
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

Comparison of Different Optimization Techniques in

Artificial Intelligence

DonavalliVenkataVidya Deepthi1, M.Ganesh Babu2,Konda Sreenu3
1. Assistant Professor, Dept. of C.S.E, Sir C.R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.

2. Assistant Professor, Dept. of C.S.E, Sir C.R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.

3. Assistant Professor, Dept. of C.S.E, Sir C.R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.

---*---

Abstract— Optimization techniques are used for

finding the best methods to solve the problems. These

reduce search space and improve its efficiency. At each

and every step of the search, it selects which have the least

futility. This process will leads to good optimal solution. In

this paper mainly includes different types of optimization

techniques and how it differs from one another. These are

tabulated on the basics of merits and demerits which leads to

select a best method for a problem.

I. INTRODUCTION

Search algorithms are used for a multitude of AI

tasks, one of them being the path finding. The area of

search in AI is very much connected to real life

problem solving. AI has investigated search methods

that allow one to solve path planning problems in

large domains. Having formulated problems, we need

to solve them and it is done by searching through the

state space during this process. Most of the researches

on search methods have studied how to solve one-shot

path-planning problems. Search is mostly a repetitive

process, therefore, many AI systems re-plan from

scratch to solve the path planning problem

independently.
Optimization is one of the most important tasks the

engineers have to carry out. The engineers are

required to design new, better, more efficient, less

complex and less expensive systems as well as to

devise plans and procedures for the improved

operation of existing systems in both industrial and

the scientific world.

II. PROBLEM STATEMENT

There are many search and optimization algorithms in

Artificial Intelligence, the popular ones being

Uninformed Search, Heuristic Search and Evolutionary

algorithms etc. Although a lot of research work is done

on individual algorithm but not enough research is done

on the comparison of these algorithms under different

problems. This is essential considering the fact that

these algorithms behave differently or perform

differently for different problems. By analyzing how

an algorithm performs under a certain problem, the

shortcomings of the algorithm can be found out and

more research could be done on removing those

problem by finding out the pros and cons of the tested

algorithm.

III. AI SOLUTION SEARCH TECHNIQUES&

ALGORITHMS

Search problems can be classified by the amount of

information that is available to the search process.

Such information might relate to the problem space as

a whole or to only some states. It may be available a

priori or only after a node has been expanded. On such

basis we can categorize different search techniques as

shown in Fig 1.

165

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 21, August 2017

Uninformed search algorithms for problem

solving are a central topic of classical computer

science by Horowitz and Sahni 1978,

research by Drefus by 1969.Uninformed search

strategies use only that information which is

available in the problem definition. Followings are

important types of uniformed search strategies:

A. Brute force or Blind search methods

Brute force or blind search is a uninformed

exploration of the search space and it does not
explicitly take into account either planning
efficiency or execution efficiency. Blind search is
also called Brute Force Search. It is the search
which has no information about its domain. The
only thing that a blind search can do is to

differentiate between a non goal state and a goal
state. These methods do not need domain

knowledge but they are less efficient in result. All
brute force search algorithms must take O(bd) time
and use O(d) space [4]. The most important brute

force techniques are breadth first, depth first,
uniform cost, depth first iterative deepening and
bidirectional search. Uninformed strategies don’t

use any information about how close a node might
be to a goal. They differ in the order that the nodes
are expanded. [3] discussed about Intelligent

Sensor Network for Vehicle Maintenance System.
Modern automobiles are no longer mere

mechanical devices; they are pervasively monitored
through various sensor networks & using integrated
circuits and microprocessor based design and

control techniques while this transformation has
driven major advancements in efficiency and
safety. In the existing system the stress was given

on the safety of the vehicle, modification in
physical structure of the vehicle but the proposed
system introduces essential concept in the field of

automobile industry. It is an interfacing of the
advanced technologies like Embedded Systems and
the Automobile world. This “Intelligent Sensor

Network for Vehicle Maintenance System” is best
suitable for vehicle security as well as for vehicle’s

maintenance. Further it also supports advanced
feature of GSM module interfacing. Through this
concept in case of any emergency or accident the

system will automatically sense and records the
different parameters like LPG gas level, Engine
Temperature, present speed and etc. so that at the

time of investigation this parameters may play
important role to find out the possible reasons of
the accident. Further, in case of accident & in case

of stealing of vehicle GSM module will send SMS
to the Police, insurance company as well as to the
family members.

