
ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

46

Design and Implementation of an Area efficient Split-Radix FFT

Processors Using Radix-2 Butterfly Units
 P. Venu M.Tech Dr.Mamatha Samson

VLSI Design, Dept of ECE Professor in Dept of ECE

 GRIET-Hyderabad. GRIET-Hyderabad.

 venupoladi32@gmail.com mamata2001@gmail.com

Abstract- Split-Radix Fast Fourier Transform

(SRFFT) is an ideal candidate for the

implementation of a low-power FFT processor,

because it has the lowest number of arithmetic

operations among all the FFT algorithms. In the

design of such processors, an efficient

addressing scheme for FFT data as well as

twiddle factors is required. The signal flow

graph of SRFFT is the same as radix-2 FFT, and

therefore, the conventional address generation

schemes of FFT data could also be applied to

SRFFT. However, SRFFT has irregular

locations of twiddle factors and forbids the

application of radix-2 address generation

methods. This project presents shared-memory

low-power SRFFT processor architecture. The

SRFFT is computed by using a modified radix-2

butterfly unit. The butterfly unit exploits the

multiplier-gating technique to save dynamic

power at the expense of using more hardware

resources. In addition, two novel address

generation algorithms for both the trivial and

nontrivial twiddle factors are developed.

Simulation results show that compared with the

conventional radix-2 shared-memory

implementations, the proposed design achieves

over 20% lower power consumption when

computing a 1024-point complex-valued

transform.

Keywords—Address generation, low

power, radix-2, split-radix fast Fourier transform

(SRFFT), twiddle factors.

I. INTRODUCTION

Discrete Fourier Transform generates a

predefined duration discrete frequency sequence

that is obtained by sampling one period of

Fourier Transform. Fast algorithms to determine

the DFT are called as Fast Fourier Transform

(FFT). FFT calculate the DFT and produces

accurate results as same as that of the DFT

calculated by using definition. The difference is

that an FFT is much faster than normal

computation. The split-radix FFT has minor

complication than the radix-4 or any higher-

radix power-of-two FFT.

Y. Chen [3] presented a new Dynamic

Voltage and Frequency Scaling (DVFS) FFT

processor for MIMO OFDM applications.

MIMO OFDM systems had achieved better

reliability and superior capacity, the power

consumption also increases because of the

unlimited difficulty for the multi-stream

processing. Therefore, less power becomes a

major target in design of MIMO OFDM

devices, especially for portable applications. To

save the power of the FFT processor cultivates

proportionally the stream number as this

consumes a large percentage of system power.

The Dynamic Voltage and Frequency Scaling

(DVFS) is an effective technique to achieve less

power. Parallelized radix-2 FFT structure has

been adopted to reduce the power consumption.

In 2005, Y. W. Lin shows that the

pipelined FFT architecture, called as Mixed-

Radix Multipath Delay Feedback (MRMDF)

reduces power consumption and hardware cost.

This processor uses higher radix FFT algorithm

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

47

with less memory and complex multipliers. A

novel 128-point FFT/IFFT processor for

OFDM-based UWB systems was proposed by

J.Kwong and M.Goel [10]. In addition, the

number of complex multiplications is less

effectively reduced by using a higher radix

algorithm.

In 2010 Shen-Jui Huang used eight-

data-path 2048-point FFT processor that has

been proposed with a transfer rate of 2.4 GS/s

for OFDM-based gigabit WPAN application.

Proposed work was based on split radix FFT

architecture. FFT Computation can be done

using different algorithm based on Radix-2,

Radix-4, Radix-8, Split-Radix etc. The split-

radix algorithm has lesser multiplicative

complexity than both radix-2 and radix-4

algorithms. The split-radix FFT mixes radix-2

and radix-4 decompositions. The Split-Radix

FFT has lower complication than the radix-4 or

any higher-radix power-of-two FFT.

The rest of this brief is organized as

follows. Section II provides a theoretical

comparison of the number of complex

multiplications between the radix-2 FFT and the

SRFFT. Section III discusses the architecture of

the proposed design. Section IV provides the

implementation results and Section V concludes

this brief.

II. COMPARISON OF SRFFT AND

RADIX-2 FFT

Let us consider the computation of the N =

2S point DFT by the divide-and conquer

approach. We split the N-point data sequence

into two N/2-point data sequences f1(n)

and f2(n), corresponding to the even-numbered

and odd-numbered samples of x(n), respectively,

that is,

f1(n) = x(2n) (1)

 f2(n) = x(2n+1), (2)

Thus f1(n) and f2(n) are obtained by

decimating x(n) by a factor of 2, and hence the

resulting FFT algorithm is called a decimation-

in-time algorithm.

