
ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

81

All Rights Reserved © 2017 IJARTET

MITIGATING CROSS-SITE SCRIPTING ATTACKS WITH A

CONTENT SECURITY POLICY

PRIYADHARSHINI.N
1
 M.MOHANAPRIYA

2

1. PG Student, Dept.of Computer Applications, VSB Engineering College, Karur.

2. HoD, Dept.of Computer Applications, VSB Engineering College, Karur.

Abstract

A content security policy (CSP) can help Web

application developers and server administrators

better control website content and avoid

vulnerabilities to cross site scripting (XSS). In

experiments with a prototype website, the

authors’ CSP implementation successfully

mitigated all XSS attack types in four popular

browsers. Among the many attacks on Web

applications, cross site scripting (XSS) is one of

the most common. An XSS attack involves

injecting malicious script into a trusted website

that executes on a visitor’s browser without the

visitor’s knowledge and thereby enables the

attacker to access sensitive user data, such as

session tokens and cookies stored on the

browser.1 With this data, attackers can execute

several malicious acts, including identity theft,

key logging, phishing, user impersonation, and

webcam activation. Content Security

Policy (CSP) is an added layer of security that

helps to detect and mitigate certain types of

attacks, including Cross Site Scripting (XSS)

and data injection attacks. These attacks are

used for everything from data theft to site

defacement or distribution of malware. CSP is

designed to be fully backward compatible;

browsers that don't support it still work with

servers that implement it, and vice-versa.

Browsers that don't support CSP simply ignore

it, functioning as usual, defaulting to the

standard same-origin policy for web content.

1.INTRODUCTION

A primary goal of CSP is to mitigate and report

XSS attacks. XSS attacks exploit the browser's

trust of the content received from the server.

Malicious scripts are executed by the victim's

browser because the browser trusts the source

of the content, even when it's not coming from

where it seems to be coming from. CSP makes

it possible for server administrators to reduce

or eliminate the vectors by which XSS can

occur by specifying the domains that the

browser should consider to be valid sources of

executable scripts. A CSP compatible browser

will then only execute scripts loaded in source

files received from those whitelisted domains,

ignoring all other script (including inline scripts

and event-handling HTML attributes). As an

ultimate form of protection, sites that want to

never allow scripts to be executed can opt to

globally disallow script execution. Even major

application services such as Facebook, Google,

PayPal, and Twitter suffer from XSS attacks,

which have grown alarmingly since they were

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

82

All Rights Reserved © 2017 IJARTET

first reported in a 2003 Computer Emergency

Response Team advisory. The Open Web

Application Security Project ranked XSS third

on its 2013 list of top 10 Web vulnerabilities,

calling it the “most prevalent Web application

security flaw. Underscoring the widespread risk

of XSS intrusions, WhiteHat Security’s May

2013 Web Security Statistics Report noted that

43 percent of Web applications were vulnerable

to this kind of attack. Researchers have

proposed a range of mechanisms to prevent

XSS attacks, with content sanitizers dominating

those approaches. Although sanitizing

eliminates potentially harmful content from

untrusted input, each Web application must

manually implement it—a process prone to

error. To avoid this problem, we use a different

technique. Instead of sanitizing harmful scripts

before they are injected into a website, we

block them from loading and executing with a

variation of the content security policy (CSP),

which provides server administrators with a

white list of accepted and approved resources.

The Web application or website will block any

input not on that list and thus there is no need

for sanitizing. The white list also guards against

data exfiltration and extrusion—the

unauthorized downloading of data from a

website visitor’s computer.

2. LITERATURE SURVEY

“Noxes : A Client-Side Solution for

Mitigating Cross-site Scripting Attacks ” by

Engin Kirda,Christopher Kruegel,Giovanni

Vigna and Nenad Jovanovic

We highlight the relevant related works on XSS

attack detection which is either at client or the

server side. The literature summary provides

different detection approaches either for

persistent or non-persistent cross-site scripting

attacks. The authors have proposed first client

side solution for mitigating against XSS attacks.

The Noxes tool acts as a web proxy and utilizes

both manual and automatically generated rules.

