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2.1 RF Transistor Amplifier Design 

Amplifier designs at RF differ significantly from the conventional low 

frequency circuit approaches and consequently require special considerations. 

 

 

 

 

 

 

 

 

 
 

Fig. 2.1 : 

 
 

The amplifier parameters are, 

• Gain (dB) 

• Operating frequency and bandwidth (Hz) 

• Output power (dBm) 

• Power supply requirements (V & A) 

• Input and output reflection co-efficient 

• Noise figure 

In addition Intermodular Distortion Products, harmonics, feedback and heating 

effects all of which affect the amplifier performance. Christo Ananth et al.[1] 

discussed about E-plane and H-plane patterns which forms the basis of Microwave 

Engineering principles. 
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Fig. 2.2 : S implified Schema tic of a single-sta ge amplifier 
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2.2   Amplifier Power Relations 
 
RF Source 
 

There are various power gain definitions that are critical to the understanding 

of how an RF amplifier functions. 

→ For  this  reason,  power  flow  relations  under  the  assumption  that   the  two 

matching networks are included in between the source and load impedances. 

s →  Source Ref ection coefficient 

in →  Input Reflection coefficient 

Fig. 2.3 :

 

The source voltage is given by, 

b  = 
ƒZO    

Vs 
Zs+ ZO 

b1 = bs + ar   s 

b  =  b r - a s
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The incident power wave associated with br 1

|bF |2 1 

2
= = 

1 |b |2 s

2 | 1– ins|2 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

From the amplifier diagram, ar  
= in br 

b  = b - br   in s 

bS = br (1 - in s) ----- (1) 

is given as,

 
Pinc = ----- (2) 

The actual input power is the input terminal of the amplifier is composed of the 

incident and reflected power waves. 

Pin = Pinc (1 - | in|
2
) 

1
Pin = 

2

|bs|2 ( 1– ins|2) 
| 1– ins|2 

---- (3)

The maximum power transfer from the source to the amplifier is achieved, if 

the input impedance is complex conjugate matched (Zin = Zs
*
) or interms of the 

reflection coefficients (in = s*
). 

Under maximum power transfer condition, we define the available power PA 

as, 
 

PA = Pin /  in = s*
 

PA

1 |bs|2 ( 1–| s∗|2) 
= 

2 | 1– ss∗|2 

 
1 |bs|2 ( 1– | s|2) 

= 
2 ( | 1– | s | )2 

PA

1
= 

2

|bs|2 

( | 1– | s|2) 
----- (4) 

If in = 0, & s  ≠  0, it is seen that

Pin = ½ |bs|
2
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S 11
1– S22 L 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Transducer Power Gain 
 

The transducer power gain GT, which quantifies the gain of the amplifier 

placed between source and load. 

GT 

Power delivered to the load 
= 

Available power from the source 

GT 

PL 
= 

PA

The power delivered to the load,

PL = 
1

2
|b2|

2 
(1 - | L|

2
) 

PL |b2|2 ( 1–| L|2)  2  (1–| s|2) 
GT    = = 

PA 2 |bs|2 

GT   = 
|b2|2 ( 1–| L|2) (1–| s|2) 

|bs|2 
----- (5) 

With the help of signal flow, we establish

b = 
S21 a1 

1– S21 L 
---- (6)

b = [ 1 — ( S —  
S21 S12 L 

) s] a 1 ---- (7)

The required ratio is therefore given by

b2

bs 
=

S21 

( 1– S22 L)( 1– S11 s)– S12 S21 L S 
----- (8) 

b2

bs 
=

   S21 a1  
1— S22 L 

[ 1—( S    — 
S21 S12 L 

)  s ] a 11
1— S22 L 

1

     S21 
1— S22 L 

=
( 1— S22 L) ( 1— S11 s) —  S12 S21 L S 

1— S22 L 



 

100 
All Rights Reserved © 2015 IJARTET 

 

in = S 11 +  S21S21 L 
1–  S22 L 

= S 22 +  S12S21 S 
1–  S11 S 

---- (11)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Substitute this value in equation (5)

GT =
| S21|2 ( 1–|L |2) ( 1–|s|2) 

| ( 1– S22 L)( 1– S11 s)– S12 S21 L S |2 
------ (9)

Which  can

coefficients. 

be   rearranged  by defining   the   input   and   output reflection 

---- (10)

 
out 

With these two definitions, two more transducer power gain expressions can be 

derived. 

Substitute  S12 = 0 in equation (10) 

in = S11 + 0 

Substitute these values in equation (9) 

GT =
| S21|2 ( 1–| L |2) ( 1–| s|2) 

| ( 1– S22 L)|2 | 1 – in S |2 
---- (12)

Substitute S12 = 0 in equation (11)

out = S22

Substitute  these values in equation (9)

GT =
| S21|2 ( 1–| L |2) ( 1–| s|2) 

| ( 1– out L)|2 | 1 – S11 S |2 
---- (13)

The transducer power gain is called unilateral power gain GTU which   neglects 

the feedback effect of amplifier (i.e.) S12 = 0. 

This simplifies, 

GTU =
( 1–| L |2)  ( 1–| s|2) | S21|2 

| ( 1– L S22)|2 | 1 – S11 S |2 
------ (14)

The above equation is often used as a basis to develop approximate designs for 

an amplifier and its input and output matching networks. 



 

101 
All Rights Reserved © 2015 IJARTET 

 

out 

PA 

Pin 

PA 

Pin 

 

 
 

 

 

 
 
 
 
 
 

 

 

 

 

 

 
 

 

Additional Power Relation 

The transducer power gain is a fundamental expression from which additional 

important power relations can be derived. 