Now the N-point DFT can be expressed

in terms of the DFT's of the decimated

sequences as follows:

���� � ∑ ����	
��� �	��, 0	� � � � � 1 (3)

													� � ����	
�
��,���� �	�� + � ����	
�

��,��� �	�� (4)

 � � ��2��	/�
�
 � �	� � +� ��2� ! 1�	/�
�

 � �	�� "��� (5)

But WN
2
 = WN/2. With this substitution, the

equation can be expressed as

X(K) � # $����	�%
&
 �

%
&
�

 �
+	�	� ∑ $����%&
� � �%

&
 � (6)

X(K) = F1(K) + �	� F2(K), K= 0,1,……..N-1 (7)

where F1(K) and F2(K) are the N/2-point DFTs

of the sequences f1(r) and f2(r), respectively.

Since F1(K) and F2(K) are periodic, with

period N/2, we have F1(K+N/2) = F1(K)

and F2(K+N/2) = F2(K). In addition, the factor

�	�"	/� � �	�	�. Hence the equation may be

expressed as

 X(K) = F1(K) + �	� F2(K), K= 0,1,……..,		� � 1 (8)

 X(K+N/2) = F1(K) - �	� F2(K), K= 0,1,……..,		�-1 (9)

The direct computation of F1(k) requires

(N/2)2 complex multiplications. The same

applies to the computation of F2(k).

Furthermore, there are N/2 additional complex

multiplications required to compute WN
k
F2(k).

Hence the computation of X(k) requires

2(N/2)2 + N/2 = N
2/2 + N/2 complex

multiplications. This first step results in a

reduction of the number of multiplications

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Issue 7, July 2017

from N 2 to N
2/2 + N/2, which is about a factor

of 2 for N large.

Fig.1: Signal flow graph for radix

The Split-Radix FFT, alongside its

varieties, long had the qualification of

accomplishing the most minimal distributed

number-crunching operation tally (add up to

correct number of required genuine options and

duplications) to figure a DFT of energy of

sizes N. The number-crunching tally of the first

split-radix calculation was enhanced in 2004

spite of the fact that the quantity of number

juggling operations is not the sole factor (or

even essentially the predominant factor) in

deciding the time required to figure a DFT on a

PC, the subject of the base conceivable check is

of longstanding hypothetical intrigue.

proposed a system, this paper presents an

effective field programmable gate array

(FPGA)-based hardware implementation of a

parallel key searching system for the brute

attack on RC4 encryption. The design employs

several novel key scheduling techniques to

minimize the total number of cycles for each

key search and uses on-chip memories of the

FPGA to maximize the number of key searching

units per chip. Based on the design, a total of

176 RC4 key searching units can be

implemented in a single Xilinx XC2VP20

FPGA chip. Operating at a 47-MHz clock rate,

the design can achieve a key searching speed of

ISSN 2394

 ISSN 2394

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

/2, which is about a factor

Signal flow graph for radix-2 FFT.

adix FFT, alongside its

varieties, long had the qualification of

accomplishing the most minimal distributed

crunching operation tally (add up to

correct number of required genuine options and

duplications) to figure a DFT of energy of-two

crunching tally of the first

radix calculation was enhanced in 2004 .In

fact that the quantity of number

juggling operations is not the sole factor (or

even essentially the predominant factor) in

igure a DFT on a

PC, the subject of the base conceivable check is

of longstanding hypothetical intrigue. [7]

proposed a system, this paper presents an

effective field programmable gate array

based hardware implementation of a

system for the brute-force

attack on RC4 encryption. The design employs

several novel key scheduling techniques to

minimize the total number of cycles for each

chip memories of the

FPGA to maximize the number of key searching

er chip. Based on the design, a total of

176 RC4 key searching units can be

implemented in a single Xilinx XC2VP20-5

MHz clock rate,

the design can achieve a key searching speed of

1.07 x 107 keys per second. Breaking a 40

RC4 encryption only requires around 28.5 h.

