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Abstract—Reinforcement learning (RL) is a popular 

machine learning technique that has many successes in 

learning how to play classic style games. Applying RL 

to third person shooter (TPS) games is an interesting 

area of research as it has the potential to create diverse 

behaviors without the need to implicitly code them. 

This paper investigates the tabular Sarsa RL 

algorithm applied to a purpose built TPS game. The 

first part of the research investigates using RL to learn 

bot controllers for the tasks of navigation, item 

collection, combat individually and vehicle 

maneuvering. Results showed that the RL algorithm 

was able to learn a satisfactory strategy for navigation 

control, but not to the quality of the industry standard 

path finding algorithm. The combat controller 

performed well against a rule-based bot, indicating 

promising preliminary results for using RL in TPS 

games. The second part of the research used pertained 

RL controllers and then combined them by a number 

of different methods to create a more generalized bot 

artificial intelligence (AI). The experimental results 

indicated that RL could be used in a generalized way 

to control a combination of tasks in TPS bots such as 

navigation, item collection, and combat.  

I. INTRODUCTION 

Over the past few decades reinforcement 

learning has evolved a lot and has been applied to 

lot of multiagent systems and robotics. Many 

researchers have applied RL to games and have 

created game bots. RL has been applied to a lot of 

classic games like Backgammon, PAC-MAN. 

However there has been little research done in 

applying RL to modern video games where the 

complexity is more.  

Modern video games are becoming more complex 

and particularly TPS. TPS games are becoming 

more complex and also have a complex 

environment. This paper will show that the bot can 

know an environment and the objects present in it.  

TPS bot AI generally consists of path finding, 

driving, picking up and using objects in the 

environment and using different weapons like 

sniper, handgun and perform combat. Bot AI in 

most of the games uses rule-based systems, state 

machines and goal-based machines. In TPS the 

success of the bot will be depended on their ability 

to learn new skills and adapt to their dynamic and 

complex environments. In TPS to bridge this gap we 

are using policy search method instead of value 

function approximation.  

One of the main disadvantages of RL is that with 

increased complexity of the problem, it results in the 

scalability issues.  

To overcome this, the task is split into two. The first 

task is that the bot studies its environment and 

figures the path and the second task is to perform 

combat or vehicular maneuvering. The sarsa (λ) 

 Algorithm is used as the algorithm for the following 

problem. Hierarchical RL is used to train the bot for 

combat and navigation. The single task controller 

will be used to form a bot with multiple behavior 

set. The bot can relearn the same or performed tasks 

by using the RL Algorithm.  

The sarsa (λ) algorithm uses a tabular approach in 

which it uses a look-up table to store the sate action 

pairs. As the complexity of the TPS environment 

increases we can use numerous ways to address the 

problem, such as approximating the value functions 

and abstracting the sensor inputs. The Sarsa 

algorithm with eligibility traces, termed Sarsa , 

is used for updating the policy values. Eligibility 77 
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traces are a method to speed up learning by 

allowing past actions to benefit from the 

current reward, and also allowing for sequences of 

actions to be learned.  

II. SARSA (Λ) ALGORITHM 

The Sarsa Algorithm is an On-Policy Algorithm 

forTD-learning. The major difference between it and 

Q-Learning, is that the maximum reward for the 

next state is not necessarily used for updating the Q-

values. Instead, a new action, and therefore reward, 

is selected using the same policy that determined the 

original action. The name Sarsa actually comes from 

the fact that the updates are done using the 

quintuple. 

Where s,a are the original state and action, 

r is the reward observed in the following state and 

s’, a’ are the new state action pairs. From the 

following algorithm,it uses two steps for 

determining the next state action pairs. A state-

action pair is the mapping of how well an action 

performs in a state and is stored by the policy. The 

policy evolves over time and provides the path an 

agent should take to reach the maximum reward for 

the task. The two most common type of policy 

representaion are tabular and genralization 

approaches.  

The tabular approach uses a look-up table to store 

the numerical values of the state-action pairs, while 

the genrealization approach uses a function 

approximator to model and generalize the state-to-

action mapping. In this paper we will implement the 

tabular approach in the complex environment of 

TPS games. The previously calculated TD is used as 

the learning rate (α) and eligibility trace (λ) to 

update each state-action pair in the policy.   

 

                                  TABLE I  

              Pseudo code for Sarsa Algorithm 

  At each time step, the RL algorithm 

chooses an action depending on the current action 

selection method, a process known as the dilemma 

of exploration versus exploitation. This dilemma is 

the tradeoff between the RL algorithm exploiting the 

knowledge currently in the policy and exploring the 

state space for better actions to perform. A number 

of methods have been proposed to deal with this 

issue such as greedy selection and softmax [1]. The 

literature shows that the -greedy method is popular 

and successful in many different scenarios [2], [3]. 

The parameter is used to control the ratio between 

exploration and exploitation by a random chance 

system. Once an action is chosen, the environment 

calculates a reward indicating how well the agent 

performed based on a reward function. The agent’s 

internal policy is then updated according to an 

update (learning) function. Several RL algorithms 

have been developed over the years including 

temporal difference (TD), Q-learning, and Sarsa. 

The Sarsa algorithm, similar to Q-learning, has 

successfully been applied to MAS using computer 

game environments [13], [14].  

III. RELATED WORK 

The application of RL toward modern video games 

remains poorly explored. Despite preliminary 

findings displaying promising results. An RL 

algorithm to a racing car game and dealt with the 

complexity of the environment by evaluating the 

state at discrete points in time [2]. Actions are then 

considered as a continuous function of the state–

action pair. In a fighting simulation game, Graepel 

applied the Sarsa algorithm to teach the non-player 

characters (NPCs) to play against the hard-coded AI 

[12]. The results indicated that the game agents 

displayed various behaviors. 

