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 Abstract—Frequent route is an important individual outdoor 

behavior pattern that many trajectory-based applications rely on. 

In this paper, we propose a novel framework for extracting 

frequent routes from personal GPS trajectories. The key idea of 

our design is to accurately detect road corners and utilize these 

new metaphors to tackle the problem of frequent route extraction 

Concretely, our framework contains three phases: 1) 

characteristic point (CP) extraction; 2) corner detection; and 3) 

trajectory mapping. In the first phase, we present a linear fitting-

based algorithm to extract CPs. In the second phase, we develop 

a multiple density level DBSCAN (density-based spatial 

clustering of applications with noise) algorithm to locate road 

corners by clustering CPs. In the third phase, we convert each 

trajectory into an ordered sequence of road corners and obtain 

all routes that have been traversed by an individual for at least F 

(frequency threshold) times. We evaluate the framework using 

real-world trajectory datasets of individuals for one year and the 

experimental results demonstrate that our framework 

outperforms the baseline approach by 7.8% on average in terms 

of precision and 21.9% in terms of recall. 

 
Index Terms—Characteristic point extraction (CPE), corner 

detection, frequent routes. 
 
 

I. INTRODUCTION 
 
WITH the wide adoption of GPS receivers in vehicles  
and smartphones, huge amounts of personal GPS trajectories 
have been accumulated. By analyzing those GPS trajectories, 
we can understand each individual’s mobility patterns and 
obtain valuable insights about her/his daily behavior. These 
patterns and behaviors can be further utilized to improve the 
quality of various trajectory-based services, such as route 
prediction, disorientation detection, trip planning, and 
location-based recommendation. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Illustration of frequent routes. 

 
Frequent route is an important individual outdoor behavior 

pattern that the aforementioned ubiquitous applications rely 

on. Fig. 1 illustrates an example of frequent routes. In the 
figure, gray lines denote the physical roads and black lines 

denote one individual’s GPS trajectories. The white dotted 

lines highlight the frequent routes of the individual’s outdoor 
movements. In the example, we define a route to be a frequent 

route only if an individual has traversed the route for a certain 
amount of time. There are some existing works that attempt to 

extract frequent routes from personal GPS trajectories. 

However, extracting frequent routes from personal GPS 
trajectories is still a challenging problem for the following 

reasons. 1) GPS readings are not accurate due to hardware 

constraints. Inaccurate GPS readings and frequent speed 
changes in a trip result in irregular fluctuations in GPS 

trajectories. Mathematically, it is difficult to define an 

accurate distance function to measure trajectory similarity for 

irregular fluctuated trajectories. Without timing information in 

trajectories, this problem is even more difficult. Thus, the 
frequent route extraction methods based on trajectory 

similarity cannot be applied to irregular fluctuated trajectories. 

2) Physical roads are different from each other. Some 
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direction changes are sharp, while others are smooth. Thus, it 

is difficult to accurately define where a road direction 

changes. This ambiguous feature of roads naturally propagates 

to GPS trajectories and disables those frequent route 

extraction methods based on segmenting and clustering 

trajectories since they need to partition trajectories at special 

GPS points where trajectory direction changes. 3) Different 

physical roads have different trajectory densities due to 

variation in visit instances collected. This fact indicates that 

existing frequent route extraction methods based on clustering 

trajectories using uniform trajectory density cannot reliably 

detect all the trajectory clusters with different densities. 4) The 

ideal route representation should be concise and close to the 

corresponding physical roads. However, existing frequent 

route extraction methods based on clustering trajectories either 

use multiple points to represent a physical road segment 

between two road corners, or use simple direct connections 

between two hot regions to represent physical road segments. 

To tackle the above challenges, we conduct preliminary 

analysis on a large number of personal GPS trajectories and 
obtain the following three observations .1) Individuals’ daily 

outdoor movements are constrained by physical roads. 2)  
Physical roads’ topology information, such as road corners, is 

embedded in personal GPS trajectories. 3) If road corners can 

be detected accurately, the physical roads can be most 

concisely represented by connecting all the road corners 

sequentially. Based on these observations, we propose a novel 

frequent route extraction framework that leverages corner 

detection techniques for making full use of physical road 

topology information embedded in personal GPS trajectories. 

