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Abstract: Melanoma is the deadliest form of skin cancer diseases.  Affecting   rates of melanoma have been developed, 

particularly among non- Hispanic white humans, however survival rates are high if detected early period. Because of the 

costs for dermatologists to screen every patient affected by this diseases. So need for an automated system to assess a 

patient’s risk of melanoma using images of their skin lesions captured using a standard digital camera lenses. The difficult 

in implementing such a system is locating the skin lesion in the digital image way. Skin lesion of a novel texture-based 

segmentation algorithm is developed here. The proposed segmentation framework is tested by comparing lesion 

segmentation results and melanoma classification results to results using other state-of-art algorithms. Here the framework 

has higher segmentation accuracy compared to all other tested algorithms. 
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I. INTRODUCTION 

Melanoma is a cancer of the melanocytes, the cell found 

in the skin’s epidermis that produces melanin. Melanoma 

most commonly occurs on the trunk or lower extremities. 

While malignant melanoma is less common than non-

melanoma skin cancer, it is considered the most deadly form 

of skin cancer. This is because melanoma accounts for 

approximately 75% of deaths associated with skin cancer. In 

2013, it is estimated that 76,680 people will be diagnosed 

with melanoma and 9,480 people will die of melanoma in 

the United States. In Canada, 1 in 74 men and 1 in 90 

women will develop melanoma in their lifetime. The recent 

trends in melanoma incidence rates are more alarming. 

 A study of the melanoma trends from 1992-2006 found 

that incidence rates for non-Hispanic white males and 

females were increasing at an annual rate of approximately 

3%.    For young adults ages 15-30, melanoma is one of the 

most commonly diagnosed forms of cancer. If melanoma is 

detected early, while it is classified at stage I (less than 0.76 

mm thick), the 5-year survival rate is 96%.  However, the 5-

year survival rate decreases to 5% if the melanoma is in 

stage IV. The cost of treatment of stage IV melanoma is also 

30 times the cost of treatment for stage I melanoma.  With 

the rising incidence rates in certain subsets of the general 

population, early melanoma screening is beneficial. Early 

automated melanoma screening systems assess the risk of  

 

 

melanoma using images acquired via a digital dermatoscope. 

A dermatoscope is a special device for dermatologists to use 

to look at skin lesions that acts as a filter. Pictures acquired 

through a digital dermatoscope are referred to as 

dermoscopy images and have relatively low levels of noise 

and consistent background interference. Pre-processing 

algorithms applied to dermatological images include 

normalizing or enhancing image colors.  

However, requiring dermatologists to have a 

dermatoscope impedes the adoption of these systems as only 

48% of practicing dermatologists use dermatoscopes. The 

most common reasons against using the dermatoscope 

include a lack of teaching.  

Nowadays work with automated melanoma screening 

algorithms tries to adapt the algorithms to analyse images 

taken by a standard digital camera. There is a need for a 

segmentation algorithm designed specifically for digital 

images of skin lesions. Before extracting features from the 

skin lesion and classifying the lesion as malignant or benign, 

the location of the lesion border must be identified using 

segmentation problems. Obtaining an accurate estimate of 

the lesion border is important because of the types of 

features used for classification. One common set of   features 
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is the ABCD scale: symmetry, corner
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melanoma classification algorithms 

segmentation algorithms have been propos

lesion in images simultaneously. Ma

segmentation algorithms are only applicab

images, which has better contrast betwee

surrounding skin area for certain types of les

II. PROPOSED ALGORITHM

Another challenge is in the segmentati

the step where the border of the lesion is i

images acquired using the dermatosc

magnified and enhanced to better ide

standard digital images taken by a digital c

have those advantages. Illumination v

patterns of skin, and noise can make separ

and lesion difficult in digital images. Based

challenges, there is a need for a robus

algorithm that is designed specifically for 

taken   with   a standard digital   camer

should incorporate correcting for illuminati

pre-processing step. This thesis proposes a 

segmentation algorithm to solve these two c

 

 
Fig.1. Algorithm flow chart highlighting steps in the JPTD algorithm

 