 ISSN 2394

 ISSN 2394

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

August 2017

Uninformed search algorithms for problem

solving are a central topic of classical computer

science by Horowitz and Sahni 1978, Operations

research by Drefus by 1969.Uninformed search

strategies use only that information which is

available in the problem definition. Followings are

important types of uniformed search strategies:-

A. Brute force or Blind search methods

or blind search is a uninformed

exploration of the search space and it does not
explicitly take into account either planning
efficiency or execution efficiency. Blind search is
also called Brute Force Search. It is the search

its domain. The
only thing that a blind search can do is to

differentiate between a non goal state and a goal
state. These methods do not need domain

knowledge but they are less efficient in result. All
brute force search algorithms must take O(bd) time
nd use O(d) space [4]. The most important brute

force techniques are breadth first, depth first,
uniform cost, depth first iterative deepening and
bidirectional search. Uninformed strategies don’t

use any information about how close a node might
al. They differ in the order that the nodes

] discussed about Intelligent

Sensor Network for Vehicle Maintenance System.
Modern automobiles are no longer mere

mechanical devices; they are pervasively monitored
s & using integrated

circuits and microprocessor based design and

control techniques while this transformation has
driven major advancements in efficiency and
safety. In the existing system the stress was given

on the safety of the vehicle, modification in the
physical structure of the vehicle but the proposed
system introduces essential concept in the field of

automobile industry. It is an interfacing of the
advanced technologies like Embedded Systems and
the Automobile world. This “Intelligent Sensor

ork for Vehicle Maintenance System” is best
suitable for vehicle security as well as for vehicle’s

maintenance. Further it also supports advanced
feature of GSM module interfacing. Through this
concept in case of any emergency or accident the

utomatically sense and records the
different parameters like LPG gas level, Engine
Temperature, present speed and etc. so that at the

time of investigation this parameters may play
important role to find out the possible reasons of

n case of accident & in case

of stealing of vehicle GSM module will send SMS
to the Police, insurance company as well as to the

B. Breadth First Search (BFS)

Breadth first search is a general technique of

traversing a graph [4]. Breath first search may use

more memory but will always find the shortest path

first. In this search a queue data structure is used and

it is level by level traversal. Breadth first search

expands nodes in order of their distance from the root.

It is a path finding algorithm that is capable of always

finding the solution, if one exists [4]. The solution

which is found is always the optimal solution. This

task is completed in a very memory intensive manner.

Each node in the search tree is expanded in a breadth

wise at each level. Thus all expanded nodes are

retained till the search is completed. It can be

implemented most easily by maintaining the queue of

nodes. The number of node at level d is (bd), the total

number of nodes produced in the worst case is

b+b2+b3+……. + bd which is O(bd) the asymptotic

time complexity of breadth first search. [2]. Breadth

first search is a complete algorithm with exponential

time and space complexity.

C. Depth First Search (DFS)

Depth first search is also important type of uniform or
blind search. DFS visits all the vertices in the graph,
this type of algorithm always chooses to go deeper
into the graph [5]. After DFS visited all the reachable
vertices from a particular source vertex it chooses one
of the remaining undiscovered vertices and continues
the search. DFS reminds the space limitation of
breadth first search by always generating next a child
of the deepest unexpanded nodded One interesting
property of depth first search is that, the discover and
finish time of each vertex form a parenthesis
structure. If we use one open parenthesis when a
vertex is finished then the result is properly nested
set of parenthesis [6].

