
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

Job-Driven Scheduling for Virtual

MapReduce Clusters

P.Umarani

PG scholar

Department of Computer Science &Engg

Government College of Technology, Cbe

pumarani90@gmail.com

Dr. J.C.Miraclin Joyce Pamila M.E., Ph.D.,

Assistant Professor (Sr.Grade)

Department of Computer Science &Engg

Government College of Technology, Cbe

Abstract— Virtual private servers (VPSs) rented from VPS

provider is cost-efficient for a tenant with a limited budget to
establish a virtual MapReduce cluster. To provide an appropriate
scheduling scheme for this type of computing environment, we
propose in this paper a job-driven scheduling scheme (JoSS) from
a tenant’s perspective. JoSS provides not only job level
scheduling, but also map-task level scheduling and reduce-task
level scheduling.

JoSS classifies MapReduce jobs based on job scale and job
type and designs an appropriate scheduling policy to schedule
each class of jobs. The goal is to improve data locality for both
map tasks and reduce tasks, avoid job starvation, and improve job
execution performance. Two variations of JoSS are further
introduced to separately achieve a better map-data locality and a
faster task assignment. Extensive experiments are conducted to
evaluate and compare the two variations with current scheduling
algorithms supported by Hadoop.

Keywords- MapReduce, Hadoop, virtual MapReduce cluster, map-task

scheduling, reduce-task scheduling

I. INTRODUCTION

Map-reduce is a distributed programming model proposed
by Google to process vast amount of data in a parallel manner.
Due to programming-model simplicity, built-in data
distribution, scalability, and fault tolerance .MapReduce and its
open-source implementation called Hadoop have been widely
employed by many companies, including Facebook, Amazon,
IBM, Twitter, and Yahoo to process their business data.
MapReduce has also been used to solve diverse applications,
such as machine learning, data mining, bioinformatics, social
network, and astronomy.

MapReduce enables a programmer to define a MapReduce
job as a map function and a reduce function, and provides a
runtime system to divide the job into multiple map tasks and
reduce tasks and perform these tasks on a MapReduce cluster
in parallel. Typically, a MapReduce cluster consists of a set of
commodity machines/nodes located on several racks and
interconnected with each other in a local area network (LAN).
In this paper, we call this a conventional MapReduce cluster.
Due to the fact that building and maintaining a conventional
MapReduce cluster is costly for a person/organization with a
limited budget, an alternative way is to establish a virtual
MapReduce cluster by either renting a MapReduce framework
from a MapReduce service provider (e.g., Amazon) or renting
multiple virtual private servers (VPSs) from a VPS provider
(e.g., Linode or Future Hosting). Each VPS is a virtual machine

with its own operating system and disk space. Due to some
reasons, such as availability issue of a datacenter or resource
shortage on a popular datacenter, a tenant might rent VPSs
from different datacenters operated by a same VPS provider to
establish his/her virtual MapReduce cluster.

II. HADOOP FRAMEWORK

Apache Hadoop is an open source framework for

distributed storage and processing of large sets of data on

commodity hardware. Hadoop enables businesses to quickly

gain insight from massive amounts of structured and

unstructured data. Numerous Apache Software Foundation

projects make up the services required by an enterprise to

deploy, integrate and work with Hadoop.

A. Map/Reduce Programming Model

MapReduce paradigm is based on sending the computer to
where the data resides. MapReduce program executes in three
stages, namely map stage, shuffle stage, and reduce stage.
During a MapReduce job, Hadoop sends the Map and Reduce
tasks to the appropriate servers in the cluster. The framework
manages all the details of data-passing such as issuing tasks,
verifying task completion, and copying data around the cluster
between the nodes. Most of the computing takes place on
nodes with data on local disks that reduces the network traffic.
After completion of the given tasks, the cluster collects and
reduces the data to form an appropriate result, and sends it back
to the Hadoop server.