We obtain an initial rain map from an image frame, which 

is then refined based on sparse representation and 

classification. Finally, were constructing a 

exploiting the information in adjacent frames Fig.1shows an

overview of the proposed algorithm. First, we obtain an

initial rain map by computing the difference between

current frame and an optimally warped frame. Second
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Algorithm flow chart highlighting steps in the JPTD algorithm 

image frame, which 

d based on sparse representation and 

 rain-free frame by 

exploiting the information in adjacent frames Fig.1shows an 

overview of the proposed algorithm. First, we obtain an 

the difference between a 

current frame and an optimally warped frame. Second, we 

decompose the initial rain map using sparse basis

and employ an SVM classifier to dichotomize those vectors 

into valid ones and outliers. We then reconstruct are fine d

rain map by employing the valid vectors only.

place rainy pixels with rain-free values, by formulating the 

rain streak removal as a matrix completion 

 

A. Sparse texture model 

Sparse texture models find a s

identification, like texture patches, 

entire picture. The sparse texture 

local texture details present in a pict

sparse texture model allows the 

efficiently and allows for effi

algorithms that involve textures from 

ways to learn the model, includ

formulating the problem as an op

common method to learn a spars

employing a dictionary learning alg

texture patches that can best match 

image is learned. 

 

B.  Dynamic Region Merging (DRM)

Automatic image segmentation 

inference problem [1].   For example, 

the colors in an image, which 

unknown principles. In the 

segmentation, the observation of a

the partition is unknown. In this 

to   formulate the   inference prob

representation of the pixels of an im

that each pixel is assigned. With this
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objects.  
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group. However, most of  the existing region 

merging algorithms cannot  guarantee  a  globally   

optimal solution of the merging result; in other words, 

the region merging output is either over-segmented or 

under-segmented. In this section, we propose a novel 

predicate which leads to certain global properties for the 

segmentation result. 5 The proposed predicate is based on 

measuring the dissimilarity between pixels along   the   

boundary   of   two   regions.   For   the convenience of 

illustrating the whole framework, we use the definition of 

region adjacency graph (RAG) [30] to represent an 

image. Let G = (V, E) be an undirected graph, where 

vi∈V is a set of nodes.  [5] proposed a principle in which 

another NN yield input control law was created for an 

under incited quad rotor UAV which uses the regular 

limitations of the under incited framework to create virtual 

control contributions to ensure the UAV tracks a craved 

direction. Utilizing the versatile back venturing method, 

every one of the six DOF are effectively followed utilizing 

just four control inputs while within the sight of un 

demonstrated flow and limited unsettling influences. 

Elements and speed vectors were thought to be 

inaccessible, along these lines a NN eyewitness was 

intended to recoup the limitless states. At that point, a novel 

NN virtual control structure which permitted the craved 

translational speeds to be controlled utilizing the pitch and 

the move of the UAV. At long last, a NN was used in the 

figuring of the real control inputs for the UAV dynamic 

framework. Utilizing Lyapunov systems, it was 

demonstrated that the estimation blunders of each NN, the 

spectator, Virtual controller, and the position, introduction, 

and speed following mistakes were all SGUUB while 

unwinding the partition Principle. 

III. SYSTEM IMPLEMENTATION  

A. Illumination adjustment 

Background correction can be applied while acquiring 

images (a priori) or after acquisition (a posteriori). The 

difference between these is that a priori correction uses 

additional images obtained at the time of image capture     

while in a posteriori correction, the additional images are not 

available and therefore an ideal illumination model has to 

assume. The a priori methods are therefore the preferred 

option. 

When digitising images there are several sources of image 

degradation to consider: 

1. Camera noise 

• Random noise.   This   is   due   to uncorrelated 

fluctuations above and below the image data as a 

consequence to the nature of the image sensors. 

• Fixed pattern noise (“hot pixels”) is characterised by 

pixel intensities that are consistently above random 

noise fluctuations and it is due to faulty CCD or pixel 

differences in charge leakage rate (this is also called 

“electronic bias” of the sensor). 

•  Banding noise may arise during the process of 

reading the data from the digital sensor or by 

interference with other electronic equipment. This 

type of periodic noise can be corrected to some extent 

with Fourier filtering. 

2. The colour temperature of the light source also affects 

image quality. Light sources have a characteristic radiation 

spectrum. In most filament light bulbs this spectrum varies 

depending  the  temperature  of  the  filament (i.e. the 

voltage applied to the lamp; with lower  voltage  the  light  

becomes  yellow- reddish while with higher voltage, it 

becomes bluish). Therefore, images taken at different times 

may exhibit backgrounds with slightly different hues. This 

makes it difficult to standardise procedures such as colour 

segmentation, colour separation, hue quantification, etc. 

