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Abstract- Split-Radix Fast Fourier Transform 

(SRFFT) is an ideal candidate for the 

implementation of a low-power FFT processor, 

because it has the lowest number of arithmetic 

operations among all the FFT algorithms. In the 

design of such processors, an efficient 

addressing scheme for FFT data as well as 

twiddle factors is required. The signal flow 

graph of SRFFT is the same as radix-2 FFT, and 

therefore, the conventional address generation 

schemes of FFT data could also be applied to 

SRFFT. However, SRFFT has irregular 

locations of twiddle factors and forbids the 

application of radix-2 address generation 

methods. This project presents shared-memory 

low-power SRFFT processor architecture. The 

SRFFT is computed by using a modified radix-2 

butterfly unit. The butterfly unit exploits the 

multiplier-gating technique to save dynamic 

power at the expense of using more hardware 

resources. In addition, two novel address 

generation algorithms for both the trivial and 

nontrivial twiddle factors are developed. 

Simulation results show that compared with the 

conventional radix-2 shared-memory 

implementations, the proposed design achieves 

over 20% lower power consumption when 

computing a 1024-point complex-valued 

transform. 

Keywords—Address generation, low 

power, radix-2, split-radix fast Fourier transform 

(SRFFT), twiddle factors. 

 

 

 

 

I. INTRODUCTION 

 

Discrete Fourier Transform generates a 

predefined duration discrete frequency sequence 

that is obtained by sampling one period of 

Fourier Transform. Fast algorithms to determine 

the DFT are called as Fast Fourier Transform 

(FFT). FFT calculate the DFT and produces 

accurate results as same as that of the DFT 

calculated by using definition. The difference is 

that an FFT is much faster than normal 

computation. The split-radix FFT has minor 

complication than the radix-4 or any higher-

radix power-of-two FFT.  

Y. Chen [3] presented a new Dynamic 

Voltage and Frequency Scaling (DVFS) FFT 

processor for MIMO OFDM applications. 

MIMO OFDM systems had achieved better 

reliability and superior capacity, the power 

consumption also increases because of the 

unlimited difficulty for the multi-stream 

processing. Therefore, less power becomes a 

major target in design of MIMO OFDM 

devices, especially for portable applications. To 

save the power of the FFT processor cultivates 

proportionally the stream number as this 

consumes a large percentage of system power. 

The Dynamic Voltage and Frequency Scaling 

(DVFS) is an effective technique to achieve less 

power. Parallelized radix-2 FFT structure has 

been adopted to reduce the power consumption. 

In 2005, Y. W. Lin shows that the 

pipelined FFT architecture, called as Mixed-

Radix Multipath Delay Feedback (MRMDF) 

reduces power consumption and hardware cost. 

This processor uses higher radix FFT algorithm 
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with less memory and complex multipliers. A 

novel 128-point FFT/IFFT processor for 

OFDM-based UWB systems was proposed by 

J.Kwong and M.Goel [10]. In addition, the 

number of complex multiplications is less 

effectively reduced by using a higher radix 

algorithm.  

 

 

In 2010 Shen-Jui Huang used eight-

data-path 2048-point FFT processor that has 

been proposed with a transfer rate of 2.4 GS/s 

for OFDM-based gigabit WPAN application. 

Proposed work was based on split radix FFT 

architecture. FFT Computation can be done 

using different algorithm based on Radix-2, 

Radix-4, Radix-8, Split-Radix etc. The split-

radix algorithm has lesser multiplicative 

complexity than both radix-2 and radix-4 

algorithms. The split-radix FFT mixes radix-2 

and radix-4 decompositions. The Split-Radix 

FFT has lower complication than the radix-4 or 

any higher-radix power-of-two FFT. 

The rest of this brief is organized as 

follows. Section II provides a theoretical 

comparison of the number of complex 

multiplications between the radix-2 FFT and the 

SRFFT. Section III discusses the architecture of 

the proposed design. Section IV provides the 

implementation results and Section V concludes 

this brief. 

 

II. COMPARISON OF SRFFT AND 

RADIX-2 FFT 

 

Let us consider the computation of the N = 

2S point DFT by the divide-and conquer 

approach. We split the N-point data sequence 

into two N/2-point data sequences f1(n) 

and f2(n), corresponding to the even-numbered 

and odd-numbered samples of x(n), respectively, 

that is, 

f1(n) = x(2n)                               (1) 

               f2(n) = x(2n+1),                              (2) 

 

Thus f1(n) and f2(n)  are obtained by 

decimating x(n) by a factor of 2, and hence the 

resulting FFT algorithm is called a decimation-

in-time algorithm. 