B.HDFS File System

Hadoop File System was developed using distributed file
system design. It is run on commodity hardware. Unlike other
distributed systems, HDFS is highly fault tolerant and designed
using low-cost hardware. HDFS holds very large amount of
data and provides easier access. To store such huge data, the
files are stored across multiple machines. These files are stored
in redundant fashion to rescue the system from possible data
losses in case of failure. HDFS also makes applications
available to parallel processing.

C. Input/Output Read and Write

The MapReduce framework operates on <key, value>
pairs, that is, the framework views the input to the job as a set
of <key, value> pairs and produces a set of <key, value> pairs
as the output of the job, conceivably of different types. The key
and the value classes should be in serialized manner by the 548

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

framework and hence, need to implement the Writable
interface. Additionally, the key classes have to implement the
Writable-Comparable interface to facilitate sorting by the
framework. Input and Output types of a MapReduce job:
(Input) <k1, v1> map -><k2, v2> reduce -><k3, v3>(Output).

III. BACKGROUND

The FIFO algorithm [2] is a default scheduling algorithm

provided by Hadoop MRv1. It follows a strict job submission
order to schedule each map task of a job and meanwhile
attempts to schedule a map task to an idle node that is close to
the corresponding map-input block. However, the FIFO
algorithm only focuses on map-task scheduling, rather than
reduce-task scheduling. Hence, when FIFO is adopted in a
virtual MapReduce cluster, its low reduce-data locality might
cause a long job turnaround time. Besides, FIFO is designed to
achieve node locality and rack locality in conventional
MapReduce clusters, rather than achieving the VPS-locality
and Cen-locality in a virtual MapReduce cluster. Consequently,
the map-data locality of FIFO might be low in a virtual
MapReduce cluster. In addition to the FIFO algorithm, Hadoop
also provides the fair scheduling algorithm and the capacity
scheduling algorithm-*-

The former is proposed by Facebook to fairly assign
computation resources to jobs such that all jobs obtain an equal
share of resources over time. The latter, introduced by Yahoo!,
also allows multiple users to share a Map-Reduce cluster. It
supports multiple queues and allocates a fraction of a cluster’s
computation resources to each queue, i.e., all jobs submitted to
a queue can only access to the resource allocated to the queue.
Similar to these two algorithms, JoSS allows multiple jobs to
simultaneously share the computation resource of a virtual
MapReduce cluster. But different from the two algorithms,
JoSS further provides reduce-task scheduling to improve job
performance. There have been many studies [3],[6], [7],
[11], [14] on MapReduce task scheduling.

Zaharia et al. [3] presented the delay scheduling algorithm
to improve data locality by following the FIFO algorithm but
relaxing the strict FIFO job order. If the scheduling heuristic
cannot schedule a local map task, it postpones the execution of
the corresponding job and searches for another local map task
from pending jobs. A similar but improved approach is further
introduced in [6]. However, similar to FIFO, this approach did
not provide reduce-task scheduling. Jin et al. [5] proposed the
BAlance-Reduce (BAR) algorithm, which produces an initial
task allocation for all map tasks of a job and then takes network
state and cluster workload into consideration to interactively
adjust the task allocation to reduce job turnaround time. In
order to simplify BAR, the authors assumed that all local map
tasks spend identical execution time. But this assumption is not
realistic since the map-task execution time fluctuates even
though when the processed input size is the same. Besides,
reduce-task scheduling was not addressed by BAR. Tian et al.
[6] proposed a MapReduce workload prediction mechanism to
classify MapReduce workloads into three categories based on
their CPU and I/O utilizations and then proposed a Triple-
Queue Scheduler to improve the usage of both CPU and disk
I/O resources under heterogeneous workloads.