Particularly, instead of defining complicated similarity metrics 

for clustering GPS trajectories, our method maps GPS 

trajectories onto physical roads with the aid of corner 

detection and outputs concise frequent routes in the form of 

physical road segments. We validate our framework on a large 

number of personal GPS trajectories. Our main contributions 

are summarized as follows. 1) To the best of our knowledge, 

we are the first to leverage physical road topology 

information, particularly road corners and connectivity 

between them, for frequent route extraction. 2) We propose a 

characteristic point extraction (CPE) method based on linear 

fitting techniques. The CPE method filters out irregular 

fluctuations in GPS trajectories and identifies actual 

characteristic points (CPs) at road corners with different 

sharpness. 3) We design a multiple density level density-based 

spatial clustering of applications with noise (DBSCAN) 

(MDL-DBSCAN) algorithm based on an existing algorithm to 

detect road corners by clustering CPs with different densities. 

4) We define each trajectory as an ordered sequence of 

detected road corners rather than grid cells. This trajectory 

representation streamlines our cluster fusing process, which 

maps trajectory clusters onto physical roads. 5) We evaluate 

the proposed framework with real-world GPS trajectories 

collected from more than 6800 individuals for a year. 

Experimental results demonstrate that our framework 

outperforms the trajectory clustering-based method as a 

baseline method in terms of both precision and recall. The rest 

of this paper is organized as follows. 

 

 
 

 

 

II.  OUR PROPSED FRAMEWORK 
 
In this section, we present the design of our frequent route 
extraction framework. 

 
A.  Frequent Route Extraction Framework 

 
Based on the observations 1) and 3) in Section I, we convert 

the frequent route extraction problem into a traversed road 

segment counting issue. By mapping personal GPS trajectories 

onto physical roads, we need to determine the road segments 

contained in each trajectory and count the number of times 

each road segment has been traversed. If the number of 

traversed time for a route is greater than a certain threshold F, 

then the route is identified as the frequent route for an 

individual. To solve the aforementioned problem, we have to 

solve two sub-problems: 1) how to extract roads topology 

information to segment a GPS trajectory and 2) how to map 

GPS trajectories onto road segments in physical roads. 

According to the observations 1) and 2) in Section I, human 

outdoor movements are constrained by physical roads. Thus, 

the GPS trajectories of personal movements inevitably contain 

the connected road segment of physical roads. Road corners 

are identified as the metaphors to separate road segments in 

GPS trajectory. Physically, it is reasonable to infer that the 

locations, at which a number of trajectories direction change, 

are road corners. To utilize road corners for frequent route 

extraction, we can first identify the special points in each 

trajectory, where trajectory direction changes significantly and 

steadily. Then, we can locate road corners by clustering these 

special points. If a trajectory traverses two corners 

successively, the two corners form a road segment that has 

been traversed. By locating road corners in trajectories, we 

generate a minimal number of points to separate a GPS 

trajectory into a sequence of road segments, we then extract 

frequent routes as the road segments that have been traversed 

more than F times by an individual. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Overview of our framework. 
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With the road corners, the second sub-problem of mapping 

trajectories into road segments in physical roads is equivalent 

to transforming each trajectory into an ordered sequence of 

road segments defined by road corners. Based on the above 

analysis, we propose a novel framework to extract frequent 

routes. Fig. 2 illustrates the overview of our framework. 

Generally, the framework consists of four steps. In the first 

step, a CPE method is applied to extract the CPs in each 

trajectory. In the second step, an improved DBSCAN 

clustering algorithm named MDL-DBSCAN is used to locate 

the road corners. In the third step, all the trajectories are 

mapped onto physical roads and the frequent routes are 

extracted. Finally, the effectiveness of frequent route 

extraction framework is evaluated using a real-world 

trajectory dataset. 
 
B.  Characteristic Point Extraction 

 
As shown in Fig. 2, given a large collection of GPS 
trajectories, the first task is to extract CPs of each trajectory. 

