
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 7

Mitigating Malicious Scripting Attacks with

a Content Security Policy
 K.Veena Devi R.Arivumalar

 MPhil (Research Scholar) Research Supervisor

 Department of computer science Department of computer science

Prist University, Thanjavur Prist University, Thanjavur

Abstract: A content security policy (CSP) can help Web application developers and server administrator’s better control

website content and avoid vulnerabilities to cross site scripting (XSS). In experiments with a prototype website, the

authors’ CSP implementation successfully mitigated all XSS attack types in four popular browsers. Among the many

attacks on Web applications, cross site scripting (XSS) is one of the most common. An XSS attack involves injecting

malicious script into a trusted website that executes on a visitor’s browser without the visitor’s knowledge and thereby

enables the attacker to access sensitive user data, such as session tokens and cookies stored on the browser.1 With this data,

attackers can execute several malicious acts, including identity theft, key logging, phishing, user impersonation, and

webcam activation. Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain

types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used for everything

from data theft to site defacement or distribution of malware. CSP is designed to be fully backward compatible;

browsers that don't support it still work with servers that implement it, and vice-versa. Browsers that don't support CSP

simply ignore it, functioning as usual, defaulting to the standard same-origin policy for web content. If the site doesn't

offer the CSP header, browsers likewise use the standard same-origin policy. Enabling CSP is as easy as configuring

your web server to return the Content-Security-Policy HTTP header. (Prior to Firefox 23, the X-Content-Security-

Policy header was used). See Using Content Security Policy for details on how to configure and enable CSP.

Keywords: CSP (content security policy), XSS (Cross site Scripting), Data Attack, Scripting.

I. INTRODUCTION

Researchers have proposed a range of mechanisms

to prevent XSS attacks, with content sanitizers dominating

those approaches. Although sanitizing eliminates potentially

harmful content from untrusted input, each Web application

must manually implement it—a process prone to error. To

avoid this problem, we use a different technique. Instead of

sanitizing harmful scripts before they are injected into a

website, we block them from loading and executing with a

variation of the content security policy (CSP), which

provides server administrators with a white list of accepted

and approved resources. The Web application or website

will block any input not on that list and thus there is no need

for sanitizing. The white list also guards against data

exfiltration and extrusion—the unauthorized downloading of

data from a website visitor’s computer.

Our variation of CSP 1.0, a World Wide Web

Consortium (W3C) standard, uses directives such as report-

uri, which lets server administrators either save policy

violations to a log file or receive them as email. In the

report-only mode, this directive lets administrators conduct a

dry run of the website with a particular CSP and note XSS

attack types— information that can be shared in the security

community to inform both practical case implementations

and research projects.

Existing defense mechanisms tend to focus on

preventing one or two of the three XSS attack types, but our

CSP is the first that we know of to mitigate all three. To test

its effectiveness, we created a prototype website on a simple

Web application server, configured a CSP header with a

report-uri directive, and incorporated the header in an

.htaccess file (a configuration file that specifies how a

webpage should be accessed). We then conducted a series of

experiments on our local host machine by injecting XSS

vectors into the website. In every case, our CSP prevented

XSS attacks, even with 50 unique XSS vectors.

II. RELATED WORK

IN XSS ATTACK PREVENTION others have

proposed mechanisms to prevent XSS attacks.4 Noxes, a

client- side tool that acts as a Web proxy, disallows requests

http://www.ijartet.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Using_Content_Security_Policy

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 8

that do not belong to the website and thus thwarts stored

XSS attacks. Browser-enforced embedded policies (BEEPs)

let the Web application developer embed a policy in the

website by specifying which scripts are allowed to run.6

With a BEEP, the developer can put genuine source scripts

in a white list and disable source scripts in certain website

regions. Document Structure Integrity (DSI) is a client-

server architecture that restricts the interpretation of un-

trusted content.7 DSI uses parser-level isolation to isolate

inline untrusted data and separates dynamic content from

static content. However, this approach requires both servers

and clients to cooperatively upgrade to enable protection.

Blueprint is a server-side application that encodes content

into a model representation that the client-side part can

process. However, applying Blueprint to Word press

increased processing time on average 55 percent; applying it

to MediaWiki increased processing time an average 35.6

percent.8 implementing our CSP can help Web application

developers specify allowable content type and resource

locations and can be an early warning system for any policy

violations, which greatly assists system administrators’

website control. With little or no modification to application

source code, website visitors are assured of protection from

the unauthorized downloading of the sensitive data stored in

their browsers. The CSP’s report-only mode along with the

report-uri directive gives server administrators the option to

test and configure their applications without breaking

website functionalities. Although our CSP has many

benefits, it is not intended as a primary defense mechanism

against XSS attacks. Rather, it would best serve as a defense

in-depth mitigation mechanism. A primary defense involves

tailored security schemes that validate user inputs and

encode user outputs. So far our work has involved CSP 1.0.

In future work, we plan to investigate using directives with

CSP 2.0, which as of February 2016 was still a W3C

working draft.

III. SYSTEM ANALYSIS

EXISTING SYSTEM

Thus system will send request with identity. After

that all the collected information will be send to collection

database server. It not only protects clients from XSS attacks

but also inform the vulnerable web servers.

This mechanism requires minimal effort and low

performance overhead. Also, it will prevent all the types of

XSS attacks.

Disadvantages

o How to use the collected information in

database is not addressed.

 How to make system deployed universally has also

not been addressed.

