
 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 1

Vulnerability Analysis of Authenticated

Encryption
G. M. Abisha Grace1

Assistant Professor, Electronics and Communication Engineering, Jeppiaar Institute of Technology, Chennai, India 1

Abstract: Authenticated Encryption algorithm, AEGIS-128 is implemented in Field Programmable Gate Array (FPGA) of

the Side-channel Attack Standard Evaluation Board (SASEBO-G) and in ATmega 328P microcontroller of the MultiTarget

Victim Board. Encryption algorithms may be subjected to attacks if it is not properly implemented with countermeasures.

So it is necessary to analyse the Authenticated Encryption algorithms providing both confidentiality and authenticity. In

this paper, study of Authenticated Encryption with Associated Data (AEAD), AEGIS-128 algorithm, implementation of the

algorithm in FPGA and microcontroller, vulnerability analysis of the implemented algorithm in two different hardware

platforms and a countermeasure based on Rotating S-box Masking (RSM) for the AEGIS-128 algorithm implemented in

ATmega 328P microcontroller is proposed. Vulnerability analysis, include derivation of power model for AEGIS-128

algorithm, capturing of power traces from the target device and comparing the measured power traces with the power

model to retrieve the secret key.

Keywords: AEAD, AEGIS, DPA, FPGA RSM

I. INTRODUCTION

AEGIS is one of the algorithms submitted for

Competition for Authenticated Encryption: Security,

Applicability, and Robustness, (CAESAR). Authenticated

Encryption with Associated Data (AEAD) as in [1] is a block

cipher mode of operation. AEGIS-128 is an algorithm for the

protection of Associated Data (AD) which makes it suitable

for protecting network packets. Differential Power Analysis

(DPA) is an attack where detailed knowledge of the attacked

device is not required. SecretKey of the attacked device can

be retrieved even if the power trace recorded is extremely

noisy. In this paper, Rotating S-box Masking (RSM) as in [3]

is the countermeasure technique adopted for AEGIS-128

algorithm.

II. AEGIS-128 ALGORITHM

128 bit key (K128), 128 bit Initialization Vector (IV128),

and Associated Data (AD) of the algorithm is used to encrypt

and authenticate a plaintext. The AD length and plaintext

length are chosen to be less than 264 bits. 264 bits are divided

into blocks of 128 bits. This individual blocks are used to

update the state. According to the algorithm 128 bits of

plaintext or AD is equivalent to one block of plaintext or AD.

Based on the number of blocks of plaintext and AD the

number of steps required to generate ciphertext and tag will

vary. AEGIS-128 algorithm as in [6] consists of initialization,

processing of AD, encryption and finalization phases.

A. Initialization of AEGIS-128

The initialization phase of AEGIS-128 is the phase of

loading the Key(K128) and Initialization Vector (IV128)along

with constant (Const0 and Const1). The states are updated by

the 10 steps of transformation function with message (mi)

input as combination of K128 and IV128.

Fig. 1. StateUpdate

B. Processing of Associated Data of AEGIS-128

After the initialization phase, AD is used to update the

states. If the last AD block is not a full block of 128 bits,

zeros are used to make a block of 128 bits and the padded full

block is used to update the state. If adlen=0, then the state

will not get updated in this phase.

C. Encryption of AEGIS-128

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 2

After processing the AD, in each step of the encryption, a

16-byte plaintext block Pi is used to update the state and Pi is

encrypted as ciphertext, Ci. If the last plaintext block is not a

full block, zeros are used to make a full block of 128 bits and

the padded full block is used to update the state. If msglen=0

then the state will not get updated in this phase.

D. Finalization of AEGIS-128

After encrypting the plaintext, the authentication tag is

generated by performing the XOR operations.

III. IMPLEMENTATION OF AEGIS-128

AEGIS-128 algorithm has StateUpdate function that

performs the single round transformations of AES as in [4]

(S-box as in [2], ShiftRows and MixColumns as in [7]) five

times. On the whole to process one block of AD and

plaintext the single round transformation of AES is

processed ninety five times by the AEGIS-128 algorithms

A. Serial Implementation

AES round transformation block containing S-box as in

[5], ShiftRows and MixColumns[8] is processed five times

serially by implementing it only once instead of

implementing it five times for updating the 80 bytes of states.