Guo [7] presented an optimal map-task scheduling
algorithm, which converts a task assignment problem into a
Linear Sum Assignment Problem so as to find the optimal
assignment. Nevertheless, applying this algorithm to real-world
MapReduce clusters needs to carefully determine an
appropriate time point to conduct the algorithm since slaves
might become idle at different time points. Ehsan and Sion [8]
introduced a co-scheduler called LiPS, which utilizes linear
programming to simultaneously co-schedule map-input data
and map tasks to nodes such that dollar cost can be minimized.
But their assumption, i.e., MapReduce jobs and their input data
are submitted together, might increase job turnaround time
since replicating the data to the distributed filesystem of the
cluster needs to take a while. Polo et al. [9] introduced a task
scheduler to dynamically predict the performance of concurrent
MapReduce jobs and adjust the resource allocation for the jobs.
The goal is to allow MapReduce jobs to meet their
performance objectives without over-provisioning of physical
resources. Some other studies aim to enhance the performance
of MapReduce in a cloud environment.

Palanisamy et al. [10] presented a MapReduce resource
allocation system called Purlieus, which enables a cloud
provider to place MapReduce input data to appropriate physical
machines and then place VMs to the physical machines so as to
provide both map locality and reduce locality. Different from
Purlieus, JoSS presented in this paper is designed from the
perspective of a tenant who rents VPSs from a VPS provider to
build a virtual MapReduce cluster, rather than from the
perspective of a cloud provider. Park et al. [11] introduced a
locality-aware dynamic VM reconfiguration technique for
virtual clusters running the Hadoop platform by dynamically
changing the computing resource of a VM to maximize the
data locality of map tasks. Bu et al. [12] proposed a task
scheduling strategy called ILA to mitigate interference between
virtual machines and meanwhile preserve MapReduce task data
locality. Similar to [10], the schemes proposed in [11] and [12]
were designed from the viewpoint of a cloud provider since the
data locality in all layers including node locality, rack locality,
and off-rack are clear to the provider. However, in a virtual
MapReduce cluster considered in this study, a tenant does not
know all of the above mentioned data-locality levels.

IV. THE EXISTING SCHEME

A.Hadoop default FIFO scheduler

The Hadoop default FIFO scheduler has already taken data
locality into account. When a slave node with empty map slots
sends the heartbeat signal, the MapReduce scheduler checks
the first job in the queue. If the job has map tasks whose input
data blocks are stored in the slave node, the scheduler assigns
the node one of these local tasks. If a slave node has more
unused map slots, the scheduler will keep assigning local tasks
to the node. However, if the scheduler can no longer find a
local task from the first job, it assigns the node one and only
one non-local task during this heartbeat interval, no matter how
many free slots the node has. This default FIFO scheduler,
however, has deficiencies. First of all, it follows the strict FIFO
job order to assign tasks, which means it will not allocate any
task from other jobs if the first job in the queue still has an
unassigned map task. Secondly, the data locality is randomly

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

decided by the heartbeat sequence of slave nodes. If we have a
large cluster that executes many small jobs, the data locality
rate could be quite low. As mentioned, in a MapReduce cluster,
tasks are assigned to a slave node in response to the node’s
heartbeat. With the FIFO scheduler, heartbeats are also
processed in a FIFO order and a node is assigned a non-local
map task when there is no local task from the first job. In a
large cluster many nodes heartbeat simultaneously. However, a
small job has less input data that are stored in a small number
of nodes. It is thus a high probability event that the scheduler
assigns tasks to slave nodes that do not have the small job’s
input data but give heartbeats first. A slave node with empty
map slots that sends in a heartbeat first will always be assigned
at least one map task, local or non-local. It is highly likely that
the job’s tasks will be assigned to many of the nodes which do
not have the input data blocks before a node even gets a chance
to grab a local task from the job.