2394-3777 (Print)

2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

Breadth first search is a general technique of

h first search may use

more memory but will always find the shortest path

first. In this search a queue data structure is used and

it is level by level traversal. Breadth first search

expands nodes in order of their distance from the root.

ding algorithm that is capable of always

finding the solution, if one exists [4]. The solution

which is found is always the optimal solution. This

task is completed in a very memory intensive manner.

Each node in the search tree is expanded in a breadth

se at each level. Thus all expanded nodes are

retained till the search is completed. It can be

implemented most easily by maintaining the queue of

nodes. The number of node at level d is (bd), the total

number of nodes produced in the worst case is

+……. + bd which is O(bd) the asymptotic

time complexity of breadth first search. [2]. Breadth

first search is a complete algorithm with exponential

Depth first search is also important type of uniform or
blind search. DFS visits all the vertices in the graph,
this type of algorithm always chooses to go deeper
into the graph [5]. After DFS visited all the reachable

tex it chooses one
of the remaining undiscovered vertices and continues
the search. DFS reminds the space limitation of
breadth first search by always generating next a child
of the deepest unexpanded nodded One interesting

s that, the discover and
finish time of each vertex form a parenthesis

one open parenthesis when a
vertex is finished then the result is properly nested

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 21, August 2017

Fig.3 Depth First Search Technique for a Tree

Structure

The disadvantage of depth first search is that, it
may not terminate on an infinite tree, but simply go
down the left most paths forever. Even a finite
graph can generate an infinite tree [4].

D. DFS Iterative Deepening

This kind of search performs depth first search to

bounded depth d, starting d=1, and on each iteration it

increases by 1 [2]. Depth First Iterative Deepening

(DFID) is asymptotically optimal in terms of time and

space among all brute force search algorithms that

finds optimal solution on a tree. It was created as an

attempt to combine the ability of BFS to always find

an optimal solution. With the lower memory overhead

of the DFS, we can say it combines the best features

of breadth first and depth first search [5]. It performs

the DFS search to depth one, then starts over,

executing a complete DFS to depth two, and continues

to run depth first searches to successfully greater

depths until a solution is found. This algorithm is

equivalent to common backtracking algorithm in that

a path is expanded until a solution is found. DFID

does better because other nodes at depth d are not

expanded [5]. It never generates a node until all

shallower nodes have been generated. The first

solution found by DFID is quite guaranteed to be

along the shortest path and depth is increased one by

one. Its main function is that it returns a solution or

failure. This search is faster than BFS because latter

also generates nodes at depth d+1 even if the solution

is at depth d. It is liked often because it is effe

compromise between two other methods of search [4].

It terminates if there is a solution. It can produce the

same solution as produced by depth first search

produces but it does not use the same memory. Its

main properties are that it is memory effic

always find best solution if one exists.

E. Greedy Search
This algorithm uses an approach which is quite

similar to the best first search algorithm. It is a

simple best first search which reduces the estimated

cost to reach the goal. Basically it takes the closest

 ISSN 2394

 ISSN 2394

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

August 2017

Fig.3 Depth First Search Technique for a Tree

The disadvantage of depth first search is that, it
may not terminate on an infinite tree, but simply go
down the left most paths forever. Even a finite

depth first search to

bounded depth d, starting d=1, and on each iteration it

increases by 1 [2]. Depth First Iterative Deepening

(DFID) is asymptotically optimal in terms of time and

space among all brute force search algorithms that

n on a tree. It was created as an

attempt to combine the ability of BFS to always find

an optimal solution. With the lower memory overhead

of the DFS, we can say it combines the best features

of breadth first and depth first search [5]. It performs

search to depth one, then starts over,

executing a complete DFS to depth two, and continues

to run depth first searches to successfully greater

depths until a solution is found. This algorithm is

equivalent to common backtracking algorithm in that

is expanded until a solution is found. DFID

does better because other nodes at depth d are not

expanded [5]. It never generates a node until all

shallower nodes have been generated. The first

solution found by DFID is quite guaranteed to be

est path and depth is increased one by

one. Its main function is that it returns a solution or

failure. This search is faster than BFS because latter

also generates nodes at depth d+1 even if the solution

is at depth d. It is liked often because it is effective

compromise between two other methods of search [4].

