
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 19, April 2017

Reinforcement Learning Applied in Third Person

Shooter Games
T.Sarada Kiranmayee

1
, Akhil Mantha

2
, Manideep Kumara Reddy

3
,

Karan Khosla

4

1
 Asst. Professor in CSE Department, SRM University

2
UG Scholar, CSE Department, SRM University

3
UG Scholar, CSE Department, SRM University

4
UG Scholar, CSE Department, SRM University

 1
tskiranmayee@gmail.com

 2
akhilmantha@live.com

3manideepreddy2007@gmail.com
4
karankhosla99@gmail.com

Abstract—Reinforcement learning (RL) is a popular

machine learning technique that has many successes in

learning how to play classic style games. Applying RL

to third person shooter (TPS) games is an interesting

area of research as it has the potential to create diverse

behaviors without the need to implicitly code them.

This paper investigates the tabular Sarsa RL

algorithm applied to a purpose built TPS game. The

first part of the research investigates using RL to learn

bot controllers for the tasks of navigation, item

collection, combat individually and vehicle

maneuvering. Results showed that the RL algorithm

was able to learn a satisfactory strategy for navigation

control, but not to the quality of the industry standard

path finding algorithm. The combat controller

performed well against a rule-based bot, indicating

promising preliminary results for using RL in TPS

games. The second part of the research used pertained

RL controllers and then combined them by a number

of different methods to create a more generalized bot

artificial intelligence (AI). The experimental results

indicated that RL could be used in a generalized way

to control a combination of tasks in TPS bots such as

navigation, item collection, and combat.

I. INTRODUCTION

Over the past few decades reinforcement

learning has evolved a lot and has been applied to

lot of multiagent systems and robotics. Many

researchers have applied RL to games and have

created game bots. RL has been applied to a lot of

classic games like Backgammon, PAC-MAN.

However there has been little research done in

applying RL to modern video games where the

complexity is more.

Modern video games are becoming more complex

and particularly TPS. TPS games are becoming

more complex and also have a complex

environment. This paper will show that the bot can

know an environment and the objects present in it.

TPS bot AI generally consists of path finding,

driving, picking up and using objects in the

environment and using different weapons like

sniper, handgun and perform combat. Bot AI in

most of the games uses rule-based systems, state

machines and goal-based machines. In TPS the

success of the bot will be depended on their ability

to learn new skills and adapt to their dynamic and

complex environments. In TPS to bridge this gap we

are using policy search method instead of value

function approximation.

One of the main disadvantages of RL is that with

increased complexity of the problem, it results in the

scalability issues.

To overcome this, the task is split into two. The first

task is that the bot studies its environment and

figures the path and the second task is to perform

combat or vehicular maneuvering. The sarsa (λ)

 Algorithm is used as the algorithm for the following

problem. Hierarchical RL is used to train the bot for

combat and navigation. The single task controller

will be used to form a bot with multiple behavior

set. The bot can relearn the same or performed tasks

by using the RL Algorithm.

The sarsa (λ) algorithm uses a tabular approach in

which it uses a look-up table to store the sate action

pairs. As the complexity of the TPS environment

increases we can use numerous ways to address the

problem, such as approximating the value functions

and abstracting the sensor inputs. The Sarsa

algorithm with eligibility traces, termed Sarsa ,

is used for updating the policy values. Eligibility 77

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 19, April 2017

traces are a method to speed up learning by

allowing past actions to benefit from the

current reward, and also allowing for sequences of

actions to be learned.

II. SARSA (Λ) ALGORITHM

The Sarsa Algorithm is an On-Policy Algorithm

forTD-learning. The major difference between it and

Q-Learning, is that the maximum reward for the

next state is not necessarily used for updating the Q-

values. Instead, a new action, and therefore reward,

is selected using the same policy that determined the

original action. The name Sarsa actually comes from

the fact that the updates are done using the

quintuple.

Where s,a are the original state and action,

r is the reward observed in the following state and

s’, a’ are the new state action pairs. From the

following algorithm,it uses two steps for

determining the next state action pairs. A state-

action pair is the mapping of how well an action

performs in a state and is stored by the policy. The

policy evolves over time and provides the path an

agent should take to reach the maximum reward for

the task. The two most common type of policy

representaion are tabular and genralization

approaches.

The tabular approach uses a look-up table to store

the numerical values of the state-action pairs, while

the genrealization approach uses a function

approximator to model and generalize the state-to-

action mapping. In this paper we will implement the

tabular approach in the complex environment of

TPS games. The previously calculated TD is used as

the learning rate (α) and eligibility trace (λ) to

update each state-action pair in the policy.

