are only interested in single precision format. 

Single-precision format uses 1-bit for sign bit, 8-

bits for exponent and 23-bits to represent the 

fraction as shown in Figure 2. 

 

Figure 2: IEEE 754 single precision format 
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The single- precision floating-point 

number is calculated as (-1)S× 1.F × 2(E-127). 

The sign bit is either 0 for non-negative number or 

1 for negative numbers. The exponent field 

represents both positive and negative exponents. 

To do this, a bias is added to the actual exponent. 

For IEEE single-precision format, this value is 

127, for example, a stored value of 200 indicates 

an exponent of (200-127), or 73. The mantissa or 

significand is composed of an implicit leading bit 

and the fraction bits, and represents the precision 

bits of the number. Exponent values 

(hexadecimal)of 0xFF and 0x00 are reserved to 

encode special numbers such as zero, de 

normalized numbers, infinity, and NaNs.  

 The mapping from an encoding of a single-

precision floating-point number to the number’s 

value is summarized in Table 2. 

sig

n 

exponent fraction value description 

s 0*FF 0*00000

000 

(-1)
S     

 

∞ 

Infinity 

s 0*FF  F -/-0 NaN Not a 

Number 

s 0*00 0*00000

000 

  0 Zero 

s 0*00 F  -/-0 (-1)
S
 

*0.F*2
(E-126)

 

Denormali

zed 

Number 

s 0*00<E<

FF 

   F (-1)
S
 

*0.F*2
(E-127)

 

Normalize

d Number 

Table 2: IEEE 754 single precision floating-point 

encoding 

 

 

 

Standard Floating Point Addition Algorithm  

This section will review the standard floating 

point algorithm architecture, and the hardware 

modules designed as part of this algorithm, 

including their function, structure, and use. The 

standard architecture is the baseline algorithm for 

floating-point addition in any kind of hardware 

and software design.  

II.LITERATURE SURVEY 

Although the inexact design of fixed-

point adders has been extensively studied, little 

research has been conducted on inexact floating-

point arithmetic design.  A low power design of a 

floating-point multiplier was investigated by Tong 

et al.  which  involves  truncating  hardware;  the  

rounding unit  was found to require  almost half of 

the hardware  of  an exact floating-point 

multiplier. Therefore, the rounding unit is a 

candidate for removal to save power, similar to an 

inexact design. A probabilistic floating-point 

multiplier was proposed by Gupta et al. as an 

energy efficient design. However, to the best of 

the authors' knowledge, there has been no research 

to date on an inexact floating-point adder design, 

which has a more complex structure than a 

floating-point multiplier. An inherent problem of 

binary floating-point arithmetic used in financial 

calculations is that most decimal floating point 

numbers cannot be represented exactly in binary 

floating-point formats, and errors that are not 

acceptable may occur in the course of the 

computation. Decimal floating-point arithmetic 

addresses this problem, but a degradation in 

performance will occur compared to binary 

floating-point operations implemented in 

hardware. Despite its performance disadvantage, 

decimal floating-point arithmetic is required by 

certain applications that need results identical to 

those calculated by hand. This is true for currency 



                         
ISSN 2394-3777 (Print) 

                                                                                                                  ISSN 2394-3785 (Online)    

                                                                                                   Available online at www.ijartet.com 

          International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)      

          Vol. 4, Special Issue 2, January 2017 

181 

All Rights Reserved © 2017 IJARTET 

 

conversion, banking, billing, and other 

financial applications. Sometimes, these 

requirements are mandated by law; other times, 

they are necessary to avoid large accounting 

discrepancies. Because of the importance of this 

problem a number of decimal solutions exist, both 

hardware and software. Software solutions include 

C#, COBOL, and XML, which provide decimal 

operations and data types. Also, Java and C/C++ 

both have packages, called Big Decimal and dec 

Number, respectively. Hardware solutions were 

more prominent earlier in the computer age with 

the ENIAC and UNIVAC. However, more recent 

examples include the CADAC, IBM’s z900 and 

z9 architectures, and numerous other proposed 

hardware implementations. More hardware 

examples can be found, and a more in-depth 

discussion is found in Wang’s work.  