This is done by using a separate counter (Rcount) for

performing the StateUpdate function and using temp register

for storing the intermediate values as shown in Fig. 1.

B. Parallel Implementation

Five of AES round transformation blocks are processed

simultaneously (80 bytes of states are updated in a single

clock cycle). Input is given to the StateUpdate function where

AES round transformations are performed simultaneously.

This StateUpdate function is used for initialization,

processing of AD, encryption and finalization of AEGIS-128

algorithm. AEGIS-128 algorithm using this parallel

implementation in FPGA takes 20 clock cycles to generate

tag. However, the area overhead increases according to the

number of parallel operations. One AES round

transformations block consists of S-box [9], ShiftRows and

MixColumns.

IV. FPGA REALIZATION OF AEGIS-128

The program for control FPGA and cryptographic (or

target) FPGA (Virtex 2-pro) is fed to the SASEBO-G board

using the configuration cable with the help of Xilinx 9.1i

from Personal Computer (PC). Light Emitting Diodes

(LEDs) glow (these LEDs are active LOW) indicating the

sequence of operations. The trigger signal will be active

HIGH only if the encryption is enabled. This trigger signal is

given as the input for the oscilloscope. Power consumption of

the encryption operations performed by the cryptographic

FPGA is displayed by the oscilloscope. Finally, power traces

obtained from the oscilloscope is stored in the PC through the

Local Area Network (LAN) cable. Ciphertext output from

RS232 cable is displayed in Matrix Laboratory (MATLAB).

128-bit data is streamed as 8-bit input into the FPGAs. Once

the encryption is complete and when the ciphertext and tag

are available Output_rdy signal is set HIGH. This indicates

the availability of 128-bit ciphertext in the data-bus as bytes

which are then transferred through RS232 cable to the PC.

V. DPA ATTACK OF AEGIS-128 ALGORITHM

IMPLEMENTED IN FPGA

Based on different attack scenarios twenty thousand

different random plaintexts, IV128 and AD are generated.

Power traces are captured and stored in MATLAB while

running the twenty thousand encryption runs, as in Fig. 2.

Since the key size is 128 bits, the search complexity is 2128

bits. In order to avoid this huge search space, 128-bit key is

broken into 16 bytes and the attack is performed on each

individual byte sixteen times to reveal all the 128 bits of the

secretkey. The key complexity is reduced to 28 (256) bytes.

Figure 2 shows the power trace obtained for 95 (19

StateUpdate with each StateUpdate having 5 AES round

transformations) AES round transformations.

A. Differential Power Model and Statistical Analysis For

AEGIS-128 Algorithm

1) Pre-initialization Attack

a. Different and Known Plaintext,

P[1:20,000]

b. Different and Known IV, P[1:20,000]

c. Different and Known Plaintext,

P[1:20,000]

For 1st eight bit, the intermediate value chosen is K1⊕IV1,

where K1 and IV1 are the 1st eight bits K128 and IV128

respectively. The point of attack is the 8-bit register a0

holding the value (K1⊕IV1). As a0 register is initialized to

zero for each encryption run Hamming-weight power model

is used as in Eq. (1). Refer Fig. 3 for key guess. Suffix 1 to 16

indicates 1 to 16 bytes.

H=Hamming-weight [K1⊕IV1] (1)

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 3

Fig. 2. Power trace for AEGIS-128 algorithm

Fig. 3. Correlation value along Y-axis and Key guess along X-axis

The same procedure is repeated for all 16 bytes. As the

attack is performed on 8 bits of the 768 bits (6 registers of

each 128 bits), the Signal to Noise Ratio (SNR) (0.1065) is

very low and the correct key is not retrieved. (SNR=
n

a
=

760

8
, ‘a’ represent the number of wires processing a bit of

attacked intermediate result and ‘n’ represent the number of

wires processing statistically independent bits.)