It terminates if there is a solution. It can produce the

same solution as produced by depth first search

produces but it does not use the same memory. Its

main properties are that it is memory efficient and

This algorithm uses an approach which is quite

similar to the best first search algorithm. It is a

simple best first search which reduces the estimated

cost to reach the goal. Basically it takes the closest

node the goal state and continues its searching f

there. It expands the node that appears to be closest

to the goal. This search starts with the initial vertex

and makes very single possible change then looks

at the change it made to the score. This search then

applies thechange till the greatest impr

The search continues until no further improvement

can be made. The Greedy Search never makes a

lateral or uphill move. It uses minimal estimated

cost h(n) to the goal state as measure which

decreases the search time but the algorithm is

neither complete nor optimal. The main advantage

of this search is that it is simple and finds solution

quickly and as far as its disadvantages are

concerned it is not optimal, susceptible to false start

and the time complexity O(b
m

) is same for space

complexity.

F. Bidirectional Search

The idea behind bidirectional search is to run

two searches same time, one forward from the

initial state and other backward from the goal state,

stopping when the two searches meet in the middle

[4]. Bidirectional search is implem

one or both of the searches check each node before

it is expanded to see if it is in the fringe of other

search tree, if it is so, a solution has been found.

For example if a problem has solution depth d=6,

and each direction runs breadth-f

node at a time then in

the worst case the two searches meet when each

has expanded all but one of the nodes at depth 3.

For b=10, it means a total of 22,200 node

generation, compared with 11,111,100 for a

standard breadth-first search. Thi

complete and optimal, if both searches are breadth

first, other combinations may sacrifice

completeness, optimally or both [4]. The most

difficult case for bidirectional search is when the

goal test gives only an implicit description of some

possibly large set of goal states

Fig.4 Bidirectional Search [5]

2394-3777 (Print)

2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

node the goal state and continues its searching from

there. It expands the node that appears to be closest

to the goal. This search starts with the initial vertex

and makes very single possible change then looks

at the change it made to the score. This search then

applies thechange till the greatest improvement.

The search continues until no further improvement

can be made. The Greedy Search never makes a

lateral or uphill move. It uses minimal estimated

cost h(n) to the goal state as measure which

decreases the search time but the algorithm is

mplete nor optimal. The main advantage

of this search is that it is simple and finds solution

quickly and as far as its disadvantages are

concerned it is not optimal, susceptible to false start

) is same for space

The idea behind bidirectional search is to run

two searches same time, one forward from the

initial state and other backward from the goal state,

stopping when the two searches meet in the middle

[4]. Bidirectional search is implemented by having

one or both of the searches check each node before

it is expanded to see if it is in the fringe of other

search tree, if it is so, a solution has been found.

For example if a problem has solution depth d=6,

first search one

the worst case the two searches meet when each

has expanded all but one of the nodes at depth 3.

For b=10, it means a total of 22,200 node

generation, compared with 11,111,100 for a

first search. This algorithm is

complete and optimal, if both searches are breadth

first, other combinations may sacrifice

completeness, optimally or both [4]. The most

difficult case for bidirectional search is when the

goal test gives only an implicit description of some

Fig.4 Bidirectional Search [5]

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

Other than Uninformed search techniques,

Heuristic is a problem specific knowledge that

decreases expected search efforts. It is a technique

which works sometimes but not always. Heuristic

search algorithms use information about the

problem to help directing the path through the

search space. These searches use some functions

that estimate the cost from the current state to the

goal presuming that such function is efficient.