Design tradeoff analysis of floating-point adder 

in FPGAs[3]:Field Programmable Gate Arrays 

(FPGA) are increasingly being used to design 

high end computationally intense microprocessors 

capable of handling both fixed and floating point 

mathematical operations. Addition is the most 

complex operation in a floating-point unit and 

offers major delay while taking significant area. 

Over the years, the VLSI community has 

developed many floating-point adder algorithms 

mainly aimed to reduce the overall latency. An 

efficient design of floating-point adder onto an 

FPGA offers major area and performance 

overheads. With the recent advancement in FPGA 

architecture and area density, latency has been the 

main focus of attention in order to improve 

performance. Our research was oriented towards 

studying and implementing standard, Leading One 

Predictor (LOP), and far and close data-path 

floating-point addition algorithms. Each algorithm 

has complex sub-operations which lead 

significantly to overall latency of the design.  

Design Of inexact floating-Point adders[4]: 

The inexact design of an FP adder 

originates at an architectural level. It consists of 

designing both the mantissa adder and exponent 

subtractor by using approximate fixed-point 

adders. At the same time, related logic including 

the normalizer and the rounder should also be 

considered according to the inexact mantissa and 

exponent parts. The circuit level inexact designs 

are discussed in detail in the following sections. 

 

 

Fig.3. The accurate FP adder architecture 

Exponent Subtractor 

The exponent subtractor is used for exponent 

comparison and can be implemented as an adder. 

An inexact fixed-point adder has been extensively 

studied and can be used in the exponent adder; 

inexact adders such as lower-part-OR adders 

(LOA), approximate mirror adders, approximate 

XOR/XNOR-based adders, and equal 

segmentation adders can be found in the literature. 

For a fast FP adder, a revised LOA adder is used, 

because it significantly reduces the critical path by 

ignoring the lower carry bits. A k-bit LOA 

consists of two parts, i.e., an m-bit exact adder 

and an n-bit inexact adder. The m-bit adder is 

used for the m most significant bits of the sum, 
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while then-bit adder consists of OR gates 

to compute the addition of the least significant n 

bits (i.e., the lower n-bit adder is an array of n 

two-input OR gates). In the original LOA design, 

an additional AND gate is used for generating the 

most significant carry bit of then-bit adder; in this 

work, all carry bits in then-bit inexact adder are 

ignored to further reduce the critical path. The 

exponent is dominant in the FP format, because it 

determines the dynamic range. The approximate 

design of the exponent subtractor must be 

carefully considered due to its importance in the 

number format. The results of the addition are 

significantly affected by applying an approximate 

design to only a few of the least significant bits of 

the exponent subtractor under a small data range 

 

Fig.4.The revised LOA adder structure. 

The revised LOA adder can also be used 

in the mantissa adder for an inexact design. 

Compared to an exponent subtractor, the mantissa 

adder offers a larger design space for inexact 

design, because the number of bits in the mantissa 

adder is significantly larger than the exponent 

subtractor. As shown in Table 1, the number of 

mantissa bits is larger than the number of 

exponent bits. For the IEEE single precision 

format, the exponent subtractor is an 8-bit adder, 

while the mantissa adder is a 25-bit adder (for two 

24-bit significances). Furthermore, the inexact 

design in the mantissa adder has a lower impact 

on the error than its exponent counterpart in the 

lower data range, because the mantissa part is less 

significant than the exponent part. Therefore, an 

inexact design of a mantissa adder is more 

appropriate. A detailed analysis of errors 

introduced by each part is further discussed in the 

next section. [3] proposed a system in which the 

complex parallelism technique is used to involve 

the processing of Substitution Byte, Shift Row, 

Mix Column and Add Round Key. Using S- Box 

complex parallelism, the original text is converted 

into cipher text. From that, we have achieved a 

96% energy efficiency in Complex Parallelism 

Encryption technique and recovering the delay 

232 ns. The complex parallelism that merge with 

parallel mix column and the one task one 

processor techniques are used. In future, Complex 

Parallelism single loop technique is used for 

recovering the original message. 

