

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

121

All Rights Reserved © 2017 IJARTET

Design of Supergate based on Grap-

based Transistor Network
 K. Bindu Madhavi

1
 K. Anil Kumar

2

 bindumadhav.t@gmail.com
1
 anilkumar10436@gmail.com

2

1
Associate Professor, Dept of ECE, HITAM College.

 2Assistant Professor, Dept of ECE, HITAM College.

Abstract - Transistor network optimization represents

an effective way of improving VLSI circuits. In VLSI

digital design, the signal delay propagation, power

dissipation, and area of circuits are strongly related to

the number of transistors. This paper proposes a novel

method to automatically generate networks with

minimal transistor count, starting from an irredundant

sum-of-products expression as the input. The method is

able to deliver both series–parallel (SP) and non-SP

switch arrangements, improving speed, power

dissipation, and area of CMOS gates. Experimental

results demonstrate expected gains in comparison with

related approaches. The proposed architecture of this

paper will be planned to implemented and also analysis

the output current, output voltage, area using Dsch and

micro wind.

Index Terms— Automated synthesis, CMOS gates,

digital circuit, switching theory, transistor network.

I. Introduction

Nowadays, VLSI design has definitely

established a dominant role in the electronics

industry. Automated tools have held designers to

manipulate more transistors on a design project and

shorten the design cycle. In particular, logic synthesis

tools have contributed considerably to reduce the

cycle time. In full-custom designs, manual generation

of transistor netlists for each functional block is

performed, but this is an extremely time-consuming

task. In this sense, it becomes comfortable to have

efficient algorithms to derive transistor networks

automatically.

In VLSI digital design, the signal delay

propagation, power dissipation, and area of circuits

are strongly related to the number of transistors

(switches) [1]–[3]. Hence, transistor arrangement

optimization is of special interest when designing

standard cell libraries and custom gates [5]. Switch

based technologies, such as CMOS, FinFET [6], and

carbon nanotubes [7], can take advantage of such an

improvement. Therefore, efficient algorithms to

automatically generate optimized transistor networks

are quite useful for designing digital integrated

circuits (ICs). Several methods have been presented

in the literature for generating and optimizing

transistor networks. Most traditional solutions are

based on factoring Boolean expressions, in which

only series–parallel (SP) associations of transistors

can be obtained from factored forms [8]–[11]. On the

other hand, graph-based methods are able to find SP

and also non-SP (NSP) arrangements with potential

reduction in transistor count [12]–[15].

This paper is organized as follows. Section II

Proposed method. Section III presents experimental

results regarding transistor count, area estimation,

gate performance, and power dissipation. Finally, the

conclusion is drawn in Section IV.

II. Proposed System

A. Proposed system.

The proposed method comprises two main modules:

1) The kernel identification and

2) The switch network composition.

The former receives an ISOP F and identifies

individual NSP and SP switch networks, representing

sub functions of f. The latter composes those

networks into a single network by performing logic

sharing. The provided output is an optimized switch

network representing the target function f. The

execution flow of the method is presented in Fig. 2

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

122

All Rights Reserved © 2017 IJARTET

Figure 1: Execution flow of the proposed method.

Kernel Identification During the kernel

identification module, an intermediate data structure

called kernel is used to search for possible SP and

NSP networks. A kernel of an ISOP F with m cubes is

an undirected graph G = (V, E), where vertices in V =

{v1, v2, . . . ,vm} represent distinct cubes of F. An

edge = (vi , v j) ∈ E, i� j , exists if and only if vi ∩ v

j �∅.Such edge e is labeled vi ∩ v j. Using the kernel

structure, it is possible to determine the relationship

among cubes of Fin order to perform logic sharing.

This way, each step of the kernel identification

module aims to extract kernels from F that leads to

optimized switch count. The kernel identification

module is divided in four steps; each step of this first

module is detailed presented below.

