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Abstract - Transistor network optimization represents 

an effective way of improving VLSI circuits. In VLSI 

digital design, the signal delay propagation, power 

dissipation, and area of circuits are strongly related to 

the number of transistors. This paper proposes a novel 

method to automatically generate networks with 

minimal transistor count, starting from an irredundant 

sum-of-products expression as the input. The method is 

able to deliver both series–parallel (SP) and non-SP 

switch arrangements, improving speed, power 

dissipation, and area of CMOS gates. Experimental 

results demonstrate expected gains in comparison with 

related approaches. The proposed architecture of this 

paper will be planned to implemented and also analysis 

the output current, output voltage, area using Dsch and 

micro wind. 

Index Terms— Automated synthesis, CMOS gates, 

digital circuit, switching theory, transistor network. 

I. Introduction 

Nowadays, VLSI design has definitely 

established a dominant role in the electronics 

industry. Automated tools have held designers to 

manipulate more transistors on a design project and 

shorten the design cycle. In particular, logic synthesis 

tools have contributed considerably to reduce the 

cycle time. In full-custom designs, manual generation 

of transistor netlists for each functional block is 

performed, but this is an extremely time-consuming 

task. In this sense, it becomes comfortable to have 

efficient algorithms to derive transistor networks 

automatically. 

In VLSI digital design, the signal delay 

propagation, power dissipation, and area of circuits 

are strongly related to the number of transistors 

(switches) [1]–[3]. Hence, transistor arrangement 

optimization is of special interest when designing 

standard cell libraries and custom gates [5]. Switch 

based technologies, such as CMOS, FinFET [6], and 

carbon nanotubes [7], can take advantage of such an 

improvement. Therefore, efficient algorithms to 

automatically generate optimized transistor networks 

are quite useful for designing digital integrated 

circuits (ICs). Several methods have been presented 

in the literature for generating and optimizing 

transistor networks. Most traditional solutions are 

based on factoring Boolean expressions, in which 

only series–parallel (SP) associations of transistors 

can be obtained from factored forms [8]–[11]. On the 

other hand, graph-based methods are able to find SP 

and also non-SP (NSP) arrangements with potential 

reduction in transistor count [12]–[15]. 

This paper is organized as follows. Section II 

Proposed method. Section III presents experimental 

results regarding transistor count, area estimation, 

gate performance, and power dissipation. Finally, the 

conclusion is drawn in Section IV. 

II. Proposed System 

A. Proposed system. 

The proposed method comprises two main modules: 

1) The kernel identification and  

2) The switch network composition.  

The former receives an ISOP F and identifies 

individual NSP and SP switch networks, representing 

sub functions of f. The latter composes those 

networks into a single network by performing logic 

sharing. The provided output is an optimized switch 

network representing the target function f. The 

execution flow of the method is presented in Fig. 2 
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Figure 1: Execution flow of the proposed method. 

Kernel Identification During the kernel 

identification module, an intermediate data structure 

called kernel is used to search for possible SP and 

NSP networks. A kernel of an ISOP F with m cubes is 

an undirected graph G = (V, E), where vertices in V = 

{v1, v2, . . . ,vm} represent distinct cubes of F. An 

edge = (vi , v j ) ∈ E, i� j , exists if and only if vi ∩ v 

j �∅.Such edge e is labeled vi ∩ v j. Using the kernel 

structure, it is possible to determine the relationship 

among cubes of Fin order to perform logic sharing. 

This way, each step of the kernel identification 

module aims to extract kernels from F that leads to 

optimized switch count. The kernel identification 

module is divided in four steps; each step of this first 

module is detailed presented below.  

1)Non-series–Parallel Kernel Finder:  

Let f be a Boolean function given in ISOP 

form F =c1 + · · ·  +cm, where m denotes the number 

of cubes in F. In order to identify NSP kernels, the 

combination of m cubes are taken four at a time, i.e., 

four-combination of cubes. The sum of such four 

cubes results in an ISOP H, which represents h that is 

a sub-function of f. A kernel with four vertices is 

obtained from H. To ensure that the generated kernel 

results in a NSP switch network, two rules must be 

checked.  

Rule 1: Let Ev be the set of edges connected to the 

vertex v ∈V. For each cube (vertex) v ∈V, all literals 

from v must be shared through the edges e ∈ Ev.  

Rule 2: The kernel obtained from H must be 

isomorphic to the graph shown in Fig. 2(b). Such a 

graph template is referred as NSP kernel. 