For instance, the available power gain for load side matching ( L = out* ) is 

defined as, 

GA =
GT 

L 

∗
=  

GA 

Power available from the amplifer 
= 

Power available from the source 

Substitute the condition in equation (13)

GA =
| S21|2 ( 1– | s|2) 

| 1– |  out  |2 |1 – S11 S |2 
----- (15)

Further, the power, gain is defined as the ratio of the power delivered to the 

load to the power supplied to the amplifier. 

Power delivered to the load 
G = 

Power supplied to the amplifier 

G = 
PL

 
Pin 

Multiplying and Divide by ‘PA’ in the above equation 

G =  
PL 

PA 

G = GT

Substitute equation (3), (4) in equation (12), 

( 1–| L |2)   | S21|2  ( 1–| S |2) 
G  = 

| 1– S in |2 | 1 – S22 L |2 

2 2 

x 
1 |bs |    2 |1– in S | 
2   1–| S |2  |bs|2 ( 1–|in |2) 

GA =

=

| S21|2 ( 1–| out∗ |2) ( 1–| s|2) 

| 1– out out∗|2 |1 – S11 S |2 

| S21|2 ( 1–| out |2) ( 1–| s|2) 

| 1– |  out |2)2 |1 – S11 S |2 
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---- (16)
( 1– | L |2)   | S21|2 

(1– | in|)2 | 1 – S22 L |2 
G  =

This example goes through the computation of some of these expressions for 

an amplifier with given S-parameters. 

2.3 Stability Considerations 

Stability Circles 

One of the first requirements that an amplifier circuit is a stable performance in 

the frequency range. This is a particular concern when dealing with RF  circuits,  

which tend to oscillate depending on operating frequency and termination on operating 

frequency and termination. 

If | 0| > |, then the return voltage increases in magnitude (positive feedback) 

causing instability. | 0 | < 1 causes a diminished return voltage wave (negative 

feedback.) 

The amplifier as a two-port network, characterized through its S-parameters 

and external terminations described by L and s. 

Stability then implies that the magnitudes of the reflection coefficients are less 

than unity. 

| L | < 1,  | s | < 1 ----- (1)

| in | =  | 
S11— L ∆ 

|  < 1 
1— S22 L 

----- (2) 

| out | =  | 
S22— S ∆ 

|  < 1 
1— S11 S 

Where ∆  = S11 S22 – S12 S21 

----- (3)

Since the S-parameters are fixed for a particular frequency, the only factors 

that have a parametric effect on the stability are L and S. 

The complex quantities are, 

S = S R +  j S ;  S = S + j S I

∆ =  ∆
R 

+  j ∆
I    

;  L = L 
R 

+ j I 
L

----- (4) 
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R 2 I
out out 

out

R I ( S —  S∗    ∆ )∗ 

R R 2 I I  2 
in in

in in in 

∗ ∗ 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Substitute this complex quantities in equation  (2), resulting after some algebra 

in the output  stability circle equation. 

( LR —C )  + ( L  — C   R )2  = r2
out ------ (5) 

Where the circle radius is given by, 

r = 
| S12 S21| 

| | S22|2  – | ∆ |2 | 
----- (6) 

and the center of this circle is located at, 

Cout = Cout  +  j Cout =
22    11 

| | S22|2  – | ∆ |2 | 
----- (7) 

Substitute  the  complex  quantities  (4)  in  equation  (3),  resulting  after some 

algebra in the input stability circle equation 

( s  – C )  – (s  – C )   = r 2 
in ------ (8) 

Where   rin = 
| S12 S21 | 

| | S11|    – | ∆ |2 | 
----- (9) 

and the centre of this circle is located at, 

C =  C R +  j C I  = 
( S11 – S22 ∆ ) 

| S11|2–| ∆ |2 
---- (10) 

The response of the stability circle is shown below, 

Fig. 2.4 : 

 

If L = 0, then | in | = | S11 | and two cases have to be differentiated depending 

on | S11 | < 1 or | S11 | > 1. 
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behavior in the complex out = out
R   

+  j   plane.   Here | s | < 1 domain  must 

 

 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

reside completely within the | out | = 1 circle which is shown in figure (2.5b). 

Unconditional stability 

Unconditional stability refers to the situation where the amplifier  remains 

stable throughout the entire domain of the smith chart at the selected frequency and 

The  stability  circles  have  to  reside  completely  outside  the  |  s  |  =  1  and 

| L | = 1 circles, which is shown in figure (2.5a). 

The stability factor (or) Rollett factor (k) is given by, 

k =
1– | S11 |2 – | S22 |2+| ∆ |2 

2 | S12 | | S21 | 
> 1 ---- (13) 

Alternatively, unconditional stability can also be viewed in terms of the s 
I 

out 

Fig. 2.5 : 

 

Plotting | s | = 1 in the out plane produces a circle whose center is located at

and the radius of circle is, 

bias conditions.   This applies to both the input  and 

| S22 | < 1 it is stated as, 

| | cin | - rin | > 1 

| | cout | - rout | > 1 

utput ports. For | S11 | < 1    and 

----- (11) 

----- (12) 

Cs  =  S22 + 
S12 S21 S  ∗ 11 

1– | S11|2
----- (14) 
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| in | = | Zin –ZO | 
Zin+ ZO 

| Zout – ZO |Zout + ZO 
> 1

 

 
  

 

 

 

 
 

 

 
 
 
 

 
 
 
 
 
 
 

 

 
 

 

----- (15) 
|  S12 S21 | 

1– | S11|2 
rS  = 

Stabilization Methods 
 

If the operation of a FET (or) BJT is found to be unstable in the desired 

frequency range, can be made to stabilize the transistor. 

| in | > 1 and | out | > 1 can be written in terms of input and output 

impedances. 

> 1

 
| out | = 

Which imply Re {Zin} < 0 and Re {Zout} <0. 