The user is allowed to create the filter rules for

web requests. The rules can be created in three

ways: manual creation, firewall prompts and

snapshot mode. The disadvantage of this tool is

it suffers from low reliability and the inclusion

of benign HTML is prohibited. It requires user

intervention to accept or deny requests.

Prithvi Bisht and V.N.Venatakrishnan

provides aprevention mechanism for XSS

attacks on the server side. The shadow pages are

generated for every HTTP response in this

approach. The purpose of shadow pages is to

obtain intended set of authorized scripts that

match up with HTTP response. The

disadvantage of this approach is it attempts to

sanitize unsafe output but influences the web

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

83

All Rights Reserved © 2017 IJARTET

browser parsers to infer unsafe HTML data. It is

vulnerable to threats that utilizes browser parse

quirks.

Peter Wurzinger,Christian Platzer,Christian

Ludl , Engin Kirda and Christopher Kruegel

has proposed a server-side mechanism for

detection and prevention against XSS attacks.

This technique comprises of a reverse proxy

which will intercept all the HTML responses. It

overcomes the disadvantage of XSS-Guard by

detecting malicious embedded javascript code. It

can detect the aberrant between benign and

injected javascript code. This approach is not

suitable for high performance web-service and it

is limited to detect maliciously injected content

to javascript.

Hossain Shahriar and Mohammad

Zulkernine has proposed a server side

framework for detection of XSS attack based on

boundary injection and policy generation. It

suffers from zero false negative.This technique

is efficient and does not require any

modification of server and client side entities but

response delay increases due to increment of

policy checking.

Imran Yusof and Al-Sakib Khan Pathan has

proposed a client side solution by applying the

pattern filtering approach to prevent persistent

XSS attack. This approach is effective but these

rules does not work for non-persistent XSS

attack. If the filtering module fails o detect any

malicious script then it will stored and executed

in the database.

Shashank Gupta, B.B Gupta proposed a server

side approach for detection and mitigation of

XSS attacks in javascript code.It is based on

injecting features, generating rules and allows

insertion of sanitization routines for the

discovery of XSS attacks. The drawback of

XSS-Safe is it detects the relationship between

stored and injected features in the source code of

Javascript.

Imran Yusof and Al-Sakib-Pathan proposed a

technique that blocks malicious scripts from

loading and executing with a variation of the

content security policy (CSP), which provides

server administrators with a white list of

accepted and approved resources. This approach

protects the website visitor from unauthorized

downloading of the sensitive data stored in their

browsers. The drawback of this approach is it

will work only if the browser supports CSP and

primary defense must involve validating the user

inputs and encode user outputs.

2.1 EXISTING SYSTEM

Thus system will send request with identity.

After that all the collected information will be

send to collection database server. It not only

protects clients from XSS attacks but also

inform the vulnerable web servers. This

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

84

All Rights Reserved © 2017 IJARTET

mechanism requires minimal effort and low

performance overhead. Also, it will prevent all

the types of XSS attacks. The pattern filtering

approach is only to prevent persistent XSS

attack. This approach is effective but these rules

does not work for non-persistent XSS attack. If

the filtering module fails o detect any malicious

script then it will stored and executed in the

database.

2.1.1 Disadvantages

• How to use the collected information in database

is not addressed.

• How to make system deployed universally has

also not been addressed.

• It requires modifications in the frameworks or

installation of additional frameworks.

• Approved scripts have to be identified by the

website.

• There is no single policy for all the documents.

• Creating policies manually is a very tough task.

• This approach incurs runtime overhead due to

interception of HTTP traffic.

• It requires user-defined security policies which

can be labour-intensive.

2.2. PROPOSED SYSTEM

The existing approaches mostly focus on

detection XSS attack either at client side or at

the server side. So there is a need to come up

with a solution that has the ability to detect

Persistent as well as Non-Persistent XSS attack

which will work both at the client and server

side. This system has proposed a detection

model that will validate the user provided inputs

at the client side and the response pages from the

server is also validated and then given back to

the client. The proposed system is a detection

model for XSS attack consisting both Persistent

and Non-Persistent cross-site scripting attack.