Normalizer 

Normalization is required to ensure that 

the addition results fall in the correct range; the 

sum or difference may be too small and a multi-

bit left shift process may be required. A reduction 

of the exponent is also necessary. The 

normalization is performed by a leading zeros 

counter that determines the required number of 

left shifts. As the mantissa adder is already not 

exact for then least significant bits, the detection 

of the leading zeros can also be simplified in the 

inexact design, i.e., approximate leading zero 

counting logic can be used.  

 Rounder 

A rounding mode is required to accommodate the 

inexact number that an FP format can represent. A 

proper rounding maintains three extra bits (i.e., 

guard bit, round bit and sticky bit). The adder may 
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require a further normalization and 

exponent adjustment after the rounding step, 

therefore the hardware for rounding is significant. 

However, it does not affect the results of the 

inexact addition as the lower significant n bits are 

already inexact. Therefore, rounding can be 

ignored in the inexact design of an FP adder. 

Overall Inexact FP Adder Architecture 

Based on the previous discussion, an 

inexact FP adder can be designed by using 

approximate adders in the exponent subtractor and 

mantissa adders, an approximate leading zero 

counter in the normalizer and by ignoring the 

rounder. The inexact FP adder architecture is 

shown in Fig. 5. 

 
Fig5.The inexact FP adder architecture. 

III.PROPOSED SYSTEM 

In floating point multipliers the area occupied by 

the rounding will be reduced by dadda multiplier. 

This is one of the best multiplier used this 

reduces the occupancy of area and power 

because it contains only three stepsProposed 

Dadda multiplier has 3 steps: 

      1. Perform Multiplication operation and get 

partial product matrix. 

      2. Reduce the number of partial products to 

two layers of full and half          adders. 

      3. Group them into two numbers, and add 

them with a conventional adder. 

 

Floating point Multiplier: 

 

Two floating point numbers the following is 

done: 

1. Multiplying the significand; i.e. (1.M1*1.M2) 

2. Placing the decimal point in the result 

3. Adding the exponents; i.e. (E1 + E2 – Bias) 

4. Obtaining the sign; i.e. s1 xor s2 

5. Normalizing the result; i.e. obtaining 1 at the 

MSB of the results’ significand 

6. Rounding the result to fit in the available bits 

7. Checking for underflow/overflow occurrence 

A. Sign bit calculation 

       Multiplying two numbers results in a negative 

sign number iff one of the multiplied numbers is 

of a negative value. By the aid of a truth table we 

find that this can be obtained by XORing the sign 

of two inputs. 

B. Unsigned Adder (for exponent addition) 

        This unsigned adder is responsible for adding 

the exponent of the first input to the exponent of 

the second input and subtracting the Bias (127) 
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from the addition result (i.e. A_exponent 

+ B_exponent - Bias). The result of this stage is 

called the intermediate exponent.. An 8-bit ripple 

carry adder is used to add the two input 

exponents. As shown in Fig. 3 a ripple carry adder 

is a chain of cascaded full adders and one half 

adder; each full adder has three inputs (A, B, Ci) 

and two outputs (S, Co). The carry out (Co) of 

each adder is fed to the next full adder (i.e. each 

carry bit "ripples" to the next full adder). 

 
Fig 6: Ripple Carry Adder 

The addition process produces an 8 bit 

sum (S7 to S0) and a carry bit (Co,7). These bits 

are concatenated to form a 9 bit addition result 

(S8 to S0) from which the Bias is subtracted. The 

Bias is subtracted using an array of ripple borrow 

subtractors. 

        

 

A normal subtractor has three inputs (minuend 

(S), subtrahend (T), Borrow in (Bi)) and two 

outputs (Difference (R), Borrow out (Bo)).The 

subtractor logic can be optimized if one of its 

inputs is a constant value which is our case, where 

the Bias is constant (127|10 = 001111111|2). 