 

Fig. 2 (a) NSP kernel template. (b) Resulting switch network. 

2) Series–Parallel Kernel Finder: 

 Let F1 be an ISOP form that represents all 

the cubes of F that were not used to build switch 

networks in the NSP kernel finder step. To identify 

SP kernels, combination of m1 cubes from F1 are 

taken four at a time. A kernel with four vertices is 

then obtained. To ensure that the obtained kernel 

results in a valid SP network, Rule 1 and the 

following Rule 3 must be checked.  

Rule 3: The obtained kernel must be 

isomorphic to the graph shown in Fig (a). Such a 

graph template is referred as SP kernel. 

 

Fig 3(a) are mapped to an auxiliary template graph, as shown in Fig 

(b). Afterward, a switch network is obtained by applying the edge 

reordering subroutine over the auxiliary template graph, as shown 

in Fig(c). 3). 

Similarly to previous step, the SP kernel 

finder step must apply some transformations over the 

kernel in order to achieve a switch network. First, the 

kernel edges shown in Fig 3(a) are mapped to an 

auxiliary template graph, as shown in Fig (b). 

Afterward, a switch network is obtained by applying 

the edge reordering subroutine over the auxiliary 

template graph, as shown in Fig(c).  

3) Redundant Cube Insertion:  

In some cases, it is useful to build NSP 

arrangements with redundant cubes instead of using 

SP associations. Thus, when there still cubes not 
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represented through NSP and SP networks, 

the redundant cube insertion step tries to build NSP 

kernels by combining remaining cubes with 

redundant cubes. Let F be an ISOP representing the 

Boolean function f. 

 A cube c is redundant if F + c = f . Consider 

a switch network representing an ISOP f. An 

implementation of a redundant cube c in such a 

network leads to a redundant logic path, i.e., the path 

does not contribute to the logic behavior of the 

network. Even though, redundant paths allow 

efficient logic sharing in NSP networks. [4] proposed 

a system which contributes the complex parallelism 

mechanism to protect the information by using 

Advanced Encryption Standard (AES) Technique. 

AES is an encryption algorithm which uses 128 bit as 

a data and generates a secured data. In Encryption, 

when cipher key is inserted, the plain text is 

converted into cipher text by using complex 

parallelism. Similarly, in decryption, the cipher text is 

converted into original one by removing a cipher key. 

The complex parallelism technique involves the 

process of Substitution Byte, Shift Row, Mix Column 

and Add Round Key. The above four techniques are 

used to involve the process of shuffling the message. 

The complex parallelism is highly secured and the 

information is not broken by any other intruder. 

The redundant cube insertion step works 

over an ISOP F2 representing the cubes that were not 

implemented by NSP and SP kernel finder steps. To 

obtain NSP kernels with redundant cubes, 

combinations of m2 cubes are taken three at a time, 

where m2 is the number of cubes in F2. A kernel with 

three vertices is then obtained for each combination. 

Thus a fourth cube (vertex) vz is inserted into the 

kernel according to the following rule.  

Rule 4:Let Ev be the set of edges connected 

to the vertex v ∈V. For each cube (vertex) v ∈V , the 

literals from v that were not shared through the edges 

e ∈Ev are inserted in vz . Hence, the literals of the 

new vertex vz are obtained by 

 

Where minus signal (−) denotes relative complement. 

Therefore, after building the redundant cube vz , Rule 

1 and Rule 2 are applied over the resulting kernel in 

order to check if the cubes share all their literals 

through the edges.  

4) Branched Network Generation:  

Cubes from ISOP F are removed when a 

network implementation representing it is found. 

Even though previous steps are very efficient in 

finding logic sharing, there may still cubes not 

represented through any of the found networks. In 

this sense, the remaining cubes in F3 are implemented 

as a single switch network. Therefore, the branched 

network generation step translates each remaining 

cube in F3 to a branch of switches associate in series.  

B. Network Composition:  

The network composition module receives 

the function F and a list of partial switch networks S, 

generated during the kernel identification module. 

This module composes the networks from S in an 

iterative process by performing logic sharing among 

such networks. The target network starts empty and, 

for each network s ∈S a parallel association is 

performed together with simple and complex sharing 

strategies. The simple and the complex switch sharing 

are applied in order to remove redundant switches in 

the target network. The network composition is 

presented in algorithm. The make Parallel 

Association subroutine, in line, just places two 

networks in parallel. This way, this subroutine runs in 

constant time O(1). The simple and the complex 

switch sharing steps are presented in the following 

sections  

1) Simple Sharing and  

2) Complex Sharing  

Together with their respective time 

complexities .Application transistor networks are 

quite useful for designing digital integrated circuits 

(ICs).  