Generally heuristic incorporates domain knowledge

to improve efficiency over blind search [6]. In AI

heuristic has a general meaning and also a more

specialized technical meaning. Generally a term

heuristic is used for any advice that is effective but

is not guaranteed to work in every case [5].

G. A* Search

A* is a cornerstone name of many AI systems and

has been used since it was developed in 1968[1] by

Peter Hart, Nils Nilsson and BetramRapahel. It is

combination of Dijkstra’s algorithm and best first

search. It can be used to solve many kinds of

problems. A* search finds the shortest path through a

search space to goal state using heuristic function.

This technique finds minimal cost solutions and is

also directed to a goal state called A* search. The A*

algorithm also finds the lowest cost path between the

start and goal state, where changing from one state to

another requires some cost. A*requires a heuristic

function to evaluate the cost path that passes through

the particular state [2]. It is very good search method

but with complexity problems. This algorithm is

complete if the branching factor is finite and every

action has fixed cost. A* requires heuristic function to

evaluate the cost of path that passes through the

particular state. It is defined by the following

formula:-
f(n)= g(n)+h(n) [2]

Where g(n) is the cost of the path from the start

state to node n and h(n) is the cost of path from

node n to the goal state. The speed of execution of

A* search is highly dependent on the accuracy of

the heuristic algorithm that is used to compute h(n).

A* search is both complete and optimal. Thus if we

are trying to find the cheapest solution a reasonable

thing to try first is the node with the lowest value of

g(n)+h(n). It turns out that this strategy is more

than just reasonable which provides that the

heuristic function h(n).

H. Hill Climbing Search
Hill climbing search algorithm is simply a loop

that continuously moves in the direction of

increasing value, which is uphill. It stops when it

reaches a ―peakǁ where no neighbour has a higher

value. The hill climbing comes from that idea that

if you trying to find the top of the hill and you go

up direction from where ever you are. The question

that remains is whether this hill is indeed the

highest hill possible. Unfortunately, without further

extensive exploration, that question cannot be

answered [7]. This technique works but as it uses

local information so it can be fooled. The algorithm

does not maintain a search tree, so the current node

data structure need only record the state and its

objective function value.

Where g(n) is the cost of the path from the start

state to node n and h(n) is the cost of path from

node n to the goal state. The speed of execution of

A* search is highly dependent on the accuracy of

the heuristic algorithm that is used to compute h(n).

A* search is both complete and optimal. Thus if we

are trying to find the cheapest solution a reasonable

thing to try first is the node with the lowest value of

g(n)+h(n). It turns out that this strategy is more

than just reasonable which provides that the

heuristic function h(n).

H. Hill Climbing Search
Hill climbing search algorithm is simply a loop

that continuously moves in the direction of

increasing value, which is uphill. It stops when it

reaches a ―peakǁ where no neighbour has a higher

value. The hill climbing comes from that idea that

if you trying to find the top of the hill and you go

up direction from where ever you are. The question

that remains is whether this hill is indeed the

highest hill possible. Unfortunately, without further

extensive exploration, that question cannot be

answered [7]. This technique works but as it uses

local information so it can be fooled. The algorithm

does not maintain a search tree, so the current node

data structure need only record the state and its

objective function value.

Where g(n) is the cost of the path from the start

state to node n and h(n) is the cost of path from

node n to the goal state. The speed of execution of

A* search is highly dependent on the accuracy of

the heuristic algorithm that is used to compute h(n).

A* search is both complete and optimal. Thus if we

are trying to find the cheapest solution a reasonable

thing to try first is the node with the lowest value of

g(n)+h(n). It turns out that this strategy is more

than just reasonable which provides that the

heuristic function h(n).