2) Known Plaintext Attack

a. Different and known plaintext, P

[1:20,000]]

b. Constant and known IV128 [1:20,000]
c. Constant and known AD [1:20,000]
d. Attack point: 2nd 128 bit of the first

StateUpdate in the tag generation phase
e. S1,0 stored in a0 register is a known constant,

the output of the processing of associated

data phase (1st 128 bits of the 640 bits of the

updated state).

f. SI is a known constant state, obtained as a

result of XOR operation of S1,0 with w1 refer

Fig. 4. (S2,0 = SI⊕P=A).

g. S2,1=Known constant state stored in

temporary a1 register. Refer Fig. 5.

Fig. 4. StateUpdate of Encryption Phase

Fig. 5. Point of attack at the beginning of tag generation phase

To attack the 1st eight bits of the unknown state S3,1, the

intermediate value chosen is 1st byte of S3,1 given as [(02(S-

box(SI1⊕P1)))⊕(03(S-box(SI6⊕P6)))⊕(01(S-box(SI11 ⊕

P11))⊕(01(S-box(SI16⊕P16)))⊕B1]

B1 value is obtained from the 1st byte of the known

constant value stored in the temporary register, a1=S2,1. Refer

Fig. 6 for state guess. Hamming-Distance power model is

used to determine the intermediate state as given in Eq. (2).

H=Hamming-Distance between SI1⊕ P1 and [(02(S-

box(SI1 ⊕ P1))) ⊕ (03(S-box(SI6 ⊕ P6))) ⊕ (01(S-box (SI11

⊕ P11))) ⊕ (01(S-box(SI16⊕P16))) ⊕ B1] (2)

It is concluded that the algorithm is secure up to 20,000

power traces because the attack complexity is 240

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 4

computations (A1, A6, A11, A16 and B1 each of 8 bits) from Eq.

31 and the state is not revealed for 20,000 power traces.

Attack complexity for 2nd byte is 248 computations (A1, A2,

A6, A11, A16 and B1 each of 8 bits). Attack complexity varies

for each byte based on the dependency of the states to be

attacked. Attack complexity for the bytes 1, 5, 9 and 13 are

240 computations. Attack complexity for the bytes 2, 3, 4, 6,

7, 8, 10, 11, 12, 14, 15 and 16 are 248 computations. SNR is

calculated as 0.01065.

Fig. 6. Correlation value along Y-axis and State Guess along X-axis

VI. VULNERABILITY ANALYSIS OF AEGIS-128 IN

MICROCONTROLLER

A. Microcontroller Implementation of AEGIS-128

The entire AEGIS-128 algorithm is implemented in

ATmega 328P microcontroller of the MultiTarget Victim

Board. S-box, ShiftRows and MixColumns are implemented

as functions in C language.

Memory required:

1) Program: 3830 bytes <11.7% Full>

2) Data: 416 bytes <20.3% Full>

The power trace for a single encryption run of the entire

AEGIS-128 algorithm is shown in Fig. 7.

Fig. 7. Power in µW along Y-axis and Sample points along X-axis

B. Leakage Power Model

Attack point is at the initialization phase, refer Fig. 1

(K1⊕IV1) is passed through S-box and by the architecture of

the microcontroller it is stored in a register. Hamming-weight

power model is used to attack the key as given in Eq. (3).

H=Hamming-weight[S-box(K128⊕IV128)]. (3)

As 128-bit key is partitioned into 16 bytes the key

complexity is reduced to 256 bytes. For attack, trigger is

given only to the first StateUpdate (Five AES rounds alone)

to get more samples.

1) Random IV128 [d=1:200]

2) Fixed key, K128

The matrix H of size d×k (200×256) is formed. Trace

matrix obtained is d×t (200×16000) where t- sample points

chosen. The correlation matrix R is formed by comparing the

matrix T and the matrix H. The correct key is obtained within

30 power traces.

VII. COUNTERMEASURE OF AEGIS-128 ALGORITHM

Rotating S-box Masking (RSM) countermeasure as in [3]

is adopted for AEGIS-128 algorithm. The 16 byte mask

chosen is
 FCF3CAC5AFA0999669665F503A350C03M 

Hamming weight distribution (0, 0, 4/16, 0, 8/16, 0, 4/16,

0, 0) of each byte is in the range of [2 4 6] instead of 0 to 8 so

that SNR is reduced to 50% making it difficult to recover the

mask. From M sixteen different 16-byte masks Mi (0<i<15)

are calculated by left rotation of the bytes of M sixteen times.