 TABLE I

 Pseudo code for Sarsa Algorithm

  At each time step, the RL algorithm

chooses an action depending on the current action

selection method, a process known as the dilemma

of exploration versus exploitation. This dilemma is

the tradeoff between the RL algorithm exploiting the

knowledge currently in the policy and exploring the

state space for better actions to perform. A number

of methods have been proposed to deal with this

issue such as greedy selection and softmax [1]. The

literature shows that the -greedy method is popular

and successful in many different scenarios [2], [3].

The parameter is used to control the ratio between

exploration and exploitation by a random chance

system. Once an action is chosen, the environment

calculates a reward indicating how well the agent

performed based on a reward function. The agent’s

internal policy is then updated according to an

update (learning) function. Several RL algorithms

have been developed over the years including

temporal difference (TD), Q-learning, and Sarsa.

The Sarsa algorithm, similar to Q-learning, has

successfully been applied to MAS using computer

game environments [13], [14].

III. RELATED WORK

The application of RL toward modern video games

remains poorly explored. Despite preliminary

findings displaying promising results. An RL

algorithm to a racing car game and dealt with the

complexity of the environment by evaluating the

state at discrete points in time [2]. Actions are then

considered as a continuous function of the state–

action pair. In a fighting simulation game, Graepel

applied the Sarsa algorithm to teach the non-player

characters (NPCs) to play against the hard-coded AI

[12]. The results indicated that the game agents

displayed various behaviors.

In Merick’s research a role-playing game is

controlled using Q-Learning and greedy

exploration function. Generally in TPS games the

object types and how to interact with them are

defined before the game starts.

Minh in his research has developed deep

reinforcement learning method and applied it to

Atari 2600, which has an arcade-learning

environment. RL has been applied to classical

games like PAC-MAN and Backgammon. It has

been extensively used in robotic domain. It is very

little applied in complex video game environment

like TPS.

1: Initialize Q(s, a) = 0, set e(s, a)=0 for

all s, a

2: Repeat for each training game

3: Repeat for each update step t in the

game

4: Set s’ to the current state

5:Select an action a’

6:Take an action a’, observe reward r

7:

8:

9: For all s, a:

10:

11:

12:

13: Until end game condition is true

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 19, April 2017

IV. EXPERIMENTAL SETUP AND

ARCHITECTURE

A TPS game is used as the test bed for all the

experiments described. A commercial game is used

instead of a purpose built game. But there is a

drawback with the commercial game. According to

Laird’s FPS research [24], commercial game

engines may have insidious problems that cannot be

changed such as the bots having an advantage over

the human player. For example, in Quake 2 the bots

had faster turning circles than the human-controlled

bots [6].

The game testbed has the basic features of

commercial TPS games such as walls, power up

items, bots and vehicle maneuvering. Bots are

equipped with the ability to turn left, turn right,

move forwards, move backwards, strafe left, strafe

right, pick up items, and shoot. All bots in the game

have exactly the same capabilities and parameters,

e.g., turn speed (0.1), speed (0.2 m/update cycle),

ammo clip (unlimited), weapon type (handgun), and

hit points (50). The guns have a cool down timer of

1 s, to avoid a constant stream of fire.

When a state–action pair occurred, the eligibility

trace was set to 1.0, instead of incrementing the

current trace by 1.0, as the former case encourages

faster learning times [10]. A small learning rate was

used in all experiments, and was linearly de- creased

during the training phase according to where d is the

discount rate applied at each iteration, is the

initial learning rate (0.2), is the target end-

learning rate (0.05), and is the total number of

iterations for the training phase (5000). These values

were chosen from success in preliminary runs. [9]

discussed about Enhancement of TCP Throughput

using enhanced TCP Reno Scheme. Mobile Ad-Hoc

Networks (MANETs) have been an area for active

research over the past few years due to their

potentially widespread application in military and

civilian communications.

 Fig1. Reinforcement Learning Architecture

In this research we placed emphasis more on

modularization and reuse of code. The upper part

corresponds to the training of our agent, showing its

interactions with the world and the policy. The

lower part corresponds to the user, a program or an

applet that is using the "knowledge" of the trained

policy to perform its task. Both the RLearner and

the user, interact with their own world, which holds

the current state and defines the rules. It provides

feedback about the next state, the validity of a

certain action and the reward for a certain action.

The policy links it all together. It is updated by the

RLearner based on the experience it is having with

the world and later on consulted by the user for

choosing an optimal action. Both the training and

the consulting of the policy can also be done

simultaneously depending on the application.