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

H. Hill Climbing Search
Hill climbing search algorithm is simply a loop

that continuously moves in the direction of

increasing value, which is uphill. It stops when it

reaches a ―peakǁ where no neighbour has a higher

value. The hill climbing comes from that idea that

if you trying to find the top of the hill and you go

up direction from where ever you are. The question

that remains is whether this hill is indeed the

highest hill possible. Unfortunately, without further

extensive exploration, that question cannot be

answered [7]. This technique works but as it uses

local information so it can be fooled. The algorithm

does not maintain a search tree, so the current node

data structure need only record the state and its

objective function value.

In this algorithm only a local state is considered

when making a decision of which node is to expand

next? When a node is entered all of its successor

nodes have a heuristic function applied to them.

The successor node with the most desirable result is

chosen for traversal. Hill climbing sometimes

called greedy local search because it catches a good

neighbour state without thinking ahead about where

to go next. Hill climbing often makes very rapid

progress towards a solution because it is usually

quite easy to improve a bad state. Hill climbing is

best suited to the problems, where the heuristic

gradually improve the closer it gets to the solution.

It works badly, where there are sharp drop-offs. It

assumes that local improvement will lead to global

improvement. There are some reasons by which hill

climbing often gets stuck which are stated below.

Local Maxima: A local maximum is the peak that

is higher than each of its neighbouring states, but

lower than the global maximum. Hill climbing

algorithms that reach the vicinity of local

maximum will be drawn upwards towards the

peak, but then will be stuck with nowhere else to

go [4].

Ridges: Steps of East, North, South and West may
go down but the step to North West may go up.
Ridges result in a sequence of local maxima that is

very difficult for greedy algorithm to navigate [4].

Plateaus: The space has a broad flat area that gives
the search algorithm no direction (random walk).

Many variants of hill climbing have also been
invented which are described below [4]:

Stochastic Hill climbing: This variant chooses at

random from among the uphill moves and the

probability of selection can vary with the steepness

of the uphill move. This usually converges more

slowly than steepest ascent but in some state

landscapes it finds better solution.

First choice Hill climbing : First choice Hill

climbing variant implements stochastic hill

climbing by generating successors randomly until

one is generated that is better than current state.

This is a good strategy when a state has thousands

of successors.

Random Restart Hill Climbing: This Variant

adopts the well known adage, if at first you don’t

succeed try again and again. It conducts a series of

hill climbing searches from randomly generated

initial states, stopping when a goal is found.

I. Simulated Annealing

In the early 1980's, Kirkpatrick, Gelatt&Vecchi
(1982, 1983) and independently Cerny,
In 1985 introduced the concept of the physical

annealing process in combinatorial optimization

problem. The reason originates from the analogy

between the solid annealing process and the problem

of solving large scale combinatorial optimization

problem [7]. Simulated annealing exploits an analogy

between the way in which metal cools and freezes

into a minimum energy, crystalline structure and

the search for a minimum in a more general system.

Simulated annealing is a probabilistic search

algorithm and can avoid becoming trapped at local

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

minima. Simulated annealing uses a control

parameter T, which by analogy with the original

application is known as the system temperature. It

escapes local maxima by allowing some bad moves

but gradually decrease their frequency.
Properties
If T decreases slowly enough, then simulated
annealing search will find a local optimum with
probability approaching. It is also widely used in

VLSI layout, airline scheduling etc.

J. Generate and Test search

This is the simplified form which contains the

following
steps:

• It generates a possible solution

• Compares the possible solution to the

goal state.

• If the solution is found it returns the
success otherwise it again goes to first
stage.

These are brute force algorithms that simply
generate a possible solution and test to see if it is
Correct, if the solution is not correct then they

repeat.

Advantages:-The main benefit of this algorithm is

that it iseasy to implement but its time complexity

is higher than other search algorithms [7]. It takes

very long time before the solution is found. This

algorithm is improved to hill climbing algorithm.

In such algorithms heuristic function is used to

estimate the distance from the goal state. Thus only

that solution is generated that will minimize the

distance.