Table I shows the truth table for a 1-bit subtractor 

with the input T equal to 1 which we will call 

“one subtractor (OS)” 

 
 

TABLE I. 1-BIT SUBTRACTOR WITH THE                

INPUT T = 1 

 
 

The Boolean equations (2) and (3) 

represent this subtractor:  

 
 

  

 
Fig 7:1-bit subtractor with the input T = 1 
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Table II shows the truth table for a 1-bit 

subtractor with the input T equal to 0 which we 

will call “zero subtractor (ZS)” TABLE II. 1-BIT 

SUBTRACTOR WITH THE INPUT T = 0 

 
 

The Boolean equations (4) and (5) 

represent this subtractor: 

 

 
                               

Fig 8:1-bit subtractor with the input T = 0 

 

           Fig. 6 shows the Bias subtractor which is a 

chain of 7 one subtractors (OS) followed by 2 

zero subtractors (ZS); the borrow output of each 

subtractor is fed to the next subtractor. If an 

underflow occurs then Eresult < 0 and the number 

is out of the IEEE 754 single precision normalized 

numbers range; in this case the output is signaled 

to 0 and an underflow flag is asserted. 

 
 

Fig 9:Ripple Borrow Subtractor 

 

C. Unsigned Multiplier (for significand 

multiplication) 

This unit is responsible for multiplying 

the unsigned significand and placing the decimal 

point in the multiplication product. The result of 

significand multiplication will be called the 

intermediate product (IP). The unsigned 

significand multiplication is done on 24 bit. 

Multiplier performance should be taken into 

consideration so as not to affect the whole 

multiplier’s performance. A 24x24 bit carry save 

multiplier architecture is used as it has a moderate 

speed with a simple 

architecture. In the carry save multiplier, the carry 

bits are passed diagonally downwards (i.e. the 

carry bit is propagated to the next stage). Partial 

products are made by ANDing the inputs together 

and passing them to the appropriate adder. 

Carry save multiplier has three main stages:  

1- The first stage is an array of half adders. 

2- The middle stages are arrays of full 

adders. The number of middle stages is 

equal to the significand size minus two.  

3- The last stage is an array of ripple carry 

adders. This stage is called the vector 

merging stage.  
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The number of adders (Half adders and 

Full adders) in each stage is equal to the 

significand size minus one. For example, a 

4x4 carry save multiplier is shown in Fig. 7 

and it has the following stages: 

 1- The first stage consists of three half 

adders. 

      2- Two middle stages; each consists of three 

full adders. 

      3- The vector merging stage consists of one 

half adder and two full adders. 

The decimal point is between bits 45 and 46 in the 

significand multiplier result. The multiplication 

time taken by the carry save multiplier is 

determined by its critical path. The critical path 

starts at the AND gate of the first partial products 

(i.e. a1b0 and a0b1), passes through the carry 

logic of the first half adder and the carry logic of 

the first full adder of the middle stages, then 

passes through all the vector merging adders. The 

critical path is marked in bold in F 

D. Normalizer  

     The result of the significand multiplication 

(intermediate product) must be normalized to have 

a leading ‘1’ just to the left of the decimal point 

(i.e. in the bit 46 in the intermediate product). 

Since the inputs are normalized numbers then the 

intermediate product has the leading one at bit 46 

or 47 

1- If the leading one is at bit 46 (i.e. to the left of 

the decimal point) then the intermediate product is 

already a normalized number and no shift is 

needed. 

2- If the leading one is at bit 47 then the 

intermediate product is shifted to the right and the 

exponent is incremented by 1. 

            . 

IV. UNDERFLOW/OVERFLOW DETECTION 

      Overflow/underflow means that the result’s 

exponent is too large/small to be represented in 

the exponent field. The exponent of the result 

must be 8 bits in size, and must be between 1 and 

254 otherwise the value is not a normalized one. 

An overflow may occur while adding the two 

exponents or during normalization. Overflow due 

to exponent addition may be compensated during 

subtraction of the bias; resulting in a normal 

output value (normal operation). An underflow 

may 

occur while subtracting the bias to form the 

intermediate exponent. If the intermediate 

exponent < 0 then it’s an underflow that can never 

be compensated; if the intermediate exponent = 0 

then it’s an underflow that may be compensated 

during normalization by adding 1 to it. 

