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Abstract— Virtual private servers (VPSs) rented from VPS 

provider is cost-efficient for a tenant with a limited budget to 
establish a virtual MapReduce cluster. To provide an appropriate 
scheduling scheme for this type of computing environment, we 
propose in this paper a job-driven scheduling scheme (JoSS) from 
a tenant’s perspective. JoSS provides not only job level 
scheduling, but also map-task level scheduling and reduce-task 
level scheduling. 

JoSS classifies MapReduce jobs based on job scale and job 
type and designs an appropriate scheduling policy to schedule 
each class of jobs. The goal is to improve data locality for both 
map tasks and reduce tasks, avoid job starvation, and improve job 
execution performance. Two variations of JoSS are further 
introduced to separately achieve a better map-data locality and a 
faster task assignment. Extensive experiments are conducted to 
evaluate and compare the two variations with current scheduling 
algorithms supported by Hadoop. 

Keywords- MapReduce, Hadoop, virtual MapReduce cluster, map-task 

scheduling, reduce-task scheduling 
 

I. INTRODUCTION 

Map-reduce is a distributed programming model proposed 
by Google to process vast amount of data in a parallel manner. 
Due to programming-model simplicity, built-in data 
distribution, scalability, and fault tolerance .MapReduce and its 
open-source implementation called Hadoop have been widely 
employed by many companies, including Facebook, Amazon, 
IBM, Twitter, and Yahoo to process their business data. 
MapReduce has also been used to solve diverse applications, 
such as machine learning, data mining, bioinformatics, social 
network, and astronomy. 

MapReduce enables a programmer to define a MapReduce 
job as a map function and a reduce function, and provides a 
runtime system to divide the job into multiple map tasks and 
reduce tasks and perform these tasks on a MapReduce cluster 
in parallel. Typically, a MapReduce cluster consists of a set of 
commodity machines/nodes located on several racks and 
interconnected with each other in a local area network (LAN). 
In this paper, we call this a conventional MapReduce cluster. 
Due to the fact that building and maintaining a conventional 
MapReduce cluster is costly for a person/organization with a 
limited budget, an alternative way is to establish a virtual 
MapReduce cluster by either renting a MapReduce framework 
from a MapReduce service provider (e.g., Amazon) or renting 
multiple virtual private servers (VPSs) from a VPS provider 
(e.g., Linode or Future Hosting). Each VPS is a virtual machine 

 
with its own operating system and disk space. Due to some  
reasons, such as availability issue of a datacenter or resource 
shortage on a popular datacenter, a tenant might rent VPSs 
from different datacenters operated by a same VPS provider to 
establish his/her virtual MapReduce cluster. 

II. HADOOP FRAMEWORK 

Apache Hadoop is an open source framework for  

distributed storage and processing of large sets of data on 

commodity hardware. Hadoop enables businesses to quickly 

gain insight from massive amounts of structured and 

unstructured data. Numerous Apache Software Foundation 

projects make up the services required by an enterprise to 

deploy, integrate and work with Hadoop. 

A. Map/Reduce Programming Model 

MapReduce paradigm is based on sending the computer to 
where the data resides. MapReduce program executes in three 
stages, namely map stage, shuffle stage, and reduce stage. 
During a MapReduce job, Hadoop sends the Map and Reduce 
tasks to the appropriate servers in the cluster. The framework 
manages all the details of data-passing such as issuing tasks, 
verifying task completion, and copying data around the cluster 
between the nodes. Most of the computing takes place  on 
nodes with data on local disks that reduces the network traffic. 
After completion of the given tasks, the cluster collects and 
reduces the data to form an appropriate result, and sends it back 
to the Hadoop server. 

B.HDFS File System 

Hadoop File System was developed using distributed file 
system design. It is run on commodity hardware. Unlike other 
distributed systems, HDFS is highly fault tolerant and designed 
using low-cost hardware. HDFS holds very large amount of 
data and provides easier access. To store such huge data, the 
files are stored across multiple machines. These files are stored 
in redundant fashion to rescue the system from possible data 
losses in case of failure. HDFS also makes applications 
available to parallel processing. 