Now the N-point DFT can be expressed 

in terms of the DFT's of the decimated 

sequences as follows: 
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X(K) = F1(K) + �	� F2(K),          K= 0,1,……..N-1         (7) 

where F1(K) and F2(K) are the N/2-point DFTs 

of the sequences f1(r) and f2(r), respectively. 

Since F1(K) and F2(K) are periodic, with 

period N/2, we have F1(K+N/2) = F1(K) 

and F2(K+N/2) = F2(K). In addition, the factor  

�	�"	/� � �	�	�. Hence the equation may be 

expressed as 

 X(K)  = F1(K) + �	� F2(K),        K= 0,1,……..,		� � 1    (8) 

 X(K+N/2) = F1(K) - �	� F2(K),     K= 0,1,……..,		�-1    (9) 

The direct computation of F1(k) requires 

(N/2)2 complex multiplications. The same 

applies to the computation of F2(k). 

Furthermore, there are N/2 additional complex 

multiplications required to compute WN
k
F2(k). 

Hence the computation of X(k) requires 

2(N/2)2 + N/2 = N 
2/2 + N/2 complex 

multiplications. This first step results in a 

reduction of the number of multiplications 
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from N 2 to N 
2/2 + N/2, which is about a factor 

of 2 for N large.  

Fig.1: Signal flow graph for radix

The Split-Radix FFT, alongside its 

varieties, long had the qualification of 

accomplishing the most minimal distributed 

number-crunching operation tally (add up to 

correct number of required genuine options and 

duplications) to figure a DFT of energy of

sizes N. The number-crunching tally of the first 

split-radix calculation was enhanced in 2004 

spite of the fact that the quantity of number 

juggling operations is not the sole factor (or 

even essentially the predominant factor) in 

deciding the time required to figure a DFT on a 

PC, the subject of the base conceivable check is 

of longstanding hypothetical intrigue. 

proposed a system, this paper presents an 

effective field programmable gate array 

(FPGA)-based hardware implementation of a 

parallel key searching system for the brute

attack on RC4 encryption. The design employs 

several novel key scheduling techniques to 

minimize the total number of cycles for each 

key search and uses on-chip memories of the 

FPGA to maximize the number of key searching 

units per chip. Based on the design, a total of 

176 RC4 key searching units can be 

implemented in a single Xilinx XC2VP20

FPGA chip. Operating at a 47-MHz clock rate, 

the design can achieve a key searching speed of 
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Signal flow graph for radix-2 FFT. 

adix FFT, alongside its 

varieties, long had the qualification of 

accomplishing the most minimal distributed 

crunching operation tally (add up to 

correct number of required genuine options and 

duplications) to figure a DFT of energy of-two 

crunching tally of the first 

radix calculation was enhanced in 2004 .In 

fact that the quantity of number 

juggling operations is not the sole factor (or 

even essentially the predominant factor) in 

igure a DFT on a 

PC, the subject of the base conceivable check is 

of longstanding hypothetical intrigue. [7] 

proposed a system, this paper presents an 

effective field programmable gate array 

based hardware implementation of a 

system for the brute-force 

attack on RC4 encryption. The design employs 

several novel key scheduling techniques to 

minimize the total number of cycles for each 

chip memories of the 

FPGA to maximize the number of key searching 

er chip. Based on the design, a total of 

176 RC4 key searching units can be 

implemented in a single Xilinx XC2VP20-5 

MHz clock rate, 

the design can achieve a key searching speed of 

1.07 x 107 keys per second. Breaking a 40

RC4 encryption only requires around 28.5 h.

The essential thought behind the SRFFT 

is the use of a radix-2 index guide to the even

list terms and a radix-4 map to the odd

terms. For the even-list terms, it can be 

deteriorated as 
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For the odd-record terms, it can be disintegrated 
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where K = 0, 1, . . . , N /4. The formulas above 

result in the L-shaped split-radix butterfly 

structure, which can be found in [2] and the 

scheduling of the L-shaped butterfly is irregular.