The proposed model has different architecture

for client and server side.

2.2.1 Advantage of Proposed System

� Accuracy.

� Computational Efficiency.

� Scalability and Reliability.

� Web applications are utilized for security-critical

services so they have turned out to be a well-

liked and precious target for web-related

vulnerabilities.XSS attacks allows the attacker to

execute malicious script on the victim’s browser

thereby stealing user’s sensitive information.

� Proposed approach is modelled in such a way

that it validates the input at the client side. This

technique works for both Persistent and Non-

Persistent XSS attack. The server side approach

provides validated output.

3. SYSTEM MODEL AND PROBLEM

DEFINITION

Cross-site scripting is a type of computer

security vulnerability that is found in web-based

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 17, March 2017

applications which allows code injection by

malicious web users into any webpage that is

viewed by other users. The term “Cross

scripting”, originated when a malicious website

could potentially load a website onto another

window and then use JavaScript to read or write

information on the other website, which was

later redefined as injection. XSS is made

possible due to the fact that faulty coding causes

XSS holes (vulnerabilities on websites that

allows attackers to avoid security measures) in

the client-side script that allows for insertion of

malignant code.

During an attack, “everything looks fine” to the

end user, but in actuality they are subject to a

wide variety of threats. These vulnerabilities are

exploited by attackers to by pass access contr

such as the same origin policy. XSS is a

potentially dangerous vulnerability that is easy

to execute and very long and arduous to repair.

The most frequent kinds of web applications that

are victimized by XSS attacks are search

engines, discussion boards, web-based emails,

and posts. Even the most well-known websites

in today’s world like Google, Yahoo!, MySpace,

Facebook, PayPal, and WikiPedia were once

victims and still are very susceptible to many

kinds of XSS attacks.

To avoid the web application attacks, the web

browser security model is built on the same

origin policy that isolates one origin from the

ISSN

 ISSN

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

March 2017

All Rights Reserved © 2017 IJARTET

applications which allows code injection by

malicious web users into any webpage that is

viewed by other users. The term “Cross-site

scripting”, originated when a malicious website

could potentially load a website onto another

t to read or write

information on the other website, which was

later redefined as injection. XSS is made

possible due to the fact that faulty coding causes

XSS holes (vulnerabilities on websites that

allows attackers to avoid security measures) in

side script that allows for insertion of

During an attack, “everything looks fine” to the

end user, but in actuality they are subject to a

wide variety of threats. These vulnerabilities are

exploited by attackers to by pass access controls

such as the same origin policy. XSS is a

potentially dangerous vulnerability that is easy

to execute and very long and arduous to repair.

The most frequent kinds of web applications that

are victimized by XSS attacks are search

based emails,

known websites

in today’s world like Google, Yahoo!, MySpace,

Facebook, PayPal, and WikiPedia were once

victims and still are very susceptible to many

tacks, the web

browser security model is built on the same

origin policy that isolates one origin from the

other thus providing the developers a safe

sandbox environment to build these applications

in which the code from one origin

(http://self.com) has access to only

http://self.com data and the code from other

origin (http://other.com) is not permitted to

access http://self.com data. But the attackers by

pass this policy by exploiting cross site scripting

vulnerabilities in the web applications. He

injects his own script into the web applications

and later this injected script will get embedded

along with the actual intended response from the

website whenever any user visits that particular

web page.

Fig.5.1.1 High Level View of Cross Site

Scripting

The victim‟s browser executes all of the code

that shows up on a page as being legitimately

part of that page‟s security origin since the

browser is not able to differentiate between the

injected and the intended code. Thus, Cross

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

85

other thus providing the developers a safe

sandbox environment to build these applications

in which the code from one origin

cess to only

http://self.com data and the code from other

origin (http://other.com) is not permitted to

access http://self.com data. But the attackers by-

pass this policy by exploiting cross site scripting

vulnerabilities in the web applications. He

s his own script into the web applications

and later this injected script will get embedded

along with the actual intended response from the

website whenever any user visits that particular

Fig.5.1.1 High Level View of Cross Site

s browser executes all of the code

that shows up on a page as being legitimately

s security origin since the

browser is not able to differentiate between the

injected and the intended code. Thus, Cross-Site

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

86

All Rights Reserved © 2017 IJARTET

Scripting attack (XSS) is a code injection attack

performed to exploit the vulnerabilities existing

in the web applications by injecting html tag /

JavaScript functions into the web page so that it

gets executed on the victim‟s browser when one

visits the web page and successfully accesses to

any sensitive victim‟s browser resource

associated to the web application (e.g. cookies,

session IDs, etc.). Successful cross site scripting

can result in serious security violations for both

the web site and the user.