One way to stabilize the active device is to add a series resistance (or) shunt 

resistance to the port. 

’

’

Fig. 2.6: 

 

Above figure shows the stabilization configuration of the input port, we require 

Re {Zin + Rin’ + ZS} > 0  (or) 

Re {Yin + Gin’ + YS} > 0 

Fig. 2.7 : 
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GTU = 
1–| s |2 

| 1–  S11 s |2 
| S21 |

2
 

  

| 1 – L S22 |2 

1–| L |2

----- (2) 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 
 

rewritten  such  that   the isemploy  the  unilateral  power  gain  described  by    GTU, 

individual contributions of the matching network. 

Above figure shows the stabilization configuration of output port. 

The condition is, 

Re {Zout + R’out + ZL } > 0 or 

Re { Yout + G’out + YL } > 0 

Stabilization through the addition of resistors comes at high expensive, 

impedance matching can suffer, increase the loss in power flow and increasing the 

noise figure. 

2.4 Gain consideration 

Constant Gain 

Generally gain is defined as the ratio of output power to input power 

Output power 
Gain  = 

Input power 

Unilateral Design 

Besides ensuring stability, there is need to obtain a desired gain performance is 

another important consideration in the amplifier design. 

Fig. 2.8  : Unilateral power gain System arrangement. 

 

The  influence  of  the transistor's  feedback  is  neglected  (S12 = 0). We can 

----- (1) 

 
GTU = GS   GO  GL 

Where GS = Gain associated with input matching network 
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*

GSmax  = 
11 

| 1–  S11 S  ∗ |2 
= 11 

11 | 1– |S 11 

=
1 

1– | S11|2 

1 

1– | S22|2 

 

 
  

 

 

 
 
 
 
 
 
 
 

 
  

 

  
 
 

 

 
 
 
 
 
 
 

 
 

----- (7) 

|2| 2
 
GSmax 

----- (3) 
1–| s |2 

| 1–  S11 s |2 
GS = 

GL = Gain associated with output matching network 

GL = 
1–| L |2 

| 1–  S22 L |2 
----- (4) 

From equation (4), the network gain can be greater than unity, since they do 

not contain any active devices. For this reason, without any matching a significant 

power loss can occur at the input and output sides of the amplifier.  GS and GL are  

used to reduce these losses. 

If | S11 | and | S22 | are less than unity, the maximum unilateral power gain 

GTUmax results when both input and output are matched. 

(i.e.)  s = S11
* 

and L = S22 

Maximum gain associated with input matching network is, 

1–|S |2 

GLmax  = ----- (8) 

Normalized gain associated with input matching network is,

Normalized gain is given in both cases as 
 
0  <  gi  <  1 with i = S, L 

Go = Insertion gain of transistor 

Go = | S21 |
2

 

Equation (2) can be expressed interms of dB, 

GTU (dB) = GS (dB) + GO (dB) + GL (dB) 

----- (5) 

----- (6)

1–| S  ∗ | 2 

gs =

gL =

GS 

Gsmax 

GL 

GLmax 

=

=

1–| s |2 

| 1– |S11s|2 

1–| L |2 

| 1 – S22L |2 

1 — | S11 |
2

 ----- (9) 

1 — | S22 |
2

 ----- (10)
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T  TU 

11   22 

11   22 

 
 

 
 
 
 

 
 
 
 

 

 

 

 

 

 
 
 

 
 
 

 
 

 

Normalized gain is expressed as, 

Here ii = 11, 22 depending on i = S, L 

The result is a set of circles with centre locations at,

radious of size is given by,

rgi = 
ƒ1– gi ( 1– | S11 |2 ) 

1–| Sii |2 ( 1–gi ) 
----- (13)

The equation (12) and (13) are the unilateral constant gain equation. 

Unilateral Figure of Merit 

The unilateral design approach involves the approximation that the feedback 

effect (or) reverse gain of the amplifier is negligible (i.e.) S12 = 0. 

To estimate the error due to this assumption, the ratio between transducer gain 

(GT) and transducer gain (GTU) is formed. 

GT 
=GTU 

1 

| 1–  S12  S21 L s | 
( 1— S11 s )( 1— S22L ) 

2
Where G   < G ---- (14)

The maximum error is obtained for the input and output matching conditions 

s = S11* , L = S22* 

GT 

GTU max
=

1 
S12  S21S  ∗  S  ∗ 2

---- (15)

GT 

GTU max
=

1 
S12  S21S  ∗  S  ∗ 2

--- (16)

This can be used to set bounds on the error fluctuation. 

gi =
1–| i |2 2

| 1– |S   i |2 
( 1 - | Sii |  ) ----- (11) 

ii

dgi =
gi S ∗ ii

1– | Sii |2 (1– gi ) 
----- (12)

| 1–
( 1— S11S11 )( 1— S22 S22 ) 

∗ ∗ |

| 1–
( 1— | S11 |2 )( 1—| S22 |2 ) 

|
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B1 4C∗ 

C1 

22

B2 4C∗ 

C2 

 

 
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 

 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
  

 
 

 
 

------ (23)2 

C2 
J( )2 — 

1

2
-

B2 

2 C2 
ML = 

B1 = 1 — | S22 |2 —|∆ |2 + | S11 |2 

------ (21)1 

C1 
J( )2 — 

1

2
-

B1 

2 C1 
MS = 

---- (17)< (1 – U)
-2GT 

GTU 
( 1+ U)

-2 
< 

Where U → frequency dependent unilateral figure of merit.

U =
| S12 | | S21 | | S22 | | S11  | 

( 1– |S11 |2 (1–  |S22|2 ) 
---- (18)

To justify a unilateral amplifier design approach this figure of merit should  be 

as small as possible.  In the limit GT approaches GTU for the ideal case of S12 = 0, so  

the error is vanished (i.e.) U = 0. 