1)Non-series–Parallel Kernel Finder:

Let f be a Boolean function given in ISOP

form F =c1 + · · · +cm, where m denotes the number

of cubes in F. In order to identify NSP kernels, the

combination of m cubes are taken four at a time, i.e.,

four-combination of cubes. The sum of such four

cubes results in an ISOP H, which represents h that is

a sub-function of f. A kernel with four vertices is

obtained from H. To ensure that the generated kernel

results in a NSP switch network, two rules must be

checked.

Rule 1: Let Ev be the set of edges connected to the

vertex v ∈V. For each cube (vertex) v ∈V, all literals

from v must be shared through the edges e ∈ Ev.

Rule 2: The kernel obtained from H must be

isomorphic to the graph shown in Fig. 2(b). Such a

graph template is referred as NSP kernel.

Fig. 2 (a) NSP kernel template. (b) Resulting switch network.

2) Series–Parallel Kernel Finder:

 Let F1 be an ISOP form that represents all

the cubes of F that were not used to build switch

networks in the NSP kernel finder step. To identify

SP kernels, combination of m1 cubes from F1 are

taken four at a time. A kernel with four vertices is

then obtained. To ensure that the obtained kernel

results in a valid SP network, Rule 1 and the

following Rule 3 must be checked.

Rule 3: The obtained kernel must be

isomorphic to the graph shown in Fig (a). Such a

graph template is referred as SP kernel.

Fig 3(a) are mapped to an auxiliary template graph, as shown in Fig

(b). Afterward, a switch network is obtained by applying the edge

reordering subroutine over the auxiliary template graph, as shown

in Fig(c). 3).

Similarly to previous step, the SP kernel

finder step must apply some transformations over the

kernel in order to achieve a switch network. First, the

kernel edges shown in Fig 3(a) are mapped to an

auxiliary template graph, as shown in Fig (b).

Afterward, a switch network is obtained by applying

the edge reordering subroutine over the auxiliary

template graph, as shown in Fig(c).

3) Redundant Cube Insertion:

In some cases, it is useful to build NSP

arrangements with redundant cubes instead of using

SP associations. Thus, when there still cubes not

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

123

All Rights Reserved © 2017 IJARTET

represented through NSP and SP networks,

the redundant cube insertion step tries to build NSP

kernels by combining remaining cubes with

redundant cubes. Let F be an ISOP representing the

Boolean function f.

 A cube c is redundant if F + c = f . Consider

a switch network representing an ISOP f. An

implementation of a redundant cube c in such a

network leads to a redundant logic path, i.e., the path

does not contribute to the logic behavior of the

network. Even though, redundant paths allow

efficient logic sharing in NSP networks. [4] proposed

a system which contributes the complex parallelism

mechanism to protect the information by using

Advanced Encryption Standard (AES) Technique.

AES is an encryption algorithm which uses 128 bit as

a data and generates a secured data. In Encryption,

when cipher key is inserted, the plain text is

converted into cipher text by using complex

parallelism. Similarly, in decryption, the cipher text is

converted into original one by removing a cipher key.

The complex parallelism technique involves the

process of Substitution Byte, Shift Row, Mix Column

and Add Round Key. The above four techniques are

used to involve the process of shuffling the message.

The complex parallelism is highly secured and the

information is not broken by any other intruder.

The redundant cube insertion step works

over an ISOP F2 representing the cubes that were not

implemented by NSP and SP kernel finder steps. To

obtain NSP kernels with redundant cubes,

combinations of m2 cubes are taken three at a time,

where m2 is the number of cubes in F2. A kernel with

three vertices is then obtained for each combination.

Thus a fourth cube (vertex) vz is inserted into the

kernel according to the following rule.

Rule 4:Let Ev be the set of edges connected

to the vertex v ∈V. For each cube (vertex) v ∈V , the

literals from v that were not shared through the edges

e ∈Ev are inserted in vz . Hence, the literals of the

new vertex vz are obtained by

Where minus signal (−) denotes relative complement.

Therefore, after building the redundant cube vz , Rule

1 and Rule 2 are applied over the resulting kernel in

order to check if the cubes share all their literals

through the edges.