3.1 OVERVIEW OF THE SYSTEM

 Web applications are generally classified into

two types; they are static web applications and

dynamic web applications. Static web

applications are those which does not interact

with server (or database) and display the static

content to the users. Dynamic web applications

are those which interact with the server and

satisfy the request of the client, for example, a

sample login page which verifies the username

and password of the user by interacting with the

database in which the user credentials are stored

.Cross site scripting attacks are the type of

attacks which enables the attackers to steal the

client side sensitive information like cookies

etc.. These kind of attacks are generally done by

injecting the client side vulnerable scripts into

the areas which communicate with the servers or

the databases like search fields, comment box

etc.. By stealing user sensitive information

attackers can bypass the access controls like

same origin policy.

3.2 TYPES OF CROSS SITE SCRIPTING

ATTACKS

There are mainly three types of cross site

scripting attacks. They are:

i. Non persistent Attacks: It is the most

common type of web vulnerability and is also

termed as reflected XSS attack or type 1 XSS

because the attack is carried out in a single

request/response cycle. This attack is done

mostly in HTTP query parameters given by the

users and is used by scripts on the server side

and display the results without sanitizing the

query. These attacks are easy to identify and

attacker initially checks whether a particular

web application is vulnerable or not by

performing these attacks. These attacks are not

so devastating since these do not show impact

on the server.

ii. Persistent Attacks: It is the more dangerous

type of XSS attack and is commonly termed as

stored XSS attack or type 2 XSS because the

attack is carried out in two requests one for

injecting the malicious code and store it in the

web server and the other for the users(victims)

to load the page which is malicious. In this

attack, the attacker stores the malicious script on

the server side permanently and when the users

unknowingly or without proper knowledge make

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

87

All Rights Reserved © 2017 IJARTET

the script active he/she will be a victim of the

attack.

iii. DOM based Attacks: In these attacks, the

vulnerability appears in the document object

model. In type 1 and type 2 XSS, the dangerous

payloads are in the response page but in this type

of attack, the dangerous payload is not in the

response page and the source code of the HTML

page is similar to the response page. These

attacks are done by the use of document.write()

and other such similar functions.

3.3 SCRIPT FILTERING ALGORITHM

This algorithm works best because here the

mechanism implemented deals with input given

by the user. Whatever is the input given by the

user is sanitized properly and displayed to the

user.

Step 1: consider user input

Step 2: while(given user input)

If(user input contains any HTML specific tags)

Sanitize the input and store in the database

If(user input contains any special symbols)

Sanitize the input and store in the database

If(user input contains any script tags)

Sanitize the input and store in the database

If(user input contains any DOM objects)

Sanitize the input and store in the database

If(user input contains window objects or

document objects)

Sanitize the input and store in the database.

If(user input contains any styling related code)

Sanitize the input and store it in the database.

Step 3: Take the user input and goto step 2

Step 4: Display the results.

For an attack to happen, the attacker

tries to find the user input areas. The user input

is given such priority because it is the only way

for the user or client to interact with the server.

So if the attacker can be successful in injecting

the malicious code into the server an attack is

guaranteed to happen. In order to prevent the

attacker to have that privilege, sanitize the user

input. If the user input contains any HTML

specific tags like “<i>,
, <a> etc.. “sanitize

the request and store it in the database. If the

user input contains any special symbols which

are generally used in script functions, they

should be sanitized. If the user input contains

any script tags which are one of the most serious

ways of an attack to be possible, they should be

properly sanitized. If the user input contains any

styling related code then filter the code and store

it in the database. Finally, it has to be restricted

the redirection of a specific web application

page to some other page through which it can

stop most of the attacks. This can be done by

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

88

All Rights Reserved © 2017 IJARTET

sanitizing the user input if it contains any

window.location or document.refferer methods.