The essential thought behind the SRFFT

is the use of a radix-2 index guide to the even

list terms and a radix-4 map to the odd

terms. For the even-list terms, it can be

deteriorated as

��2�� �' (���� ! �)� ! 	
�*+	�	/���

%&
�
�� , K= 0,1,2………..,

For the odd-record terms, it can be disintegrated

as

��4� ! 1� � ' (���� � -�)� ! 	
.* � �)� ! 	

�* � �)� !%/
�
��

��4� ! 3� � ' (���� ! -�)� ! 	
.* � �)� ! 	

�* � �)� !%/
�
��

where K = 0, 1, . . . , N /4. The formulas above

result in the L-shaped split-radix butterfly

structure, which can be found in [2] and the

scheduling of the L-shaped butterfly is irregular.

Assume that we have N = 2
S
 point FFT, both

SRFFT and radix-2 FFT require

finish the computation, as shown in Figs. 1 and

2. For SRFFT, the total number of the L

butterflies NSR is given by

�12 � (�31
���456"�
��4+
7

Fig.2: Signal flow graph for SRFF

Each L butterfly contains two nontrivial

complex multiplications, and therefore, the total

number of nontrivial complex multiplications

MSR in SRFFT is

812 � �(�31
���456"�
��4+
7

2394-3777 (Print)

2394-3785 (Online)

online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

48

1.07 x 107 keys per second. Breaking a 40-bit

RC4 encryption only requires around 28.5 h.

The essential thought behind the SRFFT

guide to the even-

to the odd-list

rms, it can be

K= 0,1,2………..,
	
� � 1 (10)

record terms, it can be disintegrated

) ! 3	
. *+�		��	/.�� (11)

) ! 3	
. *+�		3��	/.�� (12)

4. The formulas above

radix butterfly

structure, which can be found in [2] and the

shaped butterfly is irregular.

point FFT, both

2 FFT require S passes to

finish the computation, as shown in Figs. 1 and

2. For SRFFT, the total number of the L

 (13)

Signal flow graph for SRFFT

Each L butterfly contains two nontrivial

complex multiplications, and therefore, the total

number of nontrivial complex multiplications

 (14)

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

49

In the (S − 1) pass, the number of SR butterfly �1
� is

�1
� � (�"�
�/��45&+	
�� (15)

However, in the (S − 1) pass, each L butterfly

does not contain any nontrivial twiddle factors

and hence, the total number of nontrivial

multiplications 8129 in SRFFT is

8129 � 812 � 2�1
� (16)

For the conventional radix-2 FFT, the total

number of complex multiplications MR2 is

82�		�1
���456 (17)

III. HARDWARE IMPLEMENTATION

A. Shared-Memory Architecture

In computer systems, shared memory is

that may be simultaneously accessed by

multiple programs with intent to provide

communication among them or avoid redundant

copies. Shared memory is an efficient means of

passing data between programs. Depending on

context, programs may run on a single processor

or on multiple separate processors. Using

memory for communication inside a single

program, e.g. among its multiple threads, is also

referred to as shared memory.

The architecture of shared-memory processor is

shown in Fig. 3. The FFT data and the twiddle

factors are stored in the RAM and ROM banks,

respectively. The flow graph of split-radix

algorithm is the same as radix-2 FFT except for

the locations and values of the twiddle factors

and therefore, the conventional radix-2 FFT data

address generation schemes could also be

applied to SRFFT (RAM address generator).

However, the mixed-radix property of SRFFT

algorithm leads to the irregular locations of

twiddle factors and forbids any conventional

address generation algorithm (ROM address

generator).

Fig.3 Shared memory architecture

B. Modified Radix-2 Butterfly Unit

The modified butterfly unit structure

which is shown in Fig.4. The structure of this

butterfly unit is determined by the fact that the

SRFFT has multiplications of both upper and

lower legs. To prevent unnecessary switching

activity, we put the clock gating registers in the

multiplier path and a few registers are placed at

the address port of memory banks to

synchronize the whole design. The key to use

this architecture is knowing about which

butterflies require no multiplications (the

complex multipliers are then skipped), trivial

multiplications (swapping), and nontrivial

multiplications (using complex multipliers). In

Section C, we present an efficient algorithm to

solve this problem.

Fig.4: Modified butterfly structure

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

50

C. Address Generation of Twiddle Factors

The flow graph for the 16-point SRFFT is

shown in Fig.2. There are two kinds of twiddle

factors: j and Wn. For those multiplications

involving j is called trivial multiplications,

because these operations are essentially the

swapping of the real and imaginary part of the

multiplier, hence no multiplication is involved.