The simple sharing step implements the edge 

sharing technique presented. Basically, the method 

traverses the switch network searching for equivalent 

switches, i.e., switches that are controlled by the same 
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literal. The network is then restructured in 

such a algorithm of the Simple Sharing Step. A way 

that one common node between equivalent switches 

is available. In some cases, the equivalent switches 

must be swapped in the networks in order to share a 

common node. When a common node between 

equivalent switches is available, only one switch is 

necessary, leading to a reduction in the number of 

switches.  

After performing a switch sharing, the logic 

behavior of the network must be checked to ensure an 

accurate implementation of the target function. The 

switch sharing is accepted only if the logic behavior 

of the network is maintained. This optimization and 

validation process is applied iteratively over the 

network until there is no more feasible switch sharing 

to be applied. A high level description of the simple 

sharing step is presented in algorithm. Among all 

operations and subroutines needed to perform simple 

switch sharing, the highest time complexity is given 

by the logical Equivalence Checking subroutine, in 

line 8. This procedure verify all logic paths of the 

network, requiring a time complexity of O(2e/2), 

where e is the number of switches (edges) in the 

network. Thus, the simple sharing step is bounded by 

O(2e/2).  

1) Complex Sharing: The complex sharing 

step receives a preprocessed network provided by the 

previous step and tries to perform additional 

optimizations. As mentioned in the simple sharing 

step, after finding equivalent switches, the procedure 

checks if the candidate switches have a common node 

that enables sharing. 

 

Figure 4 : (a) Series switch compression. (b) Parallel switch 

compression.  

Transistor stack bounding: 

 Switch networks can be exploited by 

switch-based technologies, which present some 

restrictions or guidelines to be followed by designers. 

For example, in the conventional CMOS design 

technology, the maximum number of stacked 

transistors is usually limited to four. Such restriction 

is done in order to avoid performance degradation. 

Notice that there is a lower bound on the stacked 

transistors in switch networks. This lower bound 

corresponds to the minimum decision chain (MDC) 

property of the represented Boolean functions. In this 

sense, an interesting feature to control (or to limit) the 

number of stacked transistors was included in our 

method. The method can operate in two execution 

modes, bounded and unbounded, as described below.  

1. Bounded Mode 

 In this execution mode, a bound variable is 

used as reference to control the maximum number of 

transistors in series. The bound value must be equal 

or greater than the number of literals of the smallest 

cube from F, i.e., the maximum number of literals in a 

single cube. When the method is running in the 

bounded mode, the kernel identification module 

accepts only switch networks in which maximum 

stacked transistors do not exceed the bound value. 

Hence, the networks satisfying such a bound are 

added to the list S of found networks. This control is 

also performed during the network composition 

module when applying switch sharing, since it can 

increase the transistor stack.  

2. Unbounded Mode  

When running in the unbounded mode, there 

is no restriction of transistor stacking, i.e., the bound 

variable is not considered. Basically, just the total 

transistor count of the network is taken as metric cost. 

Hence, there are cases that the networks generated 

through the unbounded mode result fewer transistors 

when compared with bounded solutions. Moreover, 

these different modes are quite useful to explore the 

tradeoff between circuit area and performance. 

Extension. 

Therefore efficient algorithms to 

automatically generate optimized transistor networks 

are quite useful for designing digital integrated 

circuits (ICs). Several methods have been presented 

in the literature for generating and optimizing 
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transistor networks. Most traditional 

solutions are based on factoring Boolean expressions 

in which only series– parallel (SP) associations of 

transistors can be obtained from factored form. On 

the other hand, graph-based methods are able to find 

SP and also non-SP(NSP) arrangements with 

potential reduction in transistor count.

functions contained in the 5-literal bucket combining 
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IV. Conclusion  

This paper described an efficient graph

based method to generate optimized transistor 

(switch) networks. Our approach generates more 
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general arrangements than the usual SP 

associations. Experimental results demonstrated a 

significant reduction in the number of transistor 

needed to implement logic networks, when compared 

with the ones generated by existing related 

approaches. It is known that the transistor count 

minimization in CMOS gates may improve the 

performance, power dissipation, and area of digital 

ICs. In a general point-of-view, the proposed method 

produces efficient switch arrangements quite useful to 

be explored by different IC technologies based on 

switch theory. 
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