B.The Fair Scheduler

The Fair Scheduler aims to give every user a fair share of
the cluster capacity over time. If a single job is running, it gets
all of the cluster. As more jobs are submitted, free task slots are
given to the jobs in such a way as to give each user a fair share
of the cluster. A short job belonging to one user will complete
in a reasonable time even while another user’s long job is
running, and the long job will still make progress. Jobs are
placed in pools, and by default, each user gets their own pool.
A user who submits more jobs than a second user will not get
any more cluster resources than the second, on average. It is
also possible to define custom pools with guaranteed
minimum capacities defined in terms of the number of map and
reduce slots, and to set weightings for each pool. The Fair
Scheduler supports preemption, so if a pool has not received its
fair share for a certain period of time, then the scheduler will
kill tasks in pools running over capacity in order to give the
slots to the pool running under capacity

 he Capacity Scheduler

The Capacity Scheduler takes a slightly different approach

to multiuser scheduling. A cluster is made up of a number of

queues (like the Fair Scheduler’s pools), which may be

hierarchical (so a queue may be the child of another queue),

and each queue has an allocated capacity. This is like the Fair

Scheduler, except that within each queue, jobs are scheduled

using FIFO scheduling (with priorities). In effect, the Capacity

Scheduler allows users or organizations (defined using queues)

to simulate a separate MapReduce cluster with FIFO

scheduling for each user or organization. The Fair Scheduler,

overhead without causing too much overhead, regardless of job
type and scale.

The contributions of this proposed system are as follows.

1. We introduce JoSS to appropriately schedule Map-
Reduce jobs in a virtual MapReduce cluster by
addressing both map-data locality and reduce-data
locality from the perspective of a tenant.

2. By classifying jobs into map-heavy and reduce heavy
jobs and designing the corresponding policies to
schedule each class of jobs, JoSS increases data
locality and improves job performance. Furthermore,
by classifying jobs into large and small jobs and
scheduling them in a round-robin fashion, JoSS avoids
job starvation and improves job performance.

3. A formal proof is also provided to determine the best
threshold for classifying MapReduce jobs.

4. JoSS-T is proposed to achieve two conflicting goals:
speeding up task assignment and further increasing the
VPS-locality.

5. We refer to a set of MapReduce benchmarks to create
two different MapReduce workloads for evaluating and
comparing JoSS-T with three known scheduling
algorithms supported by Hadoop. Moreover, a set of
metrics showing data-locality, network overhead, job
performance, and load balance are used to achieve a
comprehensive comparison.

A.Job Classification

Before introducing the algorithm of JoSS, first describe

how JoSS classifies jobs and schedules each class of jobs. Let

Sreduce and Smap be the total reduce-input size and the total

map-input size of J, respectively. Based on the ratio of Sreduce

over Smap, J can be classified into either a reduce heavy job or

a map-heavy job. If J satisfies Eq. (1), implying that the

network overhead is dominated by J’s reduce-input data, then J

is classified as a reduce-heavy job (RH job for short).

Otherwise, J is classified as a map-heavy job (MH job for

short). Note that td is a threshold to determine the

classification, td ≥ 0.

��ed�ce
> td (1)

����

In fact, Smap = ∑� ∣ �i ∣

by contrast, enforces fair sharing within each pool, so running and Sreduce = ∑�
 	=1 where |Bi| is the size of Bi, (∣ �i ∣·
�i)

jobs share the pool’s resources.

V. PROPOSED SYSTEM

The proposed system implements JoSS-T in Hadoop-0.20.2
and conduct extensive experiments to compare them with
several known scheduling algorithms supported by Hadoop,
including the FIFO algorithm, Fair scheduling algorithm, and

	=1 where FPi is the filtering
percentage of Bi showing the ratio of Mi’s map-output size
over Mi’s map-input size, FPi ≥ 0. In order to reduce Eq. (1)

and the above classification, we chose five MapReduce

benchmarks: Word-Count, Grep, Inverted-Index, Sequence-

Count and Permu from PUMA to conduct experiments. Eq. (1)

can be reduced as based on the analysis from [1],

Capacity scheduling algorithm. The experimental results �
ed�ce �
	=1 (∣ �i ∣·
�i)

demonstrate that JoSS-T outperform the other tested algorithms
in terms of map-data locality, reduce-data locality, and network

=
����

�
	=1

∣ �i ∣
=
�j > td (2)

∑

∑

 International Journal of Advanced Research Trends in Engineering and Technology
 Vol. 4, Special Issue 11, March 2017

and the condition used to classify J can be reduced

J= {
a R� job, if �j > td

a M� job, else.