In Merick’s research a role-playing game is 

controlled using Q-Learning and greedy 

exploration function. Generally in TPS games the 

object types and how to interact with them are 

defined before the game starts.  

Minh in his research has developed deep 

reinforcement learning method and applied it to 

Atari 2600, which has an arcade-learning 

environment. RL has been applied to classical 

games like PAC-MAN and Backgammon. It has 

been extensively used in robotic domain. It is very 

little applied in complex video game environment 

like TPS. 

 

1: Initialize Q(s, a) = 0, set e(s, a)=0 for 

all s, a 

2: Repeat for each training game 

3: Repeat for each update step t in the 

game 

4: Set s’ to the current state 

5:Select an action a’ 

6:Take an action a’, observe reward r 

7:  

8:  

9: For all s, a: 

10:  

11:  

12:  

13: Until end game condition is true 
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IV. EXPERIMENTAL SETUP AND 

ARCHITECTURE 

 

A TPS game is used as the test bed for all the 

experiments described. A commercial game is used 

instead of a purpose built game. But there is a 

drawback with the commercial game. According to 

Laird’s FPS research [24], commercial game 

engines may have insidious problems that cannot be 

changed such as the bots having an advantage over 

the human player. For example, in Quake 2 the bots 

had faster turning circles than the human-controlled 

bots [6].  

The game testbed has the basic features of 

commercial TPS games such as walls, power up 

items, bots and vehicle maneuvering. Bots are 

equipped with the ability to turn left, turn right, 

move forwards, move backwards, strafe left, strafe 

right, pick up items, and shoot. All bots in the game 

have exactly the same capabilities and parameters, 

e.g., turn speed (0.1), speed (0.2 m/update cycle), 

ammo clip (unlimited), weapon type (handgun), and 

hit points (50). The guns have a cool down timer of 

1 s, to avoid a constant stream of fire.  

When a state–action pair occurred, the eligibility 

trace was set to 1.0, instead of incrementing the 

current trace by 1.0, as the former case encourages 

faster learning times [10]. A small learning rate was 

used in all experiments, and was linearly de- creased 

during the training phase according to where d is the 

discount rate applied at each iteration, is the 

initial learning rate (0.2), is the target end-

learning rate (0.05), and is the total number of 

iterations for the training phase (5000). These values 

were chosen from success in preliminary runs. [9] 

discussed about Enhancement of TCP Throughput 

using enhanced TCP Reno Scheme. Mobile Ad-Hoc 

Networks (MANETs) have been an area for active 

research over the past few years due to their 

potentially widespread application in military and 

civilian communications. 

 
        Fig1. Reinforcement Learning Architecture 

In this research we placed emphasis more on 

modularization and reuse of code.  The upper part 

corresponds to the training of our agent, showing its 

interactions with the world and the policy. The 

lower part corresponds to the user, a program or an 

applet that is using the "knowledge" of the trained 

policy to perform its task. Both the RLearner and 

the user, interact with their own world, which holds 

the current state and defines the rules. It provides 

feedback about the next state, the validity of a 

certain action and the reward for a certain action. 

The policy links it all together. It is updated by the 

RLearner based on the experience it is having with 

the world and later on consulted by the user for 

choosing an optimal action. Both the training and 

the consulting of the policy can also be done 

simultaneously depending on the application. 

Usually training is done to some extent before using 

the policy. 

V. RESULTS 

Navigation Task: 

The aim of the navigation task is to investigate a bot 

could learn to maneuver in the environment. The 

reward function consisted of the objectives 1) 

Minimize collisions 2) Maximize the distance 

travelled 3) Maximize the number of bots killed. 

Small values were chosen for the first two 

objectives, as the occurrence of them over the 

training phase iteration was very high. If the reward 

values were higher, then the item collection reward 

would be negligible when it occurred.  
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                            Fig2. Collision Graph  

 

 Core Combat Cycle: 

The first thing to recognize is that the 

figure contains all kinds of hidden complexities. For 

example, for each of the arrow we have a question 

of “when it is appropriate to follow this transition”. 

Some of the transitions are voluntary (giving up 

search) other transitions are forced by perception, 

from combat we are forced transition. 

 
                          Fig3. Core Combat Cycle 

 Combat Maps: 

 

 
Fig4. A) The arena map B) The maze map C) The 

core combat map  

 

                            VI.CONCLUSION 

The proposed approach is implemented on 

a complex environment unlike the limited state 

space. This paper presented an approach to apply 

Reinforcement Learning in Third Person Shooter 

games where the complexity of the environment is 

more. The Sara  Algorithm is used to implement 

reinforcement learning and to maximize the reward 

function. In this Algorithm instead of new action, a 

reward is selected using the same policy that 

determined the original action. In the general-

purpose task experiments, both the arena and maze 

maps showed similar trends in combat and 

navigation statistics, indicating the robustness of the 

RL controllers. The hierarchical RL and rule-based 

RL controllers performed significantly better than 

the flat RL controller in combat and navigation 

skills. The hierarchical RL bot performed best in the 

shooting accuracy objective, outperforming all other 

bots in the experiment. The rule-based RL bot 

performed slightly better in the other objectives than 

the hierarchical RL bot, however the observational 

results showed that the hierarchical RL bot had a 

wider range of behaviors in combat scenarios. For 

example, in some situations with multiple enemies, 

the hierarchical RL bot would flee the scene 

whereas the rule-based RL bot tended to stay with 

the fight.  
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