For those multiplications involving Wn are

called nontrivial multiplications, because

complex multipliers are used to complete these

operations. In Fig.2 each area surrounded by the

dashed lines is called one L block which is

formed by L butterflies in each pass and there

are totally five L blocks for a 16-point SRFFT.

Given N = 2
S
 point FFT data, we first have the

following definitions.

 1) Butterfly Counter B: (S − 1)-bit counter that

indicates, in each pass, which butterfly is

currently under operation.

2) Pass Counter P: ([log2 S])-bit counter that

indicates which pass is currently under

operation.

3) L_Flag: A set of variables indicate if the

butterfly under operation is in the L-shaped

block. Each variable corresponds to one

butterfly in each pass and the number of such

variables is the same as the number of radix-2

butterflies in each pass. For example, in Fig. 2,

each pass contains eight butterflies so eight

L_Flags are required.

4) J_Flag: A variable indicates if the butterfly

under operation should multiply the trivial

twiddle factor j (swapping). In Fig. 2, we have

made two observations. First, in the current

pass, if the ith butterfly is not within the L block

(L_Flag = 0), in the next pass, the same ith

butterfly will be definitely within the L block.

For example, butterflies 100, 101, 110, and 111

are not within the L block in pass 1 (because

they belong to the L block in pass 0) and

butterflies 100, 101, 110, and 111 are within the

L block in pass 2.

The second observation is that if the

butterfly is within the L block in this pass

(L_Flag = 1), in the next pass, whether it will be

within the L block is determined by J_Flag. If,

in the current pass, the ith butterfly needs to

multiply j (J_Flag = 1), then in the next pass, the

same butterfly needs to multiply Wn. For

example, butterflies 100, 101, 110, and 111 are

within the L block in pass 0, and they need to

multiply by j; in pass 1, the butterflies 100, 101,

110, and 111 need to multiply Wn. On the other

hand, if, in the current pass, the ith butterfly

does not need to multiply j (J_Flag = 0), then in

the next pass, the same butterfly still belongs to

L block and does not need to multiply Wn. For

example, butterflies 000, 001, 010, and 011 are

within the L block in pass 0 and they do not

need to multiply by j (J_Flag = 0), in pass 1, the

butterflies 000, 001, 010, and 011 still belong to

the L block and do not need to multiply Wn.

The high level structure of the proposed

algorithm is shown in Fig. 5. All L_Flag are set

to one before the program starts,

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

51

Fig.6.L_Flag structure

because all the butterflies in pass 0 are

contained in the first L block.

 L_Flags could be efficiently implemented as an

RAM block, as shown in Fig. 6. Butterfly

counter B is served as the read address of RAM

and at each clock cycle, the corresponding

L_Flag value for the current butterfly is

provided. The updated L_Flag value for the next

pass is written to this memory at next clock

cycle. The size of this memory is 2S−1
bits,

which equals to the number of butterflies in

each pass. Such a size is trivial on the modern

field-programmable gate array (FPGA). For

example, for a 2048-point FFT only 1 kbit is

required.

J_Flag is a combinational signal. The value of

this variable depends on the butterfly counter B.

In the Pth pass, J_Flag equals to bS−2−P .

In the last pass, L_Flag is set to one and J_Flag

is set to zero. When nontrivial multiplication is

required, twiddle factors need to be retrieved

from the ROM banks. Unlike conventional

method that stores all the Wn in one ROM bank,

we organize Wn in two ROM banks: one stores

Wn for the upper leg of the butterfly unit and

the other stores those for the lower leg of the

butterfly unit. Started in pass 1, in the Pth pass

the address of each ROM bank is given by

bS−2−P bS−3−P . . . b00 . . . 0 (following (P − 1) ‘0’ s).

It is worth mentioning that in conventional

implementations, the twiddle factors are

required for each butterfly so ROM banks are

always enabled, and in our implementation, the

L_Flag signal can be used as the enable signal

for the ROM banks, since that if the butterfly

belongs to the L block, no multiplication is

required. In each pass except for the last one,

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

52

J_Flag equals to bS−2 .

The address for each ROM bank is given by

bS−2bS−3 . . . b1. (18)

IV. IMPLEMENTATION AND RESULTS

The simulation result of the shared

memory 16-point SRFFT are shown in Fig.7.