Based on the input scale of J to Navg VPS, which is the
average datacenter scale of a virtual MapReduce ,cluster the

classification rule is below,

� = {
a small job, if m ≤ Na�g_��S a
large job, else.

 cheduling Policies

JoSS utilizes the following three scheduling policies.

• Policy A

This policy is designed for a small RH job. If J is a small

RH job, it would be better that each reducer of J is close to all

mappers of J since the reducer can more quickly retrieve its

input data from all the mappers. But this also implies that all

mappers of J should be close to each other. Hence, policy A

works as follows. It first chooses cenw, which is a datacenter

having the least amount of unprocessed tasks among all the k

datacenters, cenw, belongs to cen1,cen2, . . . ,cenk

schedules all tasks of J to cenw by putting J’s map

reduce tasks at the end of MQw,0 and RQw,0, respectively. In

this way, all these tasks can be executed only by the VPSs at

cenw, and each reducer of J can retrieve its input data from its

local datacenter (i.e., reduce-data locality can be improved).

Fig. 1. An example showing block locations of job Y in a virtual

MapReduce cluster comprising three datacenters.

• Policy B

This policy is designed for a small MH job. If J is a small

MH job, it would be better that each mapper of J is close to its

input block, and each reducer of J is close to most mappers

of J . Hence, policy B works as follows: It schedules J

map tasks based on the number of unique input blocks

held by each datacenter. If a datacenter holds more

blocks of J , more map tasks of J will be scheduled to the

VPSs at this datacenter. The purpose is allowing each

mapper of J to retrieve its input block from its local

datacenter. In addition, to make J ’s reducers close to

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

reduced as
J ’s mappers, policy B schedules all reduce tasks of J to

the datacenter that holds the maximum number of J ’s unique

blocks.

(3)

The task scheduler of JoSS
Based on the input scale of J to Navg VPS, which is the

average datacenter scale of a virtual MapReduce ,cluster the

JoSS utilizes the following three scheduling policies.

This policy is designed for a small RH job. If J is a small

RH job, it would be better that each reducer of J is close to all

mappers of J since the reducer can more quickly retrieve its

input data from all the mappers. But this also implies that all

rs of J should be close to each other. Hence, policy A

, which is a datacenter

having the least amount of unprocessed tasks among all the k

cen1,cen2, . . . ,cenk. Then it

map tasks and J’s

, respectively. In

this way, all these tasks can be executed only by the VPSs at

, and each reducer of J can retrieve its input data from its

improved).

Fig. 1. An example showing block locations of job Y in a virtual

This policy is designed for a small MH job. If J is a small

MH job, it would be better that each mapper of J is close to its

input block, and each reducer of J is close to most mappers

of J . Hence, policy B works as follows: It schedules J ’s

Input : J and input-data description

Output:task-scheduling decision

Procedure:

1. Calculate a hash value for J’s executable code and

input-data type;

2. Let H be a set of hash values previously generated by

JoSS;

3. If the hash value is not in H{

4. Append all map tasks of J to the end of
5. Append all reduce tasks of J to the end of

6. else {

7. if J is a small RH job {//Use policy

8. Let cenw be a datacenter having the least

unprocessed tasks among cen1,cen2,…cen

9. Append all map tasks of J to the end of

10. Append all reduce tasks of J to the end of

11. else {

12. Let Lc be a set of all unique input blocks of

cenc where c=1,2,…k;

13. Let α = m; /*m is the number of map tasks of
14. while α > 0{/*i.e., not all map tasks of

scheduled.*/

15. Let Ld is the first largest set among

16. Let |Ld| be the size of Ld;

17. Let cend be the related datacenter;

18. If J is a small MH job {//Use policy
19. Append |Ld | map tasks of J to the end of

20. else {/*i.e., J is a large job, so use policy

21. Let ρ be the total number of map

cend;