4) Branched Network Generation:

Cubes from ISOP F are removed when a

network implementation representing it is found.

Even though previous steps are very efficient in

finding logic sharing, there may still cubes not

represented through any of the found networks. In

this sense, the remaining cubes in F3 are implemented

as a single switch network. Therefore, the branched

network generation step translates each remaining

cube in F3 to a branch of switches associate in series.

B. Network Composition:

The network composition module receives

the function F and a list of partial switch networks S,

generated during the kernel identification module.

This module composes the networks from S in an

iterative process by performing logic sharing among

such networks. The target network starts empty and,

for each network s ∈S a parallel association is

performed together with simple and complex sharing

strategies. The simple and the complex switch sharing

are applied in order to remove redundant switches in

the target network. The network composition is

presented in algorithm. The make Parallel

Association subroutine, in line, just places two

networks in parallel. This way, this subroutine runs in

constant time O(1). The simple and the complex

switch sharing steps are presented in the following

sections

1) Simple Sharing and

2) Complex Sharing

Together with their respective time

complexities .Application transistor networks are

quite useful for designing digital integrated circuits

(ICs).

The simple sharing step implements the edge

sharing technique presented. Basically, the method

traverses the switch network searching for equivalent

switches, i.e., switches that are controlled by the same

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

124

All Rights Reserved © 2017 IJARTET

literal. The network is then restructured in

such a algorithm of the Simple Sharing Step. A way

that one common node between equivalent switches

is available. In some cases, the equivalent switches

must be swapped in the networks in order to share a

common node. When a common node between

equivalent switches is available, only one switch is

necessary, leading to a reduction in the number of

switches.

After performing a switch sharing, the logic

behavior of the network must be checked to ensure an

accurate implementation of the target function. The

switch sharing is accepted only if the logic behavior

of the network is maintained. This optimization and

validation process is applied iteratively over the

network until there is no more feasible switch sharing

to be applied. A high level description of the simple

sharing step is presented in algorithm. Among all

operations and subroutines needed to perform simple

switch sharing, the highest time complexity is given

by the logical Equivalence Checking subroutine, in

line 8. This procedure verify all logic paths of the

network, requiring a time complexity of O(2e/2),

where e is the number of switches (edges) in the

network. Thus, the simple sharing step is bounded by

O(2e/2).

1) Complex Sharing: The complex sharing

step receives a preprocessed network provided by the

previous step and tries to perform additional

optimizations. As mentioned in the simple sharing

step, after finding equivalent switches, the procedure

checks if the candidate switches have a common node

that enables sharing.

Figure 4 : (a) Series switch compression. (b) Parallel switch

compression.

Transistor stack bounding:

 Switch networks can be exploited by

switch-based technologies, which present some

restrictions or guidelines to be followed by designers.

For example, in the conventional CMOS design

technology, the maximum number of stacked

transistors is usually limited to four. Such restriction

is done in order to avoid performance degradation.

Notice that there is a lower bound on the stacked

transistors in switch networks. This lower bound

corresponds to the minimum decision chain (MDC)

property of the represented Boolean functions. In this

sense, an interesting feature to control (or to limit) the

number of stacked transistors was included in our

method. The method can operate in two execution

modes, bounded and unbounded, as described below.

1. Bounded Mode

 In this execution mode, a bound variable is

used as reference to control the maximum number of

transistors in series. The bound value must be equal

or greater than the number of literals of the smallest

cube from F, i.e., the maximum number of literals in a

single cube. When the method is running in the

bounded mode, the kernel identification module

accepts only switch networks in which maximum

stacked transistors do not exceed the bound value.

Hence, the networks satisfying such a bound are

added to the list S of found networks. This control is

also performed during the network composition

module when applying switch sharing, since it can

increase the transistor stack.

2. Unbounded Mode

When running in the unbounded mode, there

is no restriction of transistor stacking, i.e., the bound

variable is not considered. Basically, just the total

transistor count of the network is taken as metric cost.