As mentioned previously, a CP is the GPS point where the 
trajectory’s direction changes significantly and steadily (we 

will present its formal definition later). Fig. 3 illustrates an 

example of individual movement trajectory denoted as a gray 
line on the right panel. This trajectory is constrained by 

physical roads apparently. The CPs, marked as points, are the 

locations where trajectory direction changes significantly and 
steadily. Given a GPS trajectory Ti = p1p2 . . . pni, an intuitive 

method to extract the CPs is measuring the angle between 
segment pj−1pj and pjpj+1. Unfortunately, in practice, GPS 

trajectory often suffers the low-sampling-rate problem, i.e., 

GPS devices collect data at a low and unstable frequency. 
What’s worse is that GPS drift error cannot be ignored. Due to 

low sampling rate and drift errors, irregular fluctuations exist 

in GPS trajectories. An example is illustrated in the left panel 
in Fig. 3. If we adopt the intuitive idea directly, the irregular 

fluctuation in GPS trajectory will result in poor results. To 
circumvent the problem, we introduce a method based on 

linear fitting. Fig. 4 depicts an example. To detect the 

direction change at GPS point pj, we first linear fit the point 
sets 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Illustrative example of direction change angle detecting 
based on linear fitting. 
 
{ pj−l+1, pj−l+2, . . . , pj} and { pj, pj+1, . . . , pj+l−1} and 
obtain two straight lines L1 and L2. The referenced parameter 
l denotes the fitting length, i.e., the number of points the linear 
fitting method considers on each side of pj. 
 
Algorithm 1 CPE Method  
Input: trajectory T = p1p2 . . . pj . . . pn; change angle 
threshold θthrd; 
; change angle decrease rate r; linear fitting length l  
Output: CP set CPs ; 
1: lastCPP ← l-1;   
2: for j from l-1 to n-l do  
3: if isCPP(pj, l, θthrd) then // check if pj is a CPP   
4: Add pj into CCPs; // CCPs denotes the set of CCP   
5: lastCPP ← j;   
6: else   
7: if isSlowChange(lastCPP, j, l, θthrd) then   
8: while flag do  
9: θthrd = θthrd*(1-r);   
10: for index from lastCPP + 1 to j do   
11: if isCPP(pj, l, θthrd) then   
12: Add pj into CCPs;   
13: lastCPP ← j;  
14: flag ← false;   
15: end for   
16: end while   
17: end for   
18: Extract LCCSs from CCPs;   
19: for each S in LCCSs do  

20: get the point p whose change angle is largest among S;   
21: add p into CPs;   
22: end for   
23: add p1 and pn to CPs. //add the start and end point to CPs  
 
 

 
TABLE I  

EVALUATION OF THREE CP EXTRACTION RESULTS 
 
 
 
 
 
 
 
 
 
Fig. 3. Illustrative example of CP. 
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Fig. 5. CPs extraction result by CPE on a trajectory set that 
contains nine trajectories. 
 
We can see that although the precision of CPE method is 
slightly lower than the other two methods, its recall is much 
higher than the other two methods. The CPE method achieves 
almost 97% detection rate with the false alarm rate 6.1%. 

Compared to the manually labeled CPs in Fig. 3, we found 
that the MDL principle-based method is able to extract the 
CPs in the slow direction change regions, but it ignores the 
CPs in the regions where there are relatively small but 
continuous “S”- or “Z”-shaped direction changes. The method 

based on linear fitting cannot find the CPs in slow direction 
change regions [shown as the light-gray rectangle shadow in. 
In contrast, the CPE method is superior to the above two 
methods, since it can not only find the CPs in slow and sharp 

direction change regions simultaneously, but also catch the 
CPs in regions that are relatively small but have continuous S-
or Z-shaped direction changes. 