If the above methods are not followed, the

attacker tries to steal the valuable information of

the users like cookies. Usually, if it considers

any login page example sessions will be created

for every user. The flaw of any browser is that it

stores the session id in the form of a cookie. So,

if the attacker steals this cookie he can enter into

the web application as an authorized user and

the results can be more devastating. [5] proposed

a secure hash message authentication code. A

secure hash message authentication code to

avoid certificate revocation list checking is

proposed for vehicular ad hoc networks

(VANETs). The group signature scheme is

widely used in VANETs for secure

communication, the existing systems based on

group signature scheme provides verification

delay in certificate revocation list checking. In

order to overcome this delay this paper uses a

Hash message authentication code (HMAC).

3.4 MODULE DESCRIPTION

MODULE 1: Detection of Persistent XSS

Attack

The Persistent XSS attack consists of five

modules: Input Sanitizer, Filtering Module,

Filtered Output, Attack Rule Library and Attack

Repository.

1. Input Sanitizer

 This block will check the incoming request and

determine whether it contains any malicious

scripts. The input sanitizer will check the

presence of malicious code, if no then request is

allowed else it is passed on to the Attack Rule

Library.

2. Filtering Module

The filtering module receives input from the

Input Sanitizer. The filtering module is capable

to filter malicious scripts present in the Event

Handlers, Data URI, Insecure Keywords,

Character Escaping, Common words in XSS

Payload and filtering XSS Buddies.

3.Filtered Output

After the filtering module completes its

processing the resultant output will generated by

this module.

4. Attack Repository

This block is responsible for storage of

log records. After the input is sanitized, it will be

passed to the filtering module and finally filtered

output will be generated. The Attack repository

will maintain the logs of all the filtered outputs

for future use.

The main work of this block is to store the rules.

Some examples of rules stored in the library will

be as follows :

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

89

All Rights Reserved © 2017 IJARTET

• <script>...DO NOT PUT UNTRUSTED

DATA

..</script> directly in a script.

• <!_...DO NOT PUT UNTRUSTED DATA

..._>

inside an HTML comment.

• <div ...DO NOT PUT UNTRUSTED DATA

...=test

/> in an attribute name.

• Perform escaping of the URL before inserting

untrusted or malicious data into HTML url

parameter values.

MODULE 2 : Detection of Non-Persistent

XSS Attack

The detection of Non-Persistent XSS

attack consists of five blocks : Input Checker,

Prevention using CSP(Content Security Policy),

Notify Client ,Attack Rule Library and Attack

Repository.

1. Input Checker

The input checker accepts the incoming request

and checks for any malicious scripts from the

Attack Rule Library. Suppose the incoming

URL has malicious contents written inside script

tag then the Attack Rule Library has a rule

where the contents inside a script tag needs to be

validated.

2. Content Security Policy

CSP is used to restrict the browser viewing your

page so that it can only utilize resources

downloaded from trusted sources. It has a white

list of trusted source and browser contents. The

main aim of CSP is to check whether to permit

the browser from loading the website or not

from its list of white sources.

3. Notify Client

This module will send an alert message to the

client indicating that the website is not trusted

and so the browser blocks it from execution. The

rejected URL's will be stored in the attack

repository for future use.

4. Attack Repository

This block is responsible for storage of log

records. After the input is checked for presence

of malicious scripts or tags ,it will be passed to

CSP module and finally the client is notified

with alert message in case of malicious website.

The Attack repository will maintain the logs of

all the blocked URL's for future use. The

functioning of Attack Rule Library is similar to

one mentioned in the detection of Persistent XSS

attack.

MODULE 3 : Detection of XSS Attack at

Server Side

The detection of Cross-site scripting attack at the

server side has five modules: Feature

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

90

All Rights Reserved © 2017 IJARTET

Injection,Policy Storage ,Web Server, Output

Response Deviator, Sanitization and Feature

Removal.