Assume that we have N = 2
S
 point FFT, both 

SRFFT and radix-2 FFT require 

finish the computation, as shown in Figs. 1 and 

2. For SRFFT, the total number of the L 

butterflies NSR is given by 

�12 � (�31
���456"�
��4+
7                    

Fig.2: Signal flow graph for SRFF

Each L butterfly contains two nontrivial 

complex multiplications, and therefore, the total 

number of nontrivial complex multiplications 

MSR in SRFFT is 

812 � �(�31
���456"�
��4+
7                         
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1.07 x 107 keys per second. Breaking a 40-bit 

RC4 encryption only requires around 28.5 h. 

The essential thought behind the SRFFT 

guide to the even-

to the odd-list 

rms, it can be 

K= 0,1,2………..,
	
� � 1                      (10) 

record terms, it can be disintegrated 

) ! 3	
. *+�		��	/.��            (11) 

) ! 3	
. *+�		3��	/.��           (12) 

4. The formulas above 

radix butterfly 

structure, which can be found in [2] and the 

shaped butterfly is irregular. 

point FFT, both 

2 FFT require S passes to 

finish the computation, as shown in Figs. 1 and 

2. For SRFFT, the total number of the L 

                            (13)    

 
Signal flow graph for SRFFT 

Each L butterfly contains two nontrivial 

complex multiplications, and therefore, the total 

number of nontrivial complex multiplications 

                      (14) 
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In the (S − 1) pass, the number of SR butterfly �1
� is 

�1
� � (�"�
�/��45&+	
��                                   (15) 

However, in the (S − 1) pass, each L butterfly 

does not contain any nontrivial twiddle factors 

and hence, the total number of nontrivial 

multiplications 8129  in SRFFT is 

8129 � 812 � 2�1
�                                   (16) 

For the conventional radix-2 FFT, the total 

number of complex multiplications MR2 is 

82�	
	�1
���456                                              (17) 

 

III. HARDWARE IMPLEMENTATION 

 

A. Shared-Memory Architecture 

In computer systems, shared memory is 

that may be simultaneously accessed by 

multiple programs with intent to provide 

communication among them or avoid redundant 

copies. Shared memory is an efficient means of 

passing data between programs. Depending on 

context, programs may run on a single processor 

or on multiple separate processors. Using 

memory for communication inside a single 

program, e.g. among its multiple threads, is also 

referred to as shared memory. 

The architecture of shared-memory processor is 

shown in Fig. 3. The FFT data and the twiddle 

factors are stored in the RAM and ROM banks, 

respectively. The flow graph of split-radix 

algorithm is the same as radix-2 FFT except for 

the locations and values of the twiddle factors 

and therefore, the conventional radix-2 FFT data 

address generation schemes could also be 

applied to SRFFT (RAM address generator). 

However, the mixed-radix property of SRFFT 

algorithm leads to the irregular locations of 

twiddle factors and forbids any conventional 

address generation algorithm (ROM address 

generator). 

 
 

Fig.3 Shared memory architecture 

 

B. Modified Radix-2 Butterfly Unit 

The modified butterfly unit structure 

which is shown in Fig.4. The structure of this 

butterfly unit is determined by the fact that the 

SRFFT has multiplications of both upper and 

lower legs. To prevent unnecessary switching 

activity, we put the clock gating registers in the 

multiplier path and a few registers are placed at 

the address port of memory banks to 

synchronize the whole design. The key to use 

this architecture is knowing about which 

butterflies require no multiplications (the 

complex multipliers are then skipped), trivial 

multiplications (swapping), and nontrivial 

multiplications (using complex multipliers). In 

Section C, we present an efficient algorithm to 

solve this problem. 

 
Fig.4: Modified butterfly structure 
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C. Address Generation of Twiddle Factors 

 

The flow graph for the 16-point SRFFT is 

shown in Fig.2. There are two kinds of twiddle 

factors: j and Wn. For those multiplications 

involving j is called trivial multiplications, 

because these operations are essentially the 

swapping of the real and imaginary part of the 

multiplier, hence no multiplication is involved. 

For those multiplications involving Wn are 

called nontrivial multiplications, because 

complex multipliers are used to complete these 

operations. In Fig.2 each area surrounded by the 

dashed lines is called one L block which is 

formed by L butterflies in each pass and there 

are totally five L blocks for a 16-point SRFFT. 

 

Given N = 2
S
 point FFT data, we first have the 

following definitions. 

 1) Butterfly Counter B: (S − 1)-bit counter that 

indicates, in each pass, which butterfly is 

currently under operation.  

2) Pass Counter P: ([log2 S])-bit counter that 

indicates which pass is currently under 

operation.  