Hence, there are cases that the networks generated

through the unbounded mode result fewer transistors

when compared with bounded solutions. Moreover,

these different modes are quite useful to explore the

tradeoff between circuit area and performance.

Extension.

Therefore efficient algorithms to

automatically generate optimized transistor networks

are quite useful for designing digital integrated

circuits (ICs). Several methods have been presented

in the literature for generating and optimizing

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 2, January 2017

transistor networks. Most traditional

solutions are based on factoring Boolean expressions

in which only series– parallel (SP) associations of

transistors can be obtained from factored form. On

the other hand, graph-based methods are able to find

SP and also non-SP(NSP) arrangements with

potential reduction in transistor count.

functions contained in the 5-literal bucket combining

the functions in the 1-lit and 4-lit.

III.RESULTS

Proposed system.

Schematic.

Layout Design.

Simulation.

ISSN 2394

 ISSN 2394

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

January 2017

All Rights Reserved © 2017 IJARTET

transistor networks. Most traditional

solutions are based on factoring Boolean expressions

) associations of

transistors can be obtained from factored form. On

methods are able to find

SP(NSP) arrangements with

count. Generation of

bucket combining

Extension

Schematic.

Layout design.

Simulation.

IV. Conclusion

This paper described an efficient graph

based method to generate optimized transistor

(switch) networks. Our approach generates more

2394-3777 (Print)

2394-3785 (Online)

Available online at www.ijartet.com

(IJARTET)

125

This paper described an efficient graph-

based method to generate optimized transistor

(switch) networks. Our approach generates more

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 2, January 2017

126

All Rights Reserved © 2017 IJARTET

general arrangements than the usual SP

associations. Experimental results demonstrated a

significant reduction in the number of transistor

needed to implement logic networks, when compared

with the ones generated by existing related

approaches. It is known that the transistor count

minimization in CMOS gates may improve the

performance, power dissipation, and area of digital

ICs. In a general point-of-view, the proposed method

produces efficient switch arrangements quite useful to

be explored by different IC technologies based on

switch theory.

REFERENCES

[1] Y.-T. Lai, Y.-C. Jiang, and H.-M. Chu, “BDD decomposition

for mixed CMOS/PTL logic circuit synthesis,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), vol. 6. May 2005, pp. 5649–5652.

[2] H. Al-Hertani, D. Al-Khalili, and C. Rozon, “Accurate total

static leakage current estimation in transistor stacks,” in Proc. IEEE

Int. Conf. Comput. Syst. Appl., Mar. 2006, pp. 262–265.

[3] T. J. Thorp, G. S. Yee, and C. M. Sechen, “Design and

synthesis of dynamic circuits,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 11, no. 1, pp. 141–149, Feb. 2003.

[4] Christo Ananth, H.Anusuya Baby, “High Efficient Complex

Parallelism for Cryptography”, IOSR Journal of Computer

Engineering (IOSR-JCE), Volume 16, Issue 2, Ver. III (Mar-Apr.

2014), PP 01-07.

[5] R. Roy, D. Bhattacharya, and V. Boppana, “Transistor-level

optimization of digital designs with flex cells,” Computer, vol. 38,

no. 2, pp. 53–61, Feb. 2005.

 [6] M. Rostami and K. Mohanram, “Dual-vth independent-gate

FinFETs for low power logic circuits,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 30, no. 3, pp. 337–349,

Mar. 2011.

 [7] M. H. Ben-Jamaa, K. Mohanram, and G. De Micheli, “An

efficient gate library for ambipolar CNTFET logic,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 2, pp.

242–255, Feb. 2011.

[8] M. C. Golumbic, A. Mintz, and U. Rotics, “An improvement on

the complexity of factoring read-once Boolean functions,” Discrete

Appl. Math., vol. 156, no. 10, pp. 1633–1636, May 2008.