1.Feature Injection

This module is responsible for inserting an

HTML or Javascript comment or features that

does not modify the intended HTTP response or

behaviours. The evaluation of features is to

discover the presence of malicious injected

contents.

2. Policy Storage

This module is responsible for storage of

policies which represent the expected features

such as number of tags, attributes, method

names and arguments .The policies are given to

the Output Response Deviator to check any

variation between the actual and expected

features.

3. Web Server

The web server represents the instrumented code

with injected features that can be accessed from

browsers. The request received by web server

provides an initial response which is forwarded

to the Output Response Deviator.

5. Output Response Deviator

6. This module is responsible for analyzing

the initial response pages produced by web

server .It checks whether any deviation is found

between the actual and the expected features.

XSS attack is detected if any deviation is found

between the actual and expected features.

7. Sanitization

8. The main of sanitization is to remove

the harmful scripts or contents. This module will

remove the malicious contents and then give

response to the client.

9. Feature Removal

10. In this step if no attack is detected by the

Output Response Deviator then the boundaries

or features could be removed and HTTP

response is given to the client.

4. CONCLUSION AND FUTURE SCOPE

Web applications are utilized for security-critical

services so they have turned out to be a well-

liked and precious target for web-related

vulnerabilities.XSS attacks allows the attacker to

execute malicious script on the victim’s browser

thereby stealing user’s sensitive information.

The existing approaches mostly focus on

detection XSS attack either at client side or at a

server side. So there is a need to come up with a

solution that can detect Persistent and Non-

Persistent XSS Attack which will work both at

the client and the server side. Thus our proposed

approach is modelled in such a way that it

validates the input at the client side. This

technique works for both Persistent and Non-

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 17, March 2017

91

All Rights Reserved © 2017 IJARTET

Persistent XSS attack. The server side approach

provides validated output.

FUTURE SCOPE

In this work, it has been tried to restrict the XSS

attacks with the help of code filtering algorithm.

This algorithm works fine because it allows no

script to store in the database and thus no script

can be made executed. But, it mades the efforts

to reduce the XSS attacks by means of cookie

stealing which is not the only way of performing

XSS attacks. In future, the same algorithm will

be implemented to restrict attacks done through

key logging etc

.REFERENCES

[1] Okin, Jonathan Robert. The information

revolution: the not-for-dummies guide to the

history, technology, and use of the World Wide

Web. Ironbound Pr, 2005.

[2] Barth, Adam. "The web origin concept."

(2011).

[3] http://www.acunetix.com/blog/articles/ non-

persistent-xss as accessed on 11 March 2017.

[4] Jayamsakthi Shanmugam, Dr M. "Cross Site

Scripting-Latest developments and solutions: A

survey." Int. J. Open Problems Compt. Math 1.2

(2008).

[5] Christo Ananth, M.Danya Priyadharshini, “A

Secure Hash Message Authentication Code to

avoid Certificate Revocation list Checking in

Vehicular Adhoc networks”, International

Journal of Applied Engineering Research

(IJAER), Volume 10, Special Issue 2,

2015,(1250-1254)

[6]http://www.acunetix.com/blog/articles/dom-

xss-explained as accessed on 11 March 2017.

[7] Matsuda, Takeshi, Daiki Koizumi, and

Michio Sonoda. "Cross site scripting attacks

detection algorithm based on the appearance

position of characters." Communications,

Computers and Applications (MIC-CCA), 2012

Mosharaka International Conference on. IEEE,

2012.

[8] Ruse, Michelle E., and Samik Basu.

"Detecting cross-site scripting vulnerability

using concolic testing." Information

Technology: New Generations (ITNG), 2013

Tenth International Conference on. IEEE, 2013.

[9] Dong, Guowei, et al. "Detecting cross site

scripting vulnerabilities introduced by HTML5."

Computer Science and Software Engineering

(JCSSE), 2014 11th International Joint

Conference on. IEEE, 2014.

[10] Gupta, Shashank, and B. B. Gupta. "Cross-

Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art."

International Journal of System Assurance

Engineering and Management (2015): 1-19.