Bilateral Design 

For many practical situations the unilateral approach may not be appropriate 

because the error committed by setting S12 = 0. So the bilateral design approach is 

used. 

Instead of unilateral matching S* 
= S11 and L* 

= S22, it deals with  the 

complete equations for the input and output reflection coefficients. 

Which require simultaneous conjugate match that means matched source    and 

load reflection coefficients MS & ML. 

Where 
C1   = S11 –  S  ∗ ∆ 

} ------ (22)

s* 
=  S +11

L* 
= S +22

S12 S21 L 
1– S22 L 

S12 S21 s 

1– S11 s 

S11 S22 – S12 S21 

=

=

S11–  L ∆
1– S22 L 

S22– s ∆ 

1– S11 s 

----- (19)

----- (20)

Where  ∆ = 
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11

 

 
  

  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

B2 = 1 — | S11 |2 —|∆ |2 + | S22 |2 

The  optimal matching equation (21) & (23) is given by,

------- (24)}
S22 –  S  ∗ ∆ C2   = 

Where 

From this it is noted that the unilateral approach which decouples input and 

output ports is a subset of the bilateral design approach. 

Operating and Available Power Gain Circles 

For the situation where the reverse gain of S12 cannot be neglected, the input 

impedance is dependent on the load reflection coefficient. The output impedance 

becomes the function of the source reflection coefficient. 

In bilateral case, which takes the mutual coupling between input and output 

ports there are 2 alternative methods are to develop amplifiers with a specified gain. 

The first method is based on the use of operating power gain G. To find the 

load reflection coefficient L, assume the source is complex conjugate matched to the 

input reflection coefficient ie., s = in*
. If the input voltage standing wave ratio is 

unity, the first method is preferable. 

The second method is based on the use of available power gain GA. In this 

case, we assume the load is complex conjugate matched to the output reflection 

coefficient. (i.e.) L = out*. If the output standing wave ratio is unity, the second 

method is preferable. 

Operating Power Gain 
 

Operating power gain is given by, 

M 
* 

= S + S 11

M 
* 

= S +L 22

S12 S21 ML 

1– S22 ML

S12 S21 MS 

1– S11 MS 

G  =
( 1–|  L |2 ) | S21 |2 

( 1–|  in |2 | 1– S L |2 22 
[∴ in = S11  + 

S22 S12 L 
1 S22 L

]
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S21S12  L 

1— S22 L 

S21S12  L 

 

  
 

 

 
 

 
 

 

 

 

 
 

  
 
 
 
 

 

 
 
 
 

 

 

 

 
 

 

----- (2) 

1— S22 L 

 
The circle equation for load reflection coefficient L; that is, 
 

| L – dgo | = rgo 

Where the center position dgo is, 

|   ) | 1– S22 L |2 ( 1– | S11+ 

|   ) | 1– S22 L |2 ( 1– | S11+ 

( 1–|  L |2 ) | S21 |2 

2 =

G = go |S21|
2

 ------ (1)

Where, 

go = 
1– |  L |2

2

The radius rg0 is defined as, 

where, 
 

k → Roulette stability factor 

Constant gain circle in L plane into a circle in s  plane, i.e.,

| s – dgS | = rgS ----- (5) 

Circle  radius  rgs  and  its  center  dgs  are  obtained  from  the  requirement that 

s = in*
.  This can be written as, 

s* 
= 

S11–  ∆  L 

1– S22  L 
----- (6) 

L =
S11–    S∗ 

∆ – S22 S∗ 
----- (7) 

dgo =
gO  ( S22–  ∆ Ω∗ ) 1

1+ gO ( | S22 |2–| ∆ |2 
------ (3)

J1– 2 kgO | S12 S21 |+ g2 | S O 12    21 S |2 

rgo = 
| 1+ g  ( |S 

----- (4) 
O 22 |2 –| ∆ |2) | 
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|   S11–   S — 
∗ 

go

O O

ga ( S11–  ∆ S  ∗ )∗ 

a 12   21 

 
 

 
 

 

 

 
 
 
 

 

 

 

   
 
 
 

 

 

 
 
 

 

|2 SJ1– 2 kga | S21 S12 |+ g2 | S 

Substitute (7) in (2)

∆ – S22 S∗ 

The circle radius is, 

|   =  rgo ----- (8)

rgS =
rgo  | S12 S21| 

| |1– S22 dg   |2 – rg2 | S22 |2 | 
----- (9) 

Center is given by,

Available Power Gain 
 

Circle equation which relates the source reflection coefficient to the desired 

gain. 

| s – dga | = rga 

Where the center position dga is, 

dga =
22 

1+ ga ( |  S11  |2–| ∆ |2 ) 
---- (11)

And the radius is defind as, 

The proportionality factor ga is given by, 

ga =
GA 

| S21 |2 

Where GA is desired power level. 

The constant available power circle in L plane,

| L – dg1 | = rg1. 

The circle radius is given by, 

----- (13)

d
( 1– S22  dgO ) ( S11– ∆ dgO )∗–  r  2  ∆∗ S go 22

gS =
| 1– S22 dg   |2 –  r 2 | S |2 | 

---- (10)
O go 22 

rga =
| 1+ g  ( |S |2 –| ∆ |2) | 

---- (12)
a 11 
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a ga 

dg1 = 
ga 11 

ga 11

|2 

min

Rn 

Gs 

Gn 

Rs 

1 

YS

| Y  – Y S opt |2 (or)

S opt

Rn = of the device. 

opt opt opt 

 

  
  

 

 
 

   
 

 

 
 

 

 
 

 

 
 

 

 
 
 

 

impedance or admittance, the optimum reflection coefficient opt is often listed. 