22. Generate a new map-task queue

23. Append |Ld| map tasks of J to the end of
24. for c=1 to k{

25. Delete a block from Lc if the block is in L

26. α = α-|Ld|;}

27. Let cenc be a datacenter holding the largest

unique input blocks of J;

28. If J is a small MH job{//Use policy

29. Append all reduce tasks of J

30. else { /*i.e., J is large job, so use policy

31. Let q be the total number of reduce

cene;

32. Generate a new reduce-task queue

33. Append all reduce tasks of J to the end of

map tasks based on the number of unique input blocks of J

held by each datacenter. If a datacenter holds more unique

blocks of J , more map tasks of J will be scheduled to the

VPSs at this datacenter. The purpose is allowing each

mapper of J to retrieve its input block from its local

datacenter. In addition, to make J ’s reducers close to most

Fig 2.The algorithm of task scheduler.

For example, Fig. 1 illustrates the locations of all

blocks of a job Y over three datacenters (Note that the

input file of Y is fragmented into six blocks, and

(4)

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

Available online at www.ijartet.com

(IJARTET)

J ’s mappers, policy B schedules all reduce tasks of J to

the datacenter that holds the maximum number of J ’s unique

’s executable code and J’s

be a set of hash values previously generated by

to the end of MQFIFO;
to the end of RQFIFO; }

is a small RH job {//Use policy A.

be a datacenter having the least

cen1,cen2,…cenk;

Append all map tasks of J to the end of MQw,0;

J to the end of RQw,0;}

be a set of all unique input blocks of J held by

; /*m is the number of map tasks of J.*/
 > 0{/*i.e., not all map tasks of J are

Let Ld is the first largest set among L1,L2,..…,Lk;

datacenter;

is a small MH job {//Use policy B
| map tasks of J to the end of MQd,0;}

is a large job, so use policy C.*/

 be the total number of map-task queues in

task queue MQd,p+1;

| map tasks of J to the end of MQd,p+1;}

if the block is in Ld;}

be a datacenter holding the largest number of

If J is a small MH job{//Use policy B.

J to the end of RQe,0;}

is large job, so use policy C.*/

Let q be the total number of reduce-task queue in

task queue RQe,q+1;

to the end of RQe,q+1; }}}

For example, Fig. 1 illustrates the locations of all

blocks of a job Y over three datacenters (Note that the

input file of Y is fragmented into six blocks, and each

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

block has two replicas.). Since cen2 holds the largest number

of Y’s unique blocks (i.e., four), policy B will schedule four

map tasks of Y to cen2 to process B1 , B2 , B3 , and B5 by

appending the four map tasks to the end of MQ2,0. After

that, cen1 still holds one unscheduled block of Y (i.e.,

B4) and cen3 still holds two unscheduled blocks of Y (i.e.,

B4 and B6). Hence, policy B will schedule the remaining

two map tasks of Y to cen3 to process B4 and B6 by

inserting the two map tasks to the end of MQ3,0 . Finally,

due to the fact that cen2 holds the maximum number of

unique blocks of Y, policy B schedules all reduce tasks of

Y to cen2 by appending them to the end of RQ2,0.

• Policy C

This policy is designed for a large job. If J is a large job to a

virtual MapReduce cluster, using one datacenter of the cluster

to run all map tasks of J might need several rounds to finish

these map tasks, implying that job turnaround time will

prolong. To prevent this from happening, it is better not to use

Hadoop FIFO algorithm [2] to assign these tasks to idle VPSs.

Once J is completed, JoSS records the corresponding hash

value and average filtering-percentage value.

However, if the hash value is in H (see line 7), it means

that JoSS knows the average filtering-percentage value of J .