[9] E. M. Sentovich et al., “SIS: A system for sequential circuit

synthesis,” Dept. Elect. Eng. Comput. Sci., Univ. California,

Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/ERL M92/41,

May 1992.

 [10] M. G. A. Martins, V. Callegaro, L. Machado, R. P. Ribas, and

A. I. Reis, “Functional composition and applications,” in Int.

Workshop Logic Synthesis Tech. Dig. (IWLS), Jun. 2012, pp. 1–8.

[Online]. Available: http://www.inf.ufrgs.br/logics/

 [11] M. G. A. Martins, L. S. da Rosa, Jr., A. B. Rasmussen, R. P.

Ribas, and A. I. Reis, “Boolean factoring with multi-objective

goals,” in Proc. IEEE Int. Conf. Comput. Design (ICCD), Oct.

2010, pp. 229–234.

[12] L. S. da Rosa, Jr., F. S. Marques, F. R. Schneider, R. P. Ribas,

and A. I. Reis, “A comparative study of CMOS gates with

minimum transistor stacks,” in Proc. 20th Annu. Conf. Integr.

Circuits Syst. Design (SBCCI), Sep. 2007, pp. 93–98.

[13] V. N. Possani, R. S. de Souza, J. S. Domingues, Jr., L. V.

Agostini, F. S. Marques, and L. S. da Rosa, Jr., “Optimizing

transistor networks using a graph-based technique,” J. Analog

Integr. Circuits Signal Process., vol. 73, no. 3, pp. 841–850, Dec.

2012.

[14] D. Kagaris and T. Haniotakis, “A methodology for transistor-

efficient supergate design,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 15, no. 4, pp. 488–492, Apr. 2007.

 [15] J. Zhu and M. Abd-El-Barr, “On the optimization of MOS

circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol.

40, no. 6, pp. 412–422, Jun. 1993.

[16] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T.

McMullen, and G. D. Hachtel, Logic Minimization Algorithms for

VLSI Synthesis. Norwell, MA, USA: Kluwer, 1984.

 [17] T. Sasao, Switching Theory for Logic Synthesis. New York,

NY, USA: Springer-Verlag, 1999.

[18] C. Piguet, J. Zahnd, A. Stauffer, and M. Bertarionne, “A

metal-oriented layout structure for CMOS logic,” IEEE J. Solid-

State Circuits, vol. 19, no. 3, pp. 425–436, Jun. 1984.

[19] M. G. A. Martins, V. Callegaro, R. P. Ribas, and A. I. Reis,

“Efficient method to compute minimum decision chains of Boolean

functions,” in Proc. 21st Ed. Great Lakes Symp. VLSI (GLSVLSI),

May 2011, pp. 419–422.

[20] Federal Univ. Rio Grande do Sul, Logics Lab. (Oct. 2012).

Catalog of 53 Handmade Optimum Switch Networks. [Online].

Available:

http://www.inf.ufrgs.br/logics/docman/53_NSP_Catalog.pdf

[21] M. A. Harrison, Introduction to Switching and Automata

Theory. New York, NY, USA: McGraw-Hill, 1965, pp. 408–472.

[22] K. Tanaka and Y. Kambayashi, “Transduction method for

design of logic cell structure,” in Proc. Asia South Pacific Design

Autom. Conf. (ASP-DAC), Jan. 2004, pp. 600–603.

[23] W. Zhao and Y. Cao, “New generation of predictive

technology model for sub-45 nm early design exploration,” IEEE

Trans. Electron Devices, vol. 53, no. 11, pp. 2816–2823, Nov.

2006. [Online]. Available: http://ptm.asu.edu/

[24] I. E. Sutherland, R. F. Sproull, and D. F. Harris, Logical

Effort: Designing Fast CMOS Circuits. San Mateo, CA, USA:

Morgan Kaufmann, 1999.

[25] T. Uehara and W. M. Vancleemput, “Optimal layout of CMOS

functional arrays,” IEEE Trans. Comput., vol. C-30, no. 5, pp. 305–

312, May 1981.