The relationship between Yopt and opt is given by 

Gn 

|2 – r 2 |  S 11 dga | 1– S 

----- (14)
rga | S12 S21| 

| |1– S11 dg   |2 – r 2 | S11 |2 | 
=rg1

The center location is given by, 

( 1– S11  dga ) ( S22– ∆ dga )∗–  r 2 ∆∗ S 

2.5  Noise Figure Circles 

In many RF amplifiers, the need for signal amplification at low noise level 

becomes an essential system requirement. Unfortunately, designing a low noise 

amplifier competes with such factor as stability and gain. 

For instance, a minimum noise performance at maximum gain cannot be 

obtained. It is important to develop a method that allows us to display the influence of 

noise as part of the smith chart and observe trade-offs between gain and stability. 

The key ingredient of a noise analysis is the noise figure of a two-port 

amplifier in the admittance form. 

 

F = Fmin + 

F = F + | Z  – Z |2

Where Zs = is the source impedance.

When  using  transistors,  four  noise  parameters  are  known  either     through 

datasheets from the FET or BJT manufacturers.  They are, 

•

 
•

The minimum noise figure Fmin whose behavior depends on biasing   condition 

and operating frequency. If the device were noise free Fmin = 1. 

The equivalent noise resistance 
1 

The  optimum  source admittance Y = G + j B = 
1    

. Instead of 
Zopt 
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Rn 
YO ( 1—| s|2 )

|  1+ s |2 

| – YO |
( 1+ s ) ( 1+ opt ) 

YO(1– s) (1– opt ) 
 
 
 
 
F O ( 1+ s ) ( 1+ opt ) 

O ( 1+ s ) (1+ opt) 

 

 
 

  
 

 

 
 

 

 

 

 

 

 

 
 

 
 

F = Fmin + 

1– opt 
Yopt = Y0 

1+ opt 
 

Since the S Parameter representation is suitable for high frequency.

 
1– s 

YS = Y0 

1+ s 
 

( 1– | s  |2 ) 
GS can be written as GS   = Y0 

1+|  s |2 

2 

= Fmin +
Rn 

YO ( 1— | s|2 ) 

|  1+ s |2 

Y2 | 
YO(1– s) 

–  
(1– opt ) 

| 2
 

F = Fmin + 
Rn 

( 1—| s|2 ) 

|  1+ s |2 
 

Rn 
( 1—| s|2 ) 

|  1+ s |2 

Y | 
( 1+ s ) (1+ opt )–(1–opt)(1+s)

| 2
 

F
Rn FO 

= Fmin + 
1–| s |2 

| 2 opt–2 s |2 

( 1+ opt )2 

F
4 Rn FO 

= Fmin + 
1–| s |2 

|  opt–  s |2 

( 1+ opt )2 

F
4 Rn 

= Fmin + 
ZO  ( 1–| s |2) 

|  s–   opt |2 

( 1+ opt )2 

For  s = opt lowest possible noise figure is achieved F = Fmin.

4 Rn 

ZO  ( 1–| s |2) 

|  s–   opt |2 

( 1+ opt )2 
= F - Fmin 

F = Fmin + Y O | | 1+ opt– s – s opt–1– s+ opt+ opt s)| 2 
( 1+ s )2  (1+ opt )2 
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( F–Fmin ) ( 1– | s |2)
4Rn 
ZO 

2 

| s - opt |
2 

=
( F–Fmin ) ( 1– | s |  ) ( 1+ opt  ) 

4Rn 
ZO 

= QK ( 1 -  | s |
2 

) 

|  s — K|  =

R  2 I I  2 
FK FK FK

I
FK FK FK 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

  
 

 

 

 

 

 

( 1+  QK )2 1+ QK

=
|  s–   opt |2 

( 1+ opt )2 

2
 
 
 

 
| s - opt |

2
 

Where, 

QK = | 1 + opt |
2 ( 

F – Fmin

4Rn 

Zo 

)

Let F = FK

QK = | 1 + opt |
2 ( 

FK – Fmin 

4Rn 

Zo 

)

| s - opt |
2 

= QK – QK | s |
2

 

s2 
– 2 s opt + opt

2 
= QK – QK | s |

2
 

s2 
– 2 s opt + opt

2 
+ QK | s |

2 
= QK 

| s |
2 

[ 1 + QK] – 2 s opt + | opt |
2 

= QK 

After some algebra 

  opt 2  Q2 + QK ( | –  opt |2) 

This is the circle equation in standard form that can be displayed as part of  the 

smith chart. 

| s – dFK |
2 

= ( SR 
– d )  + ( S  – d )  = r 2

The circle centre location dFK denoted by the complex number. 

d =  d  R  
+   j d = 

opt 

1+ QK 
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r 2
1 + QK 

2 K K 

( 1 + QK )2 

K

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

The associated radius

FK = | s —  opt 
2

| 

rFK =
Q2 + Q   ( 1– | opt |2 

rFK 

JQ  2+ QK ( 1– | opt |2) 

• The minimum noise figure is obtained for FK = Fmin, which coincides with   the 

location dFK = opt and radius rFK = 0. 

• All constant noise circles have their centres located along a line drawn from  

the origin to point opt. 

2.6 Impedance Matching Using Discre e Components 

Two-Component Matching Networks 

To analyze and design the simplest possible type of matching networks, called 

two-component networks also known as L – sections due to their element  

arrangement. 

These networks use two reactive components to transform the load impedance 

(ZL) to the desired input impedance (Zin). In conjunction with the load and source 

impedances, the components are alternatively connected in series and shunt 

configuration shown below, which depicts eight possible arrangements of capacitor 

and inductors. 

Fig. 2.9 : 

=
1 + Q K
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In designing a matched network, two approaches, 

i) To derive the values of the elements analytically 

ii) To rely on the smith chart as a graphical design tool. 