Then the task scheduler schedules J as follows: If J is a small

RH job, the abovementioned policy A is used to schedule the

tasks of J (please see lines 9 to 12). Otherwise, it means that J

is either a small MH job or a large job, and the task scheduler

uses lines 14 to 37 to schedule J . Recall that policies B and C

are used to schedule a small MH job and a large job,

respectively. If J is a small MH job, the task scheduler

directly inserts J ’s map tasks to the permanent map-task

queue of the determined datacenter (see line 22), and also

inserts J ’s reduce tasks to the permanent reduce-task queue

of the determined datacenter (see line 33). In other words, no

additional queue will be created for any small jobs. The

purpose is not to increase the queue management overhead of

JoSS.
a single datacenter to run all these map tasks. [4] discussed
about Enhancement of TCP Throughput using enhanced TCP
Reno Scheme. Mobile Ad-Hoc Networks (MANETs) have
been an area for active research over the past few years due to
their potentially widespread application in military and
civilian communications. Based on the analysis, we proposed
two simple yet effective ways, namely, TCP Few and
ROBUST, to improve the system performance. It was shown
via computer simulation that TCP performance can be
significantly improved without modifying the basic TCP
window or the wireless MAC mechanism. Thus, the TCP
window mechanism can still be a viable solution for IEEE
802.11 ad-hoc networks.
C. Job Driven Scheduling Scheme(JoSS) and JoSS-T

JoSS consists of three components: input-data classifier,

task scheduler, and task assigner. The input-data classifier is

designed to classify input data uploaded by a user into one of

the two types: web document and non-web document. A web

document refers to a file consisting of a lot of tags enclosed in

angle brackets. By simply inspecting the first several sentences

of a document, the input-data classifier can easily know if it is

a web document or not. After the classification, the input- data

classifier records the type of the input data in JoSS.

Whenever receiving a MapReduce job from a user, the

task scheduler determines the type of the job and then

schedules the job based on one of policies A, B, and C.

Fig.2 illustrates the algorithm of the task scheduler. Upon

receiving J , the task scheduler retrieves J ’s input- data type

classified by the input-data classifier and checks whether

JoSS has executed J on such input-data type or not by

calculating the corresponding hash value and comparing the

value with H, where H is a set of hash values previously

generated and recorded by JoSS.

If the hash value is not in H (see line 4), it means that JoSS

does not know J ’s average filtering-percentage value and J’s

job classification. To obtain the above information, the task

scheduler simply appends J ’s all map tasks and J ’s all

reduce tasks to two queues, denoted by MQFIFO and

RQFIFO , respectively. This allows the task assigner to use the

Task-driven Task Assigner(TTA)

Input: an idle slot of VPSc,l

Output: a task assigned to VPSc,l

Procedure:

1. Let Imap and Ired be two indexes with the same initial

value 0;

2. while VPSc,l has an idle slot{

3. Let Nmap be the total number of map-task queues in

cenc;

4. Let Nred be the total number of reduce-task queues in

cenc;

5. if the slot is a map slot{

6. if MQFIFO is not empty{

7. Use FIFO to assign a map task from MQFIFO to

VPSc,l

8. Remove the task from MQFIFO;}

9. else{

10. Imap = Imap mod (Nmap +1);

11. Assign the first task from MQc,Imap to VPSc,l;

12. Remove the task from MQc,Imap;

13. Imap ++;}}

14. else{/*i.e., the idle slot is a reduce slot;*/

15. if RQFIFO is not empty {

16. Assign the first reduce task from RQFIFO to VPSc,l;

17. Remove the task from RQFIFO;}

18. else {

19. Ired=Ired mod (Nred+1);

20. Assign the first reduce task from RQc,Ired to VPSc,l;

21. Remove the task from RQc,Ired;

22. Ired++; }}}

Fig. 3. The algorithm of task-driven task assigner (TTA)

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

In another case, if J is a large job, the task scheduler addi-

tionally generates a new map-task queue and a new reduce-

task queue to respectively put J ’s map tasks and J ’s reduce

tasks (see lines 24 to 26 and lines 35 to 37). This will allow

the task assigner to properly assign small jobs and large

jobs to VPSs.