Some microscopes have a switch to set a preset voltage to 

the bulb so it delivers a particular intensity and colour 

temperature (typically about 3200K to match indoor type B 

photographic film). When fixed voltages are used, then the 

intensity of the light is   typically controlled with neutral 

density filters in the light path. 

 

B. Color Space 

In the implementation of the TDLS algorithm, the picture 

is in the RGB domain and has three channels (a = 3). 

However, the algorithm can be generalized and expanded to 

take into account multi- or hyper spectral images of a skin 

lesion.  For standard digital images, we convert the image to 

the XYZ color space to find texture distributions and during 

the initial over segmentation. 

 

C. Image Segmentation 

In computer vision, image segmentation is the   process   

of   partitioning   a digital   image into multiple segments. 

The goal of segmentation is to simplify and/or change the 

representation of an image into something that is more 

meaningful and easier to analyse. Image segmentation is 

typically used to locate objects and boundaries in images. 

More precisely, image segmentation is the process of 

assigning a label to every pixel in an image such that pixels 

with the same label share certain characteristics. 

The result of image segmentation is a set of segments that 

collectively cover the entire image, or a set of contours 

extracted from the image (see edge detection). Each of the 

pixels in a region is similar with respect to some 
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characteristic or computed propert

intensity, or texture. Adjacent regions

different with respect to the same characteristic(s

applied to a stack of images, typical in me

resulting contours after image segmentatio

create 3D reconstructions with the help

algorithms like marching cubes. 

 

D. Algorithm Steps 

Input: the initially over segmented image S0. Output: 

region merging result. 

1. Set i=0. 

2. For each region in segmentation Si, use Algorithm 1 to 

check the value of predicate P with respect

neighbouring regions. 

3.  Merge the pairs of neighbouring regions whose 

predicate P is true, such that segmentation Si+1 is 

constructed. 

 4. Go back to step 2 until Si+1 = Si. 

5. Return Si machines. The Haar wavelet's mother 

wavelet function  can be described as 

 

 

 

IV. PROPERTIES OF THE PROPOSED

ALGORITHM 

Although the proposed DRM scheme 

greedy style, some global properties of the 

be obtained. More specifically, it can be 

proposed DRM algorithm produces a segmen

is neither over- merged nor under-merged

proposed predicate P. Similar to the de

segmentation and under-segmentation in [18]

concepts of over-merged segmentation a

segmentation as below Definition1

segmentation.  A segmentation S is und

contains some pair of regions for each the

of a merging between the regions Definiti

segmentation. A segmentation S is over-m

another segmentation Sr which is not und

each region of Sr is contained in some componen

saying, Sr can be obtained by splitting on

of S. We call that Sr is a refinement of S. De
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which is a contradiction. 

 

V. SIMULATION

The TD maps   are compared   visually. Select skin lesion 

images from the Dermquest database are used for different, 

the corrected for illumination variation using the MSIM 

algorithm. These  examples  are  selected  because  they 

highlight  cases  with  significant  differences between  the  

TD  and  TDLS  algorithms  and  are shown  in  Fig.  3.  

Also,  the  dynamic   range  of pixels  is scaled  to the  

maximum  pixel  intensity and also the minimum pixel 
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N RESULTS 

The TD maps   are compared   visually. Select skin lesion 

images from the Dermquest database are used for different, 

the corrected for illumination variation using the MSIM 

algorithm. These  examples  are  selected  because  they 

ight  cases  with  significant  differences between  the  

TD  and  TDLS  algorithms  and  are shown  in  Fig.  3.  

Also,  the  dynamic   range  of pixels  is scaled  to the  

maximum  pixel  intensity and also the minimum pixel 
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intensity, resulting in a different dynamic range for 

each TD map. 

 
Fig.2. Input Image 

 

 
Fig.3. Illumination Adjusted Image 

 

 
Fig.4. Sparse Texture of Input Image 

 

 
Fig.5. Segmentation Output 

 

 
Fig.6. Region Growing Technique Output 

 

 
Fig.7. Classification Result 
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