The first approach yields very precise results and is suitable for computer 

synthesis. Alternatively, the second approach is more intuitive, easier to verify and 

faster for an initial design.  Since it does not require complicated computations. 

Instead of the method, we can use the smith chart for rapid and relatively 

precise designs of the matching circuits. The appeal of this approach is that its 

complexity remains almost the same independent of the number of components in the 

network. 

The generic solution procedure for optimal power transfer includes the 

following steps, 

i) Find the normalized source and load impedances. 

ii) In the smith chart plot circles of constant resistance and conductance that 

pass through the point denoting the source impedance. 

iii) Plot circles of constant resistance and conductance that pass through the 

point of the complex conjugate of load impedance. 

iv) Identify the intersection points between the circles in steps ii & iii. The 

number of intersection points determines the number of possible L-section 

matching networks. 

v) Find the values of the normalized reactance and susceptances of the 

inductors and capacitors. 

vi) Determine the actual values of inductors and capacitors for a given 

frequency. 

    Frequency Response and Quality Factor 
 

The frequency responses of these two matched networks in terms of input 

reflection coefficient. 

 in   =  
Zin– ZS

 

Zin + ZS 
 

and the transfer function  H = 
Vout 

VS 
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L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Fig. 2.10 : Frequency response of the two matching network realizations. 

 

In both networks exhibit perfect matching only at a particular frequency f0 = 1 

GHZ and begin to deviate quickly when moving away from f0. The networks may be 

described by a loaded quality factor QL, which is equal to the ratio of the resonance 

frequency f0’ over the 3 dB bandwidth (BW). 

Q = 
fO 

BW 

Where bo h ‘f0’ and BW are expressed in Hz.   For frequencies close to    f0 the 

matching network can be  redrawn as a band pass filt  r with a loaded quality factor. 

The impedance transformation move from one node of the circuit to another. 

At each node of the matching network, the impedance can be expressed interms of an 

equivalent series impedance, 

ZS = RS + j XS (or) 

Admittance YP = GP + j BP 

Hence at each node, we can find Qn as the ratio of the absolute value of the 

reactance ‘XS’ to the corresponding resistance RS. 
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n

n

L

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

| XS | 

RS 
Q = 

(or) as the ratio of the absolute value of susceptance BP to the conductance GP, 

Q  = 
| BP |

GP 

To relate the nodal quality factor Qn to QL and find 

Q  = 
Qn 

2 

This result is true for any L-type matching network is usually estimated as 

simply the maximum nodal quality factor. 

To  simplify  the  matching  network  design  process  even  further,  we   draw 

constant – Qn contours in the smith chart. The below figure 2.11 shows such contours 

for Qa valued 0.3, 1, 3, and 10. 

Fig. 2.11 : Constant Qn contours displayed in the Smith chart. 

 

The normalized impedance can be written as, 
 

1  –  r2 – i2 2 i 
Z = r + j x = + j  

( 1–  r )2+ i2 ( 1– r )2+ i 2 

Thus the nodal quality factor can be written as, 

| x | 2 | i | 
Qn  = = 

r 1– r2– i2 
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Qn 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Rearranging the above equation the circle equation is found in the form. 

i2 
+ ( r +   

1   
)
2 

= 1 + 
1 

Qn2 

Where  the  ‘+’  sign  is  taken  for  positive  reactance  x,  and  the  ‘-‘  sign for 

negative reactance x. 

With these constant Qn circles in the smith ch rt it is possible to find the loaded 

quality factor of an L-type matching network by simply reading the corresponding Qn 

and dividing it by 2. 

In Many ractical applications the quality factor of a matching network is of 

importance. The L-type matching networks provide no control over the value of Qn  

and we must either accept (or) reject the resulting quality factor. By choosing the 

values of Q, that affect the bandwidth behavior of the circuit. Thus we introduce a 

third element in the matching network. The addition of this third element results in 

either the ‘T’ (or) Pi ( ∏ ) network. 

2.8  T and ∏∏∏∏ Matching Networks 
 

The loaded quality factor of the matching network can be estimated from the 

maximum nodal Qn. The addition of the third element into the matching network 

produces an additional node in the circuit allows us to control the value of QL by 

choosing  an appropriate impedance  at  that  node.   The  design  of  T  and  pi  –  type 

matching networks is shown below. 

Fig. 2.12 : 
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1 

 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 

 

πFig. 2.  3 : 

The design of a pi-type matching network is developed with the intent to 

achieve a minimum nodal quality factor. A low quality factor design  directly  

translates into a wider bandwidth of the network as required in broadband FET and 

BJT amplifiers. 

2.9  Microstrip Line Matching Networks 

The design of matching networks involving discrete components. However 

with increasing frequency and correspondingly reduced wavelength. 

Micro strip lines are used extensively to interconnect high speed logic circuits 

in digital computers. Such several interconnect makes a network and that is called 

micro strip line network. It is also used as an alternative lumped elements and 

distributed components. 

Discrete Components to Micro strip Lines 

In the mid GHZ range, mixed approach by combining lumped and    distributed 

elements. In this matched network contains a number of transmission lines connected 

in series and capacitors connected in parallel. 

Fig. 2.14 : 
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(b)
(a)

Usually inductors are avoided in such designs, because they have a tendency to 

have high resistive losses than capacitors. 

Generally only one shunt capacitor with two transmission lines connected in 

series on both sides to transform any given load impedance to input impedance. 

It shows wide range of flexibility, when the capacitor value is changed and 

placed at different locations along the transmission lines. There are two types of 

networks, 

1) Single stub matching network 

2) Double stub matching network 

1.  Single stub Matching Network 

Here the transmission from lumped to distributed elements network is the 

complete elimination of all lumped components. That can be constituted by open 

and/or short circuit stub lines. 