 It requires modifications in the frameworks or

installation of additional frameworks.

 Approved scripts have to be identified by the

website.

PROPOSED SYSTEM

A client-side tool that acts as a Web proxy,

disallows requests that do not belong to the website and thus

thwarts stored XSS attacks. Browser-enforced embedded

policies (BEEPs) let the Web application developer embed a

policy in the website by specifying which scripts are allowed

to run. With a BEEP, the developer can put genuine source

scripts in a white list and disable source scripts in certain

website regions. Document Structure Integrity (DSI) is a

client-server architecture that restricts the interpretation of

untrusted content. DSI uses parser-level isolation to isolate

inline untrusted data and separates dynamic content from

static content. However, this approach requires both servers

and clients to cooperatively upgrade to enable protection.

IV. IMPLEMENTATION

An XSS attack can be persistent or nonpersistent, or it

can be based on a document object model (DOM).

1) MODULES

1. Persistent XSS

2. Non-persistent XSS

3. DOM-based XSS

Persistent XSS

A persistent XSS attack does not need a malicious

link for successful exploitation; simply visiting the webpage

will compromise the user. Persistent XSS is often difficult to

detect and is considered more harmful than the other two

attack types. Because the malicious script is rendered

automatically, there is no need to target individual victims or

lure them to a third party website.

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 9

Non-persistent XSS

 A non-persistent, or reflected, XSS attack, which

occurs when a website or Web application passes invalid

user inputs. Usually, an attacker hides malicious script in the

URL, disguising it as user input, and lures victims by

sending emails that prompt users to click on the crafted

URL.

DOM-based XSS

The attack occurs when the victim’s browser

executes the malicious code from the modified DOM. On

the client side, the HTTP response does not change but the

script executes maliciously. This exploit works only if the

browser does not modify the URL characters. A DOM-based

XSS attack is the most advanced type and is not well known.

Indeed, much of the vulnerability to this attack type stems

from the inability of Web application developers to fully

understand how it works.

V. CONCLUSION

CSP can’t (not intended to) fix everything At best,

a backup tool to help mitigate issues that arise. Remember:

If an attacker can modify the web app files, they can modify

the CSP. Security is hard .Content Security Policy allows for

fine-grain access control over resource origin for web

applications. The implementation of a basic form of Content

Security Policy can be easily accomplished on any website.

The Content-Security-Policy-Report-Only header gives the

developers/administrators a process for adding Content

Security Policy to a web application without breaking the

functionality. The removal of inline script, inline style, and

insecure functions can be a large task, so the Content

Security Policy can be configured to allow these until the

application code can be properly modified. If the

prerequisite work is done, Content Security Policy can

mitigate common content injection vulnerabilities. The best

practices proposed above give the developers a guideline for

designing a secure policy and avoiding some common

missteps in the process.

VI. FUTURE ENHANCEMENTS

The project has covered almost all the

requirements. Further requirements and improvements can

easily be done since the coding is mainly structured or

modular in nature. Improvements can be appended by

changing the existing modules or adding new modules. One

important development that can be added to the project in

future is secure the data from the External Scripting and also

on cross site Attacks and also we can implement new

technology to promote and secure the data

Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus

it can be considered to be the most critical stage in achieving

a successful new system and in giving the user, confidence

that the new system will work and be effective.

REFERENCES

[1]. Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Content
security problems?: Evaluating the effectiveness of content security

policy in the wild. In Proceedings of the 2016 ACMSIGSAC

Conference on Computer and Communications Security, pages 1365–
1375. ACM, 2016.

[2]. WorldWide Web Consortium. Content security policy level

3,https://www.w3.org/TR/CSP/, 2016.

[3]. Google. Reshaping web defenses with strict content securitypolicy,

https://security.googleblog.com/2016/09/reshapingweb-defenses-with-

strict.html, 2016.

[4]. Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad

Jovanovic. Noxes: a client-side solution for mitigating cross-

sitescripting attacks. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 330–337. ACM, 2006.

[5]. Hao Chen Matthew Van Gundy. Noncespaces: Using randomizationto

defeat cross-site scripting attacks. El Sevier.

[6]. Kevin Spett. Cross-site scripting. SPI Labs, 1:1–20, 2005.

[7]. Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the

web with content security policy. In Proceedings of the 19th

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 10

international conference on World Wide Web, pages 921–930. ACM,
2010.

[8]. Michael Hicks Trevor Jim, Nikhil Swamy. Defeating script injection

attacks with browser-enforced embedded policies (beep).ACM.

[9]. Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and

Artur Janc. Csp is dead, long live csp! on the insecurity of whitelists

and the future of content security policy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications

Security, pages 1376–1387. ACM, 2016

[10]. I. Yusof and A.-S.K. Pathan, “Preventing Persistent Cross-Site
Scripting (XSS) Attack by Applying Pattern Filtering Approach,”

Proc. 5th IEEE Conf. Information and Communication Technology

for the Muslim World (ICT4M14), 2014, pp. 1−6.

[11]. L.K. Shar and H.B.K. Tan, “Defending against Cross-Site Scripting

Attacks,” Computer, vol. 45, no. 3, 2012, pp. 55−62.

[12]. E. Kirda et al., “Noxes: A Client-Side Solution for Mitigating Cross-
Site Scripting Attacks,” Proc. 21st Ann. ACM Symp. Applied

Computing (SAC06), 2006, pp. 330−337.

http://www.ijartet.com/