Corresponding 16 masked S-boxes are calculated and stored

in flash memory. For Eq. (1), IV128 is masked by Mi by the

XOR operation and then the resultant masked IV128 with K128

is fed as input to 16 different masked S-boxes. Masked S-box

is calculated by the Eq. (4) and Eq. (5)

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 5

128128 KIVx  (4)

    1ii mxboxSmxboxS  (5)

mi and mi+1 denotes any two consecutive bytes of the

matrix M called as old and new mask respectively. Masked

S-box is calculated such that the positions of the S-box[10]

are XOR with mi and the values of the S-box are XOR with

mi+1. During each encryption run, a random offset is

generated (0<i<15). Based on this offset, Mi is used as the

mask and the resultant value is send to the corresponding

masked S-boxes as in Eq. (5). The masked value undergoes

ShiftRows and MixColumns, the result is shown in Eq. (6).

MixColumns[ShiftRows(S-box(y⊕mi))]=MixColumns

ShiftRows(S-box(y))]⊕ MixColumns [ShiftRows (mi+1)] (6)

y takes any value depending on the input to AES round

transformation. The mask is removed during XOR operation

of each StateUpdate by giving the Eq. (7) as input to XOR

with Eq. (6)

z=MixColumns[ShiftRows(mi+1)] (7)

After removing Eq. (7) from the Eq. (6), Eq. (6) becomes

as in Eq. (8).

MixColumns[ShiftRows(S-box(y))] (8)

In case of AEGIS-128, XOR operation in Fig. 1 due to

masking carries the value of old mask mi from the input (y1)

which does not undergo AES round transformations. The

value stored in register has to be kept always in a masked

state so while performing the XOR operation as shown in

Fig.1. Eq. (7) and Eq. (8) are XOR along with the removal of

the old mask mi and the addition of the new mask mi+1 as in

Eq. (9).

{MixColumns[ShiftRows(S-box(y))]}⊕{MixColumns

[ShiftRows(mi+1)]}⊕{MixColumns[ShiftRows(mi+1)]}⊕

(y1⊕mi)⊕mi⊕mi+1 = {MixColumns[ShiftRows(S-box(y))]}⊕

y1 ⊕ mi+1 (9)

This is the main difference in unmasking between AES

and AEGIS. Memory consumed for AEGIS-128 algorithm

implemented using RSM is

1) Program: 29152 bytes <89.0% Full>

2) Data: 422 bytes <20.6% Full>

VIII. RESULTS AND DISCUSSIONS

AEGIS-128 algorithm is optimally implemented in FPGA

by using serial implementation. Power traces are analysed to

retrieve the secretkey. Due to architectural differences the

algorithm implemented in FPGA is more secure than in

microcontroller implementation. Area, speed and power for

parallel and serial implementations of the algorithm in

FPGA are discussed in Table 1.
TABLE I

TRADE-OFF SUMMARY

Summary AEGIS-128 using

parallel

implementation

for state update

AEGIS-128 using

serial

implementation

for state update

Area Used Utilization Used Utilization

No. Of

Occupied

slices

4,926 99% 2,74

9

55%

No. Of 4 i/p

LUT

9,629 97% 3,92

7

39%

Throughput 1.958 Gbps 1.707 Gbps

Power 84 mW 83 mW

For AEGIS-128 algorithm implemented in

microcontroller, the matrix R having the largest correlation

value corresponds to the correct key and once the key is

found it is available in the first row in the Fig. 8.

Fig. 8. Results table displayed in ChipWhisperer Analyzer

IX. CONCLUSION

AEGIS-128 algorithm is studied and implemented in

FPGA using AES rounds as a sub-module. AEGIS-128

algorithm is implemented in two ways. It is concluded that

serial implementation occupies less area and consumes less

power and takes more clock cycles than parallel

implementation. Power traces are captured using

oscilloscope. Power model for the AEGIS-128 algorithm is

derived by analysing the known, unknown constants and

variables. In FPGA implementation neither the key nor the

intermediate states are obtained with 20,000 power traces. It

is concluded that the algorithm is secure for 20,000 power

traces. SNR for both the attack scenarios is 0.01065. Attack

http://www.ijartet.com/

 ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)
 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Issue 7, July 2017

 All Rights Reserved © 2017 IJARTET 6

complexity in pre-initialization attack is 28 computations

attack complexity for known plaintext attack is 240

computations for 1st, 5th, 9th and 13th bytes and 248

computations for 2nd, 3rd, 4th, 6th, 7th, 8th, 10th, 11th,12th, 14th,

15th and 16th bytes.