Consider  the  matching  networks  that  consist  of  a  series  transmission lines 

connected to a parallel open circuit (or) short circuit stub. Under this consideration 

there are two topologies. 

Fig. 2.15 : 

 
 

For (a) : 
 

Involves a series transmission line connected to the parallel combination of 

load and stub.  The adjustable parameters are, 

Ls  → length of the stub 

Zos → characteristic impedance of the stub. 
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2 8

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 
 

chart. 

For (b) : 

Involves a parallel stub connected to the series combination of load and 

transmission line.  The adjustable parameters are, 

lL  →   length of the transmission line 

Zol →  Characteristic impedance of transmission line 

2. Double stub matching networks 

Double stub devices consists of two short circuited stub connected in parallel 

with a fixed length between them. 

Fig. 2.16 : 

 
 

The length of the fixed section is usually one–eighth, three–eighth (or) five-

eighth of wa  elength.  These are used to simplify the tuner construction. 

Assume, the length of line segment between the two stubs is ‘l2’ 

l  =  (  
3 

) λ 

For a perfect match, it is required that Zin = Zo. 

YA = 1 

Since the lines are lossless, the normalized admittance, 

YB = YA – jbS2 

Which is located som  where on the constant conductance circle, g = 1 in smith 

Where bS2  →  susceptance of the stub 



 

124 
All Rights Reserved © 2015 IJARTET 

 

lS2 →  Associated length of the stub 
3 

For an l2 = ( 
n 

)  λ  lines the g = 1 circle is rotated by, 
8 

2βl2 = 3 
2 

radians (or) 270
0
. 

The admittance, YC needs to reside on this rotated circle g = 1 in order to 

ensure matching. In varying the length of ls1 stub can transform point YD in such a  

way that the resulting YC is needed to located on the circle g = 1. 

This procedure can be done for any load impedance Y0 which is located inside 

the circle g = 2.  This represents the forbidden region that has to be avoided. 

To overcome this problem in practical applications, commercial double-stub 

tuners  have  input  and  output  transmission  lines,  where  the  lengths  are      related 
ß 

according to  l1 = l3 + . 
4 

Christo Ananth et al. [2] discussed about Improved Particle Swarm 

Optimization. The fuzzy filter based on particle swarm optimization is used to remove 

the high density image impulse noise, which occur during the transmission, data 

acquisition and processing. The proposed system has a fuzzy filter which has the 

parallel fuzzy inference mechanism, fuzzy mean process, and a fuzzy composition 

process. Christo Ananth et al.[3] presented a short overview on two port RF networks. 

They widely used microwave and RF applications and the denomination of frequency 

bands. The monograph start outs with an illustrative case on wave propagation which 

will introduce fundamental aspects of high frequency technology. 

********* 

Problems :   
 

1) An RF amplifier has the following S- Parameter: 

S11 = 0.3 < - 70
0 

; S21 = 3.5 < 85
0

 

S12 = 0.2 < - 10
0 

; S22 = 0.4 < - 45
0

 

Furthermore, the input side of the amplifier is connected to a voltage source 

with VS= 5 V < 0
0 

and source impedance ZS = 40Ω. The output is utilized to drive an 

antenna which has an impedance of ZL = 73Ω.  Assuming that the S-Parameters of the 
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Input impedance in = S11

=  0.3 < - 70
0 

= 0.102 – j 0.282 

=  3.5 < 85
0 

= 0.305 + j 3.49 

=  0.2 < - 10
0 

= 0.197 – j 0.035 

=  0.4 < - 45
0 

= 0.283 – 0.283 j 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

amplifier are measured with reference to a Z0 = 50Ω characteristic impedance.     Find 

the following quantities. 

a) Transducer gain GT, unilateral transfer gain GTU, available gain GA, operating 

power gain G and 

b) Power delivered to a load PL, available power PA and incident power to the 

amplifier Pinc. 

Solution: 

S21 S12 L
+ 

1– S22 L 

S11 

S21 

S12 

S22 

(O.947+O.O53 j)(O.1O3–O.282 j)+(O.182+O.677 j)(O.187) 
= 

O.947+O.O53 j 

O.112–O.262 j+O.O34+O.127 j 
= 

O.947+O.O53 j 

Source reflection coefficient s = 

=
 
=

Load reflection coefficient L =

=
 
=

Zs – ZO 

Zs + ZO 

4O–5O 

4O+5O 

-0.111 

ZL – ZO 

ZL + ZO 

73–5O 

73+5O 

0.187 

in = 0.103 – 0.282 j + 

= 0.103 – 0.282 j + 

(O.3O5+3.4a j )(O.197–O.O35j)(O.187) 

1–(O.283–O.283 j)(O.187) 

(O.182+O.677  j)(O.187) 

1–(O.O53–O.O53 j) 
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(1.O11–O.O31 j)(O.283–O.283 j)+(–O.O2O2–O.O751 j) 
= 

1.O11–O.O31 j 

O. 7–O.295 j–O.O2O2–O.O751 j 
= 

1. O11–O.O31 j 
 
= 

O.257–O.37 j 

1.O11–O.O31 j 

( 1–|L |2 |S21 |2 (1–|S |2) 

| 1– L out |2  | 1– S11 S |2 

out = 0.265 – 0.358 j

(1–| O.187 |2) | O.3O5+3.49 j |2 (1–|–O.111 |2 ) 

| 1–(O.187)(O.265–O.358 j)|2 |1–(O.1O3–O.282 j)(–O.111)|2 

O.965 [ƒ(O.3O5 )2+(3.49 )2]2 O.988 

[ ƒ(O.95)2+(O.O67)2 ]2 x [ ƒ(1.O114)2+(–O.O31)2 ]2 

11.7O1 

O.931 

GT = 12.56 (or) 10.98 dB 

(1–|L |2 ) | S21 |2 (1–|S |2 ) 

| 1–  L S22 |2 |1– S11 S |2 

(1–| O.187 |2 )1O.3O5+3.49 j |2 ( 1–|–O.111 |2) 

| 1–(O.187)(O.283–O.283 j )|2  |1–(O.1O3–O.282 j )(–O.111)|2 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