 
C.  Road Corner Detection 
 

In our framework, after extracting CPs, our next task is to 

detect road corners. Based on the observation 1) in Section I, 

personal outdoor movement trajectories are restricted by 

physical roads. Conversely, personal movement trajectories 

contain physical clues that reflect physical roads. We observe 

that the CPs form several clusters and these clusters match the 

road corners perfectly. Based on this observation, we assume 

that the locations, which contain a number of trajectories 

direction changes, are road corners. Thus, in our framework 

we detect road corners by clustering CPs, since CPs capture 

direction changes. To cluster CPs, we have the following four 

requirements for the clustering algorithm.  
1) The algorithm should be able to identify the number of 

clusters automatically. It is impractical to know the number of 

road corners of a given trajectory set in advance. Thus, the 

algorithm should figure it out.  
 

2) The algorithm should be able to find CP clusters with 
different shapes, since CP clusters around corners usually have 
different spatial shapes.  
 

3) The algorithm should be able to eliminate the “noise” 
automatically.  

 
 
 

In this paper, we ignore isolated CPs and clusters containing 
a few CPs since they will not lead to frequent route.  

4) The algorithm should be able to find CP clusters with 
different densities. Due to different quantities and  

distribution shapes, the CP clusters always have different 
densities.  

Existing density-based clustering algorithms, such as 

DBSCAN and OPTICS, can adapt to the first three 

requirements. However, to the best of our knowledge, none of 

the clustering algorithms can adapt to the fourth requirement. 

In this paper, we propose MDL-DBSCAN algorithm that can 

meet not only the first three requirements but also the fourth 

requirement. DBSCAN and OPTICS employ a unique global 

density threshold in the clustering process. It is the primary 

reason why they cannot detect the clusters with different 

densities. Unlike DBSCAN or OPTICS, MDL-DBSCAN 

clusters the CPs with multiple density thresholds. In MDL-

BSCAN, DBSCAN works as a sub-procedure to cluster CPs 

with a given density threshold. The core techniques of MDL-

DBSCAN can be summarized as “one process” and “two 

constraints.” 1) One Process: To extract the CP clusters with 

different densities, MDL-DBSCAN clusters CPs on MDL 

iteratively. 2) Two Constraints: In order to control DBSCAN 

to perform as the process shown in Fig. 8, we have to add two 

constraints additionally. a) The one process may merge the 

clusters generated at previous density levels together when the 

current density level is low enough. Thus, we add the 

following constraint. Constraint 1: The clusters generated at 

previous density levels (i.e., high-density levels) cannot be 

partitioned or merged into other clusters as density level 

decreased (i.e., lower density levels). Additionally, we do not 

forbid the extension of the clusters generated in previous 

density levels, since it may result in many meaningless small 

clusters. b) At each iteration of DL-DBSCAN, the unlabeled 

CPs that satisfy current density level may be merged into the 

clusters generated at previous density levels although they can 

independently form a new clusters at the current density level. 

Thus, we add the following constraint. Constraint 2: The 

unlabeled point clusters that satisfy the current density level 

(i.e., the density level, on which, one process is clustering the 

CPs) should independently form a new cluster instead of 

merging into the previously generated clusters. 
 

Algorithm 2 CPs Clustering Algorithm  
Input: CP list CPl; HighestDensity; LowestDensity ; 

DensityLevel  
Output: CPs with cluster label;  
1: startID ← 0;   
2: for j from 1 to DensityLevel do  

 
3: Compute the density threshold Densityj = (Epsj,MinPtsj); 
/*handling the unlabeled points preferentially */  

 
4: Move the unlabeled CPs to the beginning of the CPl; 
/*using the DBSCAN, the neighbors definition of which 
has been */   
/*modified according to Definition 4, to cluster the CPs in   

CPl */  
5: startID ← DBSCAN(CPl, Epsj, MinPtsj, startID + 1); 
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/* let all the CPs can be visited again */  
6: Change the VisitedFlag of each CP to false;   
7: end for  

 

D.  Trajectory Mapping  
 
In our framework, the next task is to map each trajectory onto 
physical roads and construct connectivity matrix (CM) among 
all involved corners. Then, we can get frequent routes by 
retrieving CM with a given frequency threshold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Example of trajectory mapping. 