Fig. 3 illustrates how TTA works. Whenever VPSc has an

idle map slot, TTA preferentially assigns a map task from

MQFIFO to VPSc based on the Hadoop FIFO algorithm (see

lines 7 to 8). The goal is to preferentially execute all newly

submitted jobs one by one and obtain their filtering-

percentage values to determine their job classifications.

However, if MQFIFO is empty, TTA assigns one of the first

map tasks from all the other map-task queues of cenc in a

round-robin fashion (see lines 10 to 13) such that tasks can

be assigned quickly and job starvation can be avoided.

Similarly, whenever VPSc has an idle reduce slot, TTA

preferentially assigns a reduce task from RQFIFO to VPSc .

Only when RQFIFO is empty, TTA assigns one of the first

reduce tasks from other reduce-task queues of cenc to VPSc;‘

(see lines 19 to 22).

VI. CONCLUSION

In this paper, we have introduced JoSS for scheduling

Map- Reduce jobs in a virtual MapReduce cluster consisting of

a set of VPSs rented from a VPS provider. Different from

current MapReduce scheduling algorithms, JoSS takes both the

map-data locality and reduce-data locality of a virtual

MapReduce cluster into consideration. JoSS classifies jobs

into three job types, i.e., small map-heavy job, small reduce-

heavy job, and large job, and introduced appropriate policies

to schedule each type of job. In addition, JoSS-T is further

introduced to respectively achieve a fast task assignment and

improve the VPS-locality.

REFERENCES

[1] Ming-Chang Lee, Jia-Chun Lin, and Ramin Yahyapour ,“Hybrid Job-
Driven Scheduling for Virtual MapReduce Clusters”, IEEE ,May 2016.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,2008.

[3] Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,and I.
Stoica, “Delay scheduling: A simple technique for achieving locality and
fairness in cluster scheduling,” in Proc. 5th Eur. Conf.Comput. Syst., Apr.
2010, pp. 265–278.

[4] Christo Ananth, Shivamurugan. C.,Ramasubbu. S, “Enhancement of TCP
Throughput using enhanced TCP Reno Scheme”, International Journal
Of Advanced Research Trends In Engineering And Technology
(IJARTET), Volume II, Special Issue XXV, April 2015

[5] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficientdata
locality driven task scheduling algorithm for cloud computing,” in Proc.
11th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2011, pp.
295–304.

[6] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic mapreduce scheduler
for heterogeneous workloads,” in Proc. IEEE 8th Int.Conf. Grid
Cooperative Comput., 2009, pp. 218–224.

[7] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud
GridComput., May 2012, pp. 419–426.

[8] M. Ehsan, and R. Sion, “LiPS: A cost-efficient data and task co-scheduler
for MapReduce,” in Proc. IEEE 27th Int. Symp.Parallel Distrib. Process.
Workshops PhD Forum, May 2013,pp. 2230–2233.

[9] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguade, M. Steinder,and I.
Whalley, “Performance-driven task co-scheduling for mapreduce
environments,” in Proc. IEEE Netw. Oper. Manage. Symp.,2010, pp.
373–380.

[10] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus:
Localityawareresource allocation for MapReduce in a cloud,” in Proc.
Int.Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2011, pp.
58.

[11] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng, “Locality-aware dynamic
VM reconfiguration on MapReduce clouds,” in Proc. 21stInt. Symp.
High-Perform. Parallel Distrib. Comput., Jun. 2012,pp. 27–36.

[12] X. Bu, J. Rao, and C.-Z. Xu, “Interference and locality-aware task
scheduling for MapReduce applications in virtual clusters,” inProc. 22nd
Int. Symp. High-Perform. Parallel Distrib. Comput., Jun.2013, pp. 227–
238.

[13] S.-Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud intermediate
data fault-tolerant,” in Proc. ACM Symp. Cloud Comput.,2010, pp. 181–
192.

[14] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:O’Reilly

Media, Jun. 5, 2009.

553