GTU = 12. 7 (or) 11.04 dB 

in  =  0.146 – 0.151 j

O.146–O.135 j 
= 

O.947+O.O53 j 

GT =

= 
11.7O1 

O.92O 
= 12.71 

Output impedance out = S + 22

out = 0.283 – 0.283 j + 

= 0.283 – 0.283 j + 

S12 S21 S 
1– S11 S 

(O.197–O.O35 j)O.3O5+3.49 j) (–O.111) 

1–(O.1O3–O.282 j)(–O.111) 

(–O.O2O2–O.O751 j) 

1–(–O.O11+O.O31 j) 

=

 

=

 

= 

GTU   = 

= 
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| S21 |2 ( 1–|S |2) 

| 1–|  out |2 || 1– S11 S |2 

1O.3O5+3.49 j |2 (1–(–O.111 )2 ) 

| 1–| O.265–OO.265–O58 j |2 | |1–(O.1O3–O.282 j )(–O.111) |2 

12.273 x O.988 

O.8O2 x 1.O24 

12.126 

O.821 

14.76 

GA = 14.76 (or) 11.69 dB 

( 1–|L |2 ) | S21 |2 

| 1–|in |2 | 1– S22 L |2 

( 1–| O.187 |2 ) | O.3O5+3.49 j |2 

| 1–| O.146–O.151 j |2 | | 1–(O.283–O.283 j )(O.187)|2 

O.965 x 12.273 

O.956 x O.899 

11.84 

O.859 

13.78 

G = 13.78 (or) 11.39 dB 

| bs |2 

| 1– in S |2 
where bS = 

ƒZO 

ZS+ ZO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 

 
 

 

1
Pinc = 

2

= 
1

2 
x

ZO 

( ZS– ZO )2 

| VS |2 

| 1– in  S |2 

5O x 52 
= 

2 (4O+5O )2 |1–(O.146–O.151 j )(–O.111)|2 

125O 
= 

162OO x 1.O33 

= 0.0747 w 

Pinc = 74.7 mω (or) 18.73 dbM

GA = 

=

 
=

 
=

 
GA =

G = 

= 

 
= 

 
= 
 
= 

√s
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2    9O2 | 1–(–O.111)2 | 

0.0781 

PA = 78.1 mω (or) 18.92 dBm 

|–|S11 |2–| S22 |2 +|∆ |2 

2 | S12 | | S21| 

S11 S22 – S12 S21 

(0.239 – 0.658 j) (0.495 – 0.495 j) – (0.197 – 0.035 j) (0.479 + 5.48 j) 

∆∆∆∆ = -0.491 – 1.507 j 

1–| O.239–O.658 j |2–  | O.495– O.495 j |2+(1.58  )2 

2 | O.197–O.O35 j | | O.479+5.48 j | 

1–O.49–O.49+2.512 

O.22 

PA = 
1 | bs |2 

2  | 1– S |2 
= 

1 5O x 52 

 

   
    

 

 
 

 

 

 
 

 

 
 

 

 

2    ( ZS– ZO )2    ( 1–|  S )2 

 
= 

| √S |2 ZO 1

= 

PL = PA GT 

= 78.1 x 10
-3 

x 12.56 = 0.9809 

Pl = 980.9 mω (or) 29.91 dbM 

2. Investigate the stability regions of a transistor whose S – parameters are 

recorded as follows 

S11 = 0.7 < - 70
0 

; S12 = 0.2 < - 10
0

 

S21 = 5.5  < 85
0 

; S22 = 0.7 < - 45
0

 

Solution: 

S11   =  0.239 – 0.658 j 

S12   =  0.197 – 0.035 j 

S21   =  0.479 + 5.48 j 

S22   =  0.495 – 0.495 j 

Compute values of K, |∆|, cin, rin, cout, vout 

K = 

∆ = 

= 

K = 

= 
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22 

| S11 |2–|6 |2 

[ (O.239–O.658j)–(O.495+O.495j)(–O.491–1.5O7 j) ] ∗ 

1O.239–O.658 j |2–| 1.58 |2 

(–O.264+O.331 j )∗ 

–2.O22 

cin = 0.21 < 52
0
 

| S12 S21 | 

| |S11 |2–| 6 |2 | 

1 (O.197–O.35 j)(O.479+5.48 j)| 

| 1O.239–O.658 j |2–(1.58 )2 | 

| O.286+1.O63 j | 

O.49–2.496 

1.1 

–2.OO6 

rin = 0.54 

11 

| S22 |2–|6 |2 

( (O.495–O.495 j)–(O.239+O.6758 j)(–O.491–1.5O1 j) )∗ 

| O.495–O.495 j |2– 1– O.491– 1.5O7 j |2 

(–O.379+O.188 j )∗ 

–2.O22 

0.187 + 0.093 

cout = 0.21 < 26.4
0
 

| S12 S21 | 

| |S22 |2–| 6 |2 | 

|  (O.197–O.35 j)(O.479+5.48 j)| 
| |O.495–O.495 j |2–| 1.58 |2 | 

 
 

 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

K = 1.15

= 1.15 

rin =

rout =

=

cin =
( S11 S ∗  6 )∗ 

=

 

=

=

 

=

 
=

cout =
( S22 S ∗  6 )∗ 

=

 

=
 
=
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| O.286+1.O63 j | 
= 

–2.O22 
1.1 

= 
–2.O22 

rout = 0.54 

* * * * * * * * * * 
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