Disadvantages:- Generate and test approach is not

veryefficient because it also generates many wrong

assignments of values of variables which are

rejected in the testing phase. Furthermore the

generator leaves out the conflicting instantiations

and it generates other assignments independently of

the conflict. Visibly one can get far better

efficiency if the validity of the constraint is tested

as soon as its respective variables are instantiated

[7].

K. Back Tracking (BT)

A variant of Depth First Search is called Back
Tracking search, which uses still less memory. In
this search only one successor is generated at a
time rather than all successors. Each partially
expanded node remembers which successor to
generate next. In this way only O(m) memory is

needed rather than O(b
m

). It is the most common

algorithm for solving constraint satisfaction
problem (CSP).

There is a major disadvantage of the standard

backtracking scheme which is Thrashing. It occurs

because the standard BT algorithm does not identify

the main reason of the conflict or problem i.e.

conflicting variables. That is why search in different

parts of the space keeps failing for the same reason.

Intelligent back tracking can reduce or finish

thrashing. It is done by the scheme on which

backtracking is done directly to the variable that cause

the failure [8].
Best first search is an instance of the general tree

or graph search algorithms in which a node is

selected for expansion based on evaluation function

f (n) [8]. Traditionally the node with the lowest

evaluation is selected for the expansion because the

evaluation measures distance to the goal. Best first

search can be implemented with in general search

framework via a priority queue, a data structure

that will maintain the fringe in ascending order of f

values. This search algorithm serves as

combination of Depth First Search and Breadth

First Search algorithms. BFS algorithm is often

referred to as greedy algorithm because this

algorithm quickly attacks the most, desirable path

as soon as its heuristic weight becomes the most

desirable. There is a whole family of BFS

algorithms with different evaluation functions. A

key component of these algorithms is a heuristic

function denoted h (n):
h(n) = estimated cost of the cheapest path from
node n to a goal node [8].
The main steps of this search algorithm are: first add

the initial node (starting point) to the queue and

secondly it compares the front node to the goal state,

if they match then the solution is found. If they don’t

match then expand the front node by adding all the

nodes from the links. If all the nodes in the queue are

expanded then the goal state is not found i.e. there is

no solution and it stops. Apply the heuristic function

to evaluate and reorder the nodes in the queue [9].

M. Branch and Bound

The branch and bound method was first used for

parsimony by Hendy and Penny [8]. In 1975 La

Blanc presented a branch and bound algorithm

solution methodology for the discrete equilibrium

transportation network design problem [9]. These

search methods basically rely on that idea that we

can divide our choice into sets using same domain

knowledge and ignore a set when we can determine

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

that the optimal element can’t be in it. In 1991
Chen proposed a branch and bound with a

stochastic incremental traffic assignment approach

for the single class network design problem. It is an

algorithmic technique which finds the optimal

solution by keeping the best solution found so far.

If partial solution can’t be improved to its best, it is

abandoned. By this method the number of nodes

which are explored can also be reduced. It also

deals with the optimization problems over a search

that can be presented as the leaves of search tree.

The usual technique for eliminating the sub trees

from the search tree is called pruning. The load

balancing aspects for branch and bound algorithms

make it parallelization difficult. The primary

difficulty being that usual assumption requires no

priori information about the likely location of the

search target.

N. Means End Analysis
Mean End Analysis is also an important kind of
search algorithm and it is used in AI applications
when a complex search is needed to be done. It is a
different approach to find the solution and they are a
common form of heuristic algorithm. Early
implementations included the general problem solver
(GPS). Now a day Means-End analysis is still used to
create effective searches in the field of distributed
computed Artificial Intelligence. It also focuses the
search onactions which decrease the distance
between current and target.
There are three main kind of goals used in mean
end analysis search algorithm which are
1- Transform a state into a set of states
2- Decrease a distance possessed by a state
3-Apply an operator to the state to reduce the

difference.