3) L_Flag: A set of variables indicate if the 

butterfly under operation is in the L-shaped 

block. Each variable corresponds to one 

butterfly in each pass and the number of such 

variables is the same as the number of radix-2 

butterflies in each pass. For example, in Fig. 2, 

each pass contains eight butterflies so eight 

L_Flags are required.  

4) J_Flag: A variable indicates if the butterfly 

under operation should multiply the trivial 

twiddle factor j (swapping). In Fig. 2, we have 

made two observations. First, in the current 

pass, if the ith butterfly is not within the L block 

(L_Flag = 0), in the next pass, the same ith 

butterfly will be definitely within the L block. 

For example, butterflies 100, 101, 110, and 111 

are not within the L block in pass 1 (because 

they belong to the L block in pass 0) and 

butterflies 100, 101, 110, and 111 are within the 

L block in pass 2.  

The second observation is that if the 

butterfly is within the L block in this pass 

(L_Flag = 1), in the next pass, whether it will be 

within the L block is determined by J_Flag. If, 

in the current pass, the ith butterfly needs to 

multiply j (J_Flag = 1), then in the next pass, the 

same butterfly needs to multiply Wn. For 

example, butterflies 100, 101, 110, and 111 are 

within the L block in pass 0, and they need to 

multiply by j; in pass 1, the butterflies 100, 101, 

110, and 111 need to multiply Wn. On the other 

hand, if, in the current pass, the ith butterfly 

does not need to multiply j (J_Flag = 0), then in 

the next pass, the same butterfly still belongs to 

L block and does not need to multiply Wn. For 

example, butterflies 000, 001, 010, and 011 are 

within the L block in pass 0 and they do not 

need to multiply by j (J_Flag = 0), in pass 1, the 

butterflies 000, 001, 010, and 011 still belong to 

the L block and do not need to multiply Wn. 

 

The high level structure of the proposed 

algorithm is shown in Fig. 5. All L_Flag are set 

to one before the program starts, 
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Fig.6.L_Flag structure 

because all the butterflies in pass 0 are 

contained in the first L block. 

 L_Flags could be efficiently implemented as an 

RAM block, as shown in Fig. 6. Butterfly 

counter B is served as the read address of RAM 

and at each clock cycle, the corresponding 

L_Flag value for the current butterfly is 

provided. The updated L_Flag value for the next 

pass is written to this memory at next clock 

cycle. The size of this memory is 2S−1 
bits, 

which equals to the number of butterflies in 

each pass. Such a size is trivial on the modern 

field-programmable gate array (FPGA). For 

example, for a 2048-point FFT only 1 kbit is 

required.  

J_Flag is a combinational signal. The value of 

this variable depends on the butterfly counter B. 

In the Pth pass, J_Flag equals to bS−2−P .                                                    

 

In the last pass, L_Flag is set to one and J_Flag 

is set to zero. When nontrivial multiplication is 

required, twiddle factors need to be retrieved 

from the ROM banks. Unlike conventional 

method that stores all the Wn in one ROM bank, 

we organize Wn in two ROM banks: one stores 

Wn for the upper leg of the butterfly unit and 

the other stores those for the lower leg of the 

butterfly unit. Started in pass 1, in the Pth pass 

the address of each ROM bank is given by 

bS−2−P bS−3−P . . . b00 . . . 0 (following (P − 1) ‘0’ s).    

                      

It is worth mentioning that in conventional 

implementations, the twiddle factors are 

required for each butterfly so ROM banks are 

always enabled, and in our implementation, the 

L_Flag signal can be used as the enable signal 

for the ROM banks, since that if the butterfly 

belongs to the L block, no multiplication is 

required. In each pass except for the last one, 
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J_Flag equals to bS−2 .             

  

The address for each ROM bank is given by 

bS−2bS−3 . . . b1.                (18) 

 

IV. IMPLEMENTATION AND RESULTS 

The simulation result of the shared 

memory 16-point SRFFT are shown in Fig.7. 

The total inputs to the 16-point SRFFT are 16 

and each input is comprises of real and 

imaginary number so the outputs also 16 having 

both real and imaginary part. The FFT is 

synthesized under the constraint of 800MHz in 

Xilinx ISE 13.2 targeting for Virtex-6 

XC6VLX760 device FF1760 package with a 

speed grade of -2. Power is measured by Xilinx 

XPower analyzer using the switching activity 

interchange format file recorded in a sufficient 

long simulation time. In the given architecture, 

when the FFT size increases, a larger RAM and 

ROM size is required, but the butterfly unit does 

not change. The limitation of the proposed 

design is the usage of  large number of  

resources used in the butterfly unit. This 

limitation is removed by using different 

butterfly structures for additions and 

multiplications. 