The total inputs to the 16-point SRFFT are 16

and each input is comprises of real and

imaginary number so the outputs also 16 having

both real and imaginary part. The FFT is

synthesized under the constraint of 800MHz in

Xilinx ISE 13.2 targeting for Virtex-6

XC6VLX760 device FF1760 package with a

speed grade of -2. Power is measured by Xilinx

XPower analyzer using the switching activity

interchange format file recorded in a sufficient

long simulation time. In the given architecture,

when the FFT size increases, a larger RAM and

ROM size is required, but the butterfly unit does

not change. The limitation of the proposed

design is the usage of large number of

resources used in the butterfly unit. This

limitation is removed by using different

butterfly structures for additions and

multiplications.

Fig.7: Simulation result of SRFFT (16-Point)

RTL Schematic:

Fig.8: RTL schematic of SRFFT

Design Summary

Comparison results of FFT & SRFFT

 Parameter FFT

(16-Point)

SRFFT

(16-Point)

Delay (ns) 27.721 1.324

Memory(MB) 508.67 261.2

Power (mW) 8.245 4.472

Frequency(MHZ) 36 755

V.CONCLUSION

In this brief, a shared-memory-based

low power SRFFT processor is designed,

implemented and verified. The SRFFT

processor is computed by using a modified

radix-2 butterfly unit. The butterfly unit exploits

the multiplier-gating technique to save dynamic

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

53

power. This method reduces the dynamic power

consumption at the expense of more hardware

resources. In addition, two novel address

generation algorithms for both the trivial and

nontrivial twiddle factors are developed.

Simulation results show that compared with the

conventional FFT implementation the shared-

memory SRFFT design achieves 52% lower

power consumption & 20% reduced latency

when computing a 16-point complex valued

transform. Since SRFFT has the minimum

number of multiplications compared with other

types of FFT, the results are optimal in the sense

of floating point operations.

REFERENCES

[1] P. Duhamel and H. Hollmann, “‘Split radix’

FFT algorithm,” Electron. Lett., vol. 20, no. 1,

pp. 14–16, Jan. 1984.

[2] M. A. Richards, “On hardware

implementation of the split-radix FFT,” IEEE

Trans. Acoust., Speech Signal Process., vol. 36,

no. 10, pp. 1575–1581, Oct. 1988.

[3] J. Chen, J. Hu, S. Lee, and G. E. Sobelman,

“Hardware efficient mixed radix-25/16/9 FFT

for LTE systems,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 23, no. 2, pp.

221–229, Feb. 2015.

[4] L. G. Johnson, “Conflict free memory

addressing for dedicated FFT hardware,” IEEE

Trans. Circuits Syst. II, Analog Digit. Signal

Process., vol. 39, no. 5, pp. 312–316, May 1992.

[5] D. Cohen, “Simplified control of FFT

hardware,” IEEE Trans. Acoust., Speech, Signal

Process., vol. 24, no. 6, pp. 577–579, Dec. 1976.

[6] X. Xiao, E. Oruklu, and J. Saniie, “An

efficient FFT engine with reduced addressing

logic,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 55, no. 11, pp. 1149–1153, Nov.

2008.

[7] Christo Ananth, Muthamil Jothi.M, M.Priya,

V.Manjula, “Parallel RC4 Key Searching

System Based on FPGA”, International Journal

of Advanced Research in Management,

Architecture, Technology and Engineering

(IJARMATE), Volume 2, Special Issue 13,

March 2016, pp: 5-12.

[8] A. N. Skodras and A. G. Constantinides,

“Efficient computation of the split-radix FFT,”

IEE Proc. F-Radar Signal Process., vol. 139, no.

1, pp. 56–60, Feb. 1992.

[9] H. V. Sorensen, M. T. Heideman, and C. S.

Burrus, “On computing the split-radix FFT,”

IEEE Trans. Acoust., Speech Signal Process.,

vol. 34, no. 1, pp. 152–156, Feb. 1986.

[10] J. Kwong and M. Goel, “A high

performance split-radix FFT with constant

geometry architecture,” in Proc. Design, Autom.

Test Eur. Conf. Exhibit. (DATE), Dresden,

Germany, Mar. 2012, pp. 1537–1542.

[11] W.-C. Yeh and C.-W. Jen, “High-speed and

low-power split-radix FFT,” IEEE Trans. Signal

Process., vol. 51, no. 3, pp. 864–874, Mar. 2003.