Fig.6 Means End Analysis States [9]

IV. COMPARISON OF DIFFERENT SEARCH

ALGORITHMS

The output of problem solving algorithm is

either failure or solution. Some algorithms might

get stuck in an infinite loop and never return an

output. When determining which search algorithm

is appropriate for a problem space, it is necessary

to derive and compare general attributes of each

algorithm.We will evaluate algorithm’s

performance in four ways

A. Completeness: - Is that algorithm

guaranteed to find a solution when there is
one? This column is a Boolean indicator

of whether or not the search algorithm is
exhaustive.

B. Optimality: - Does that strategy find the

optimal solution? This column indicates

that whether or not the solution found will
always be the optimal solution.

C. Time Complexity: - How long does it take

to find a solution? It is the order of
complexity search time used by algorithm
expressed as a function.

D. Space Complexity: - How much memory is

needed to perform the search? This
column is the order of
complexity memory requirements of
algorithm also expressed as a function.

The comparison among different search algorithms
by these factors is shown by the table 1:

TABLE 1: Comparison of different search

algorithms

Where
d =depth of solution with in
search tree b = branching
factor of search tree
n =subset of b for which algorithm will actually

process.

In table 1, the attributes create a basis for decision
making. Each of the algorithms discussed contains
weak and strong attributes.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 21, August 2017

V. CONCLUSION

It is the function of the problem space to weight the

trade-offs between the algorithms and determines

which algorithm provides the best solution [9]. It

can be seen from the table that the time estimate

from all the searches are similar. The three

exceptions are the Bidirectional, Beam and

Generate and Test searches. The main reason that

the Bidirectional search has a lesser time estimate

is because it is simultaneously working from both

ends of the problem looking for a common

intermediate node. The Beam search has a time

estimate of O(n
d
) as opposed to the more common

O(b
d
). It is because the Beam Search is modified

A* Search that examines on the best n branches at

any node. It speeds up processing, but at the cost of

assuming that a suboptimal node will never need to

be travelled to reach the goal state. If that is the

case the solution to the search will never be found.

The memory requirement of the search algorithms

are more distributed than the time estimates. In

many cases a search algorithm will approach a

problem Breadth First or Depth First.

REFERENCES

[1]:R. Saunders, “Lecture Notes on

IntroductiontoArtificialIntelligencefor Games”,

2006,http://www.soi.city.ac.uk/ ~rob/Lecture09-

8up.pdf.

[2]: S.J. Kelly, “Article on Applying Artificial

IntelligenceSearch Algorithms and Neural

Networksfor Games”,

http://www.generation5.org/content/2003/KellyMin

iPaper.asp,2003.

[3]: Christo Ananth, C.Sudalai@UtchiMahali,
N.Ebenesar Jebadurai, S.Sankari@Saranya,
T.Archana, “Intelligent sensor Network for Vehicle
Maintenance system”, International Journal of
Emerging Trends in Engineering and Development
(IJETED), Vol.3, Issue 4, May 2014, pp-361-369

[4]:S. Russel and P.Norvig,“ArtificialIntelligence

aModern Approach, A book on Artificial

Intelligence and Algorithms”, 2006.

[5]: R.E. Korf,“ Scientific Paper on Artificial
Intelligence Search Algorithms”, University of
California LosAngeles, June 1999.

[6]: P.O. Doyle,“Definition on AI Search

AlgorithmsandTechniques”,

http://www.cs.dartmouth.edu/7Ebrd/Teaching/AI/

Lectures/Summaries/Search.html, May 2006.

[7]:A. Hertz,“Lecture Notes on AI

andSearchAlgorithms”,http://www.esalbpc3.masse

y.ac.nz/notes/59302/103.html, May 2006.

[8]: J. Betali,“ Lecture Notes on Cognitive

Science andSearch Algorithms”, University of

California Sandiago, Nov 16, 1999.

[9]: T.A. Assaleh,“ Article on Intelligent Search
Algorithm”,http://www.cosc.brocku.ca/~cspress/He
lloworld/1999/02-feb/search_algorithms.html,
Brooke University Canada, 1999.

172