 

 

Fig.7: Simulation result of SRFFT (16-Point) 

 

 

 

 

RTL Schematic: 

 

Fig.8: RTL schematic of SRFFT 

Design Summary 

 

Comparison results of FFT & SRFFT 

      Parameter FFT 

(16-Point) 

SRFFT 

(16-Point) 

Delay (ns) 27.721 1.324 

Memory(MB) 508.67 261.2 

Power (mW) 8.245 4.472 

Frequency(MHZ) 36 755 

 

V.CONCLUSION 

In this brief, a shared-memory-based 

low power SRFFT processor is designed, 

implemented and verified. The SRFFT 

processor is computed by using a modified 

radix-2 butterfly unit. The butterfly unit exploits 

the multiplier-gating technique to save dynamic 
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power. This method reduces the dynamic power 

consumption at the expense of more hardware 

resources. In addition, two novel address 

generation algorithms for both the trivial and 

nontrivial twiddle factors are developed. 

Simulation results show that compared with the 

conventional FFT implementation the shared- 

memory SRFFT design achieves 52% lower 

power consumption & 20% reduced latency 

when computing a 16-point complex valued 

transform. Since SRFFT has the minimum 

number of multiplications compared with other 

types of FFT, the results are optimal in the sense 

of floating point operations.  

 

REFERENCES 

[1] P. Duhamel and H. Hollmann, “‘Split radix’ 

FFT algorithm,” Electron. Lett., vol. 20, no. 1, 

pp. 14–16, Jan. 1984.  

[2] M. A. Richards, “On hardware 

implementation of the split-radix FFT,” IEEE 

Trans. Acoust., Speech Signal Process., vol. 36, 

no. 10, pp. 1575–1581, Oct. 1988.  

[3] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, 

“Hardware efficient mixed radix-25/16/9 FFT 

for LTE systems,” IEEE Trans. Very Large 

Scale Integr. (VLSI) Syst., vol. 23, no. 2, pp. 

221–229, Feb. 2015.  

[4] L. G. Johnson, “Conflict free memory 

addressing for dedicated FFT hardware,” IEEE 

Trans. Circuits Syst. II, Analog Digit. Signal 

Process., vol. 39, no. 5, pp. 312–316, May 1992.  

[5] D. Cohen, “Simplified control of FFT 

hardware,” IEEE Trans. Acoust., Speech, Signal 

Process., vol. 24, no. 6, pp. 577–579, Dec. 1976. 

[6] X. Xiao, E. Oruklu, and J. Saniie, “An 

efficient FFT engine with reduced addressing 

logic,” IEEE Trans. Circuits Syst. II, Exp. 

Briefs, vol. 55, no. 11, pp. 1149–1153, Nov. 

2008.  

[7] Christo Ananth, Muthamil Jothi.M, M.Priya, 

V.Manjula, “Parallel RC4 Key Searching 

System Based on FPGA”, International Journal 

of Advanced Research in Management, 

Architecture, Technology and Engineering 

(IJARMATE), Volume 2, Special Issue 13, 

March 2016, pp: 5-12.  

[8] A. N. Skodras and A. G. Constantinides, 

“Efficient computation of the split-radix FFT,” 

IEE Proc. F-Radar Signal Process., vol. 139, no. 

1, pp. 56–60, Feb. 1992.  

[9] H. V. Sorensen, M. T. Heideman, and C. S. 

Burrus, “On computing the split-radix FFT,” 

IEEE Trans. Acoust., Speech Signal Process., 

vol. 34, no. 1, pp. 152–156, Feb. 1986.  

[10] J. Kwong and M. Goel, “A high 

performance split-radix FFT with constant 

geometry architecture,” in Proc. Design, Autom. 

Test Eur. Conf. Exhibit. (DATE), Dresden, 

Germany, Mar. 2012, pp. 1537–1542.  

[11] W.-C. Yeh and C.-W. Jen, “High-speed and 

low-power split-radix FFT,” IEEE Trans. Signal 

Process., vol. 51, no. 3, pp. 864–874, Mar. 2003. 

 