Power trace of the AEGIS-128 algorithm implemented in

ATmega 328p microcontroller is captured using

ChipWhisperer. In the microcontroller platform as the

intermediate results are stored in registers, the algorithm is

attacked within 30 power traces and the attack complexity is

212 computations. RSM is proposed as a good

countermeasure for AEGIS-128 algorithm implemented in

ATmega 328P microcontroller and the attack for the

countermeasure is not successful for 1000 power traces.

In future, for performing the attack on the AEGIS-128

algorithm implemented in FPGA of the SASEBO-G board

the number of traces can be increased and the attack can be

performed to retrieve the key. Parallel implementation of

AEGIS-128 algorithm can be taken to perform DPA attacks.

Similarly template attacks can be tried on the AEGIS-128

algorithm implemented with RSM countermeasure in the

ATmega 328P microcontroller of the MultiTarget Victim

Board.

ACKNOWLEDGMENT

Society for Electronics Transaction and Security (SETS)

is a leading institution in hardware security research. We

thank SETS for offering the internship, where we acquired

knowledge on CAESAR candidate. All the experiments and

results reported in this paper were performed at SETS with

guidance of the researchers of Hardware Security Research

Group, SETS.

REFERENCES

[1]. M. Agren, M. Hell, T. Johansson, W. Meier, Grain-128a: A New

Version of Grain-128 with Optional Authentication. International
Journal of Wireless and Mobile Computing 2011, Vol. 5, No. 1 pp.

48-59.

[2]. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh, A
Compact Rijndael Hardware Architecture with S-box Optimization,

©_ Springer-Verlag Berlin Heidelberg. C. Boyd (Ed.): ASIACRYPT

2001, LNCS 2248, pp. 239–254, 2001.

[3]. Alexander DeTrano, Naghmeh Karimi, Ramesh Karri, Xiaofei Guo,

Claude Carlet and Sylvian Guilley, Exploiting Small leakages in

Masks to Turn a Second-Order Attack into a First-Order Attack and
Improved Rotating Substitution Box Masking with Linear Code

Cosets, published in Hindawi Publishing Corporation at The Scientific

World Journal, Volume 2015, Article ID 743618, 10 pages.

[4]. A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E.
Tischhauser. ALE: AES-Based Lightweight Authenticated Encryption.

Fast Software Encryption - FSE 2013.

[5]. D. Canright, A Very Compact S-box for AES, in Proc. Cryptographic
hardware and Embedded Syst., Edinburgh, U.K., Sep. pp.441-455.

[6]. Hongjun Wu, and Bart Preneel, AEGIS: A Fast Authenticated

Encryption Algorithm1 (Full Version), the original paper was
published at Selected Areas in Cryptography (SAC 2013).

[7]. Hua Li and Zac Friggstad, An Efficient Architecture for the AES Mix

Columns Operation, published in IEEE conference Publications,
Circuits and systems pp. 4637 - 4640 Vol. 5

[8]. T. Itoh and S. Tsujii, A Fast Algorithm for Computing Multiplicative

Inverses in GF(2m) using Normal Bases, Information and
Computation, Vol.78, No. 3, pp. 171–177.

[9]. Sumio Morioka and Akashi Satoh, An Optimized S-box Circuit

Architecture for LowPower AES Design, .© Springer-Verlag Berlin
Heidelberg. pp. 172–186, 2003.

[10]. Xinmiao Zhang, and Keshab K.Parhi, On the optimum constructions

of composite field for the AES algorithm, IEEE transactions on circuits
and systems-II:Express briefs,Vol.53,No.10,October2006.

http://www.ijartet.com/