Usually training is done to some extent before using

the policy.

V. RESULTS

Navigation Task:

The aim of the navigation task is to investigate a bot

could learn to maneuver in the environment. The

reward function consisted of the objectives 1)

Minimize collisions 2) Maximize the distance

travelled 3) Maximize the number of bots killed.

Small values were chosen for the first two

objectives, as the occurrence of them over the

training phase iteration was very high. If the reward

values were higher, then the item collection reward

would be negligible when it occurred.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 19, April 2017

 Fig2. Collision Graph

 Core Combat Cycle:

The first thing to recognize is that the

figure contains all kinds of hidden complexities. For

example, for each of the arrow we have a question

of “when it is appropriate to follow this transition”.

Some of the transitions are voluntary (giving up

search) other transitions are forced by perception,

from combat we are forced transition.

 Fig3. Core Combat Cycle

 Combat Maps:

Fig4. A) The arena map B) The maze map C) The

core combat map

 VI.CONCLUSION

The proposed approach is implemented on

a complex environment unlike the limited state

space. This paper presented an approach to apply

Reinforcement Learning in Third Person Shooter

games where the complexity of the environment is

more. The Sara Algorithm is used to implement

reinforcement learning and to maximize the reward

function. In this Algorithm instead of new action, a

reward is selected using the same policy that

determined the original action. In the general-

purpose task experiments, both the arena and maze

maps showed similar trends in combat and

navigation statistics, indicating the robustness of the

RL controllers. The hierarchical RL and rule-based

RL controllers performed significantly better than

the flat RL controller in combat and navigation

skills. The hierarchical RL bot performed best in the

shooting accuracy objective, outperforming all other

bots in the experiment. The rule-based RL bot

performed slightly better in the other objectives than

the hierarchical RL bot, however the observational

results showed that the hierarchical RL bot had a

wider range of behaviors in combat scenarios. For

example, in some situations with multiple enemies,

the hierarchical RL bot would flee the scene

whereas the rule-based RL bot tended to stay with

the fight.

 REFERENCES

[1] Sutton, Richard.S and Barto Reinforecment

Learning: An Introduction, MIT Press, 1998

[2] J. Manslow, “Using reinforcement learning to

solve AI control problems,” in AI Game

Programming Wisdom 2, S. Rabin, Ed. Hingham,

 MA: Charles River Media, 2004.

[3]  A. H. Tan and D. Xiao, “Self-organizing

cognitive agents and reinforcement learning in

multi-agent environment,” in Proc. Int. Conf. Intell.

 Agent Technol., Compiegne, France, 2005, pp.

351–357.  

[4] J. Bradley and G. Hayes, “Group utility

functions: Learning equilibria between groups of

agents in computer games by modifying the

reinforcement signal,” in Proc. Congr. Evol.

Comput., 2005, vol. 2, pp.  1914–1921.

[5] S. Nason and J. E. Laird, “Soar-RL: Integrating

reinforcement learning with soar,” Cogn. Syst. Res.,

vol. 6, no. 1, pp. 51–59, 2005.

[6] J. Laird, “It knows what you’re going to do:

Adding anticipation to a Quakebot,” in Proc. 5th Int.

Conf. Autonom. Agent, 2001, pp. 385–392.

[7] S. Cohen, O.Maimon, and E.Khmlenitsky,

“Reinforcement learning with hierarchical decision

making,” in Proc. 6th Int. Conf. Intell. Syst. Design

Appl., 2006, vol. 3, pp. 177–182. 

[8] M. Huber, “A hybrid architecture for

hierarchical reinforcement learning,” in Proc. IEEE

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 19, April 2017

Int. Conf. Robot. Autom., San Francisco, CA,

2000, vol. 4, pp. 3290–3295.

[9] Christo Ananth, Shivamurugan. C.,Ramasubbu.

S, “Enhancement of TCP Throughput using

enhanced TCP Reno Scheme”, International Journal

Of Advanced Research Trends In Engineering And

Technology (IJARTET), Volume II, Special Issue

XXV, April 2015

[10] Andrew Moore and Chris Atkeson. Prioritized

sweeping: Reinforcement learning with less data

and less real time. Machine Learning, 13:103–130,

1993.  

[11] Nahum Shimkin: Reinforcement Learning

Algorithms

[12] T.Graepel, R.Herbrich, and J. Gold, “Learning

to fight,” in Proc. Int. Conf. Comput. Games, Artif.

Intell. Design Educ., 2004, pp. 193–200.

81