             When an overflow occurs an overflow 

flag signal goes high and the result turns to 

±Infinity (sign determined according to the sign of 

the floating point multiplier inputs). When an 

underflow occurs an underflow flag signal goes 

high and the result turns to ±Zero (sign 

determined according to the sign of the floating 

point multiplier inputs). Denormalized numbers 

are signaled to Zero with the appropriate sign 

calculated from the inputs and an underflow flag 

is raised. Assume that E1 and E2 are the 

exponents of the two numbers A and B 

respectively; the result’s exponent is calculated by  

               Eresult = E1 + E2 - 127  

        E1 and E2 can have the values from 1 to 254; 

resulting in Eresult having values from -125 (2-

127) to 381 (508-127); but for normalized 

numbers, Eresult can only have the values from 1 

to 254. Table III summarizes the Eresult different 

values and the effect of normalization on it. 
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IV.RESULTS 

The floating point adder and multiplier 

Verilog HDL Modules have successfully 

simulated and verified using Xilinx ise13.2 

 SIMULATION RESULT OF INEXACT  

FLOATING POINT ADDER: 

 

 
 

Fig 12 simulation results of inexact floating point 

adder 

Clk=1,rst=0,input=11100000000011111,y=00011 

RTL SCHEMATIC: 

 

 

Fig 13 RTL schematic of inexact floating point 

adder 

TECHNOLOGY SCHEMATIC: 

 

 
 

Fig 14 Technology schematic diagram of inexact 

floating point adder 

 

DESIGN SUMMARY: 

 
For the given inputs the number of slices occupied 

is 189 out of 3584 and number of 4 input LUTs is 

331 out of 7168 and number of bonded IOBs is 

128 out of 221 

 

Fig 15 Design summary of inexact floating point 

adder 

WALLACE TREE MULTIPLIER : 

 

SIMULATION RESULTS: 
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Fig 16 simulation results of  Wallace tree 

multiplier. 

When clk=1-0 at 100ps and reset=0 and 

intermediate results are stored in  a1, a2 in 

full adders. 

                            

a=11111100001111110000000000000000 

 b= 0111110000000001111111111111111 

 c=  10110111011111110010111111111011 

RTL SCHEMATIC: 

 

 
Fig 17 RTL schematic of Wallace tree multiplier 

 

TECHNOLOGY SCHEMATIC: 

 

Fig 18 Technology schematic of Wallace tree 

multiplier 

 

 DESIGN SUMMARY: 

 

For the given input number of slices is 812 

out of 4656 and the number of slice flip flops 

is 25 out of 9312 and the number of 4 input 

LUTs is 1447 out of 9312 and the number of 

bonded IOBs is 98 out of 232 and the number 

of GCLKs 1 out of 24. 

Fig 19  Design summary of  Wallace tree 

multiplier. 

INEXACT  FLOATING-POINT 

MULTIPLIER: 

SIMULATION RESULTS: 

 
Clk=1,rst=0,input=1111111000000000,y=11000 

Fig 20 simulation results of inexact floating point 

adder 
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RTL SCHEMATIC: 

 
Fig 21 RTL schematic of inexact floating point 

multiplier 

TECHNOLOGY SCHEMATIC: 

 

Fig 22  Technology schematic of inexact 

floating point multiplier. 

 

DESIGN SUMMARY: 

 
For the given inputs the number of slices occupied 

is 184 out of 4656 and number of 4 input LUTs is 

336 out of 9312 and number of bonded IOBs is 

128 out of 232 

Fig 23  Design summary of  inexact floating 

point multiplier 

CONCLUSION 

Dadda inexact multiplier is designed in 

the project. Due to the drawback of more space 

occupancy in exact and inexact adders the 

Wallace tree multiplier and floating point 

multiplier has been designed. The Wallace tree 

multiplier is  also having drawbacks of area 

occupancy inorder to overcome this the dadda 

exact and inexact floating point multiplier has 

been designed. The dadda inexact multiplier, 

which occupies less space and area and other 

parameters has been compared with floating point 

adder and Wallace tree multiplier. The output of 

dadda inexact floating point multiplier results in  

less power consumption as 0.1999mW and area 

occupied is 2545.36µ m2 and the delay factor is 

5.76ns.  

FUTURE SCOPE 

   In the future work, pipelined double 

precision floating point multiplier operates on 

64-bit operands. It can be designed for 

quadruple precision floating point multiplier 

operates on 128-bit operands to enhance 

precision. Future work can also further extend 

to increase the more speed and reduce area. It 

can be extended to have more mathematical 

operations like adder/ subtractor, divider and 

exponential functions.                               
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