 
For each trajectory, the trajectory mapping procedure checks it 
from its starting point to the end point. If it traverses one 
cluster territory, the center of this cluster will be added into 
the ordered sequence of this trajectory. Since each cluster 
center corresponds to a road corner, the trajectory mapping 
procedure actually transforms each original trajectory into an 
ordered sequence of road corners. From the ordered 
sequences, we can obtain the connectivity information among 
involved road corners and the number of trajectories mapped 
onto each physical road segment. 

 
E.  Frequent Route Evaluation Methods 

 
We evaluate the extracted frequent routes from two aspects. 
First, we measure the closeness from them to the 

corresponding physical roads. Second, by using the manually 

labeled frequent routes as ground truth, we analyze their 
precision and recall. 1) Closeness to Physical Roads: How 

close the extracted frequent routes are to the physical roads is 

an important indicator to evaluate our framework. The ideal 
method of measuring the distance between physical roads and 

extracted frequent routes should compute the average point-to-

line distance from the sample points of physical roads to the 

corresponding extracted frequent routes. However, the ideal 

method is infeasible since the numerical information of the 
involved roads is not available from electronic map 

applications such as Google Maps, and we can only obtain 

maps in the form of pictures. Therefore, we employ an 

approximate method, which measures the average point-to-

line distance from the sample points of GPS trajectories to the 

corresponding frequent routes. 
 
 
 

III. CONCLUSION  
Frequent routes are an important context for trajectory-based 
applications. In this paper, we propose a novel framework to 
extract frequent routes from personal GPS trajectories. In our 

framework, we first propose a CPE method to extract CPs, 

which characterize the physical roads. Second, we propose the 

MDL-DBSCAN clustering algorithm to locate road corners. 

Instead of using a unique global density threshold, MDL-

DBSCAN uses several density thresholds to cluster the CPs at 

MDL. Third, we propose a method to map all the trajectories 

on physical roads and detect frequent routes. Finally, we 

evaluate our framework on real personal GPS trajectory 

datasets. The results demonstrate that our framework 

outperforms the baseline approach by 7.8% in terms of 

average precision and 21.9% in terms of average recall. In the 
future, we plan to extend this paper in two directions. First, we 

attempt to exploit other information embedded in GPS 
trajectories such as time stamps for frequent route extraction. 

Second, we intend to develop practical applications, such as 

disorientation detection and movement trend prediction, 
leveraging the techniques developed in this framework. 
 

REFERENCES 
 
[1] Hongyan Liu Jiawei Han Dong Xin Zheng Shao, “Mining Frequent 
Patterns from Very High Dimensional Data:A Top-Down Row Enumeration 
Approach”, Department of Management Science and Engineering, Tsinghua 
University  hyliu@tsinghua.edu.cn, Department of Computer Science, 
University of Illinois at Urbana- Champaign {hanj, dongxin,  
zshao1}@uiuc.edu. 

 

[2] Huiping Cao, Nikos Mamoulis, and David W., “Mining Frequent Spatio-
temporal Sequential Patterns”, Department of Computer Science The 
University of Hong Kong Pokfulam Road, Hong Kong {hpcao, nikos,  
dcheung}@cs.hku.hk.  

 

[3] Mikołaj Morzy, “Mining Frequent Trajectories of Moving Objects for 
Location Prediction”, Institute of Computing Science Pozna´n University of 
Technology  
 
Piotrowo 2, 60-965 Pozna´n, Poland  Mikolaj.Morzy@put.poznan.pl.  

 

[4] Torben Bach Pedersen Aalborg University  tbp@cs.aau.dk, Manohar 
Kaul Uppsala University  manukaul@acm.org,  
 
Gy˝oz˝o Gidófalvi KTH Royal Inst. of Technology  
gyozo.gidofalvi@abe.kth.se, Christian Borgelt EU Centre for Soft Computing  
christian@borgelt.net, “Frequent Route Based Continuous Moving Object 
Location- and Density Prediction on Road Networks” . 

 

[5] Yunhao Liu, Yiyang Zhao, Lei Chen, Jian Pei, Jinsong Han, “Mining 
Frequent Trajectory Patterns for Activity Monitoring Using Radio Frequency 
Tag Arrays”, IEEE. 

 
 

 All Rights Reserved © 2017 IJARTET 

 

149 