C. Input/Output Read and Write 

The MapReduce framework operates on <key, value> 
pairs, that is, the framework views the input to the job as a set 
of <key, value> pairs and produces a set of <key, value> pairs 
as the output of the job, conceivably of different types. The key 
and the value classes should be in serialized manner by the 548 
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framework and hence, need to implement the Writable 
interface. Additionally, the key classes have to implement the 
Writable-Comparable interface to facilitate sorting by the 
framework. Input and Output types of a MapReduce job: 
(Input) <k1, v1> map -><k2, v2> reduce -><k3, v3>(Output). 

III. BACKGROUND 

 
The FIFO algorithm [2] is a default scheduling algorithm 

provided by Hadoop MRv1. It follows a strict job submission 
order to schedule each map task of a job and meanwhile 
attempts to schedule a map task to an idle node that is close to 
the corresponding map-input block. However, the FIFO 
algorithm only focuses on map-task scheduling, rather than 
reduce-task scheduling. Hence, when FIFO is adopted in a 
virtual MapReduce cluster, its low reduce-data locality might 
cause a long job turnaround time. Besides, FIFO is designed to 
achieve node locality and rack locality in conventional 
MapReduce clusters, rather than achieving the VPS-locality 
and Cen-locality in a virtual MapReduce cluster. Consequently, 
the map-data locality of FIFO might be low in a virtual 
MapReduce cluster. In addition to the FIFO algorithm, Hadoop 
also provides the fair scheduling algorithm and the capacity 
scheduling algorithm-*- 

The former is proposed by Facebook to fairly assign 
computation resources to jobs such that all jobs obtain an equal 
share of resources over time. The latter, introduced by Yahoo!, 
also allows multiple users to share a Map-Reduce cluster. It 
supports multiple queues and allocates a fraction of a cluster’s 
computation resources to each queue, i.e., all jobs submitted to 
a queue can only access to the resource allocated to the queue. 
Similar to these two algorithms, JoSS allows multiple jobs to 
simultaneously share the computation resource of a virtual 
MapReduce cluster. But different from the two algorithms, 
JoSS further provides reduce-task scheduling to improve job 
performance. There have been many studies [3],[6],    [7], 
[11], [14] on MapReduce task scheduling. 

Zaharia et al. [3] presented the delay scheduling algorithm 
to improve data locality by following the FIFO algorithm but 
relaxing the strict FIFO job order. If the scheduling heuristic 
cannot schedule a local map task, it postpones the execution of 
the corresponding job and searches for another local map task 
from pending jobs. A similar but improved approach is further 
introduced in [6]. However, similar to FIFO, this approach did 
not provide reduce-task scheduling. Jin et al. [5] proposed the 
BAlance-Reduce (BAR) algorithm, which produces an initial 
task allocation for all map tasks of a job and then takes network 
state and cluster workload into consideration to interactively 
adjust the task allocation to reduce job turnaround time. In 
order to simplify BAR, the authors assumed that all local map 
tasks spend identical execution time. But this assumption is not 
realistic since the map-task execution time fluctuates even 
though when the processed input size is the same. Besides, 
reduce-task scheduling was not addressed by BAR. Tian et al. 
[6] proposed a MapReduce workload prediction mechanism to 
classify MapReduce workloads into three categories based on 
their CPU and I/O utilizations and then proposed a Triple- 
Queue Scheduler to improve the usage of both CPU and disk 
I/O resources under heterogeneous workloads. 

Guo [7] presented an optimal map-task scheduling 
algorithm, which converts a task assignment problem into a 
Linear Sum Assignment Problem so as to find the optimal 
assignment. Nevertheless, applying this algorithm to real-world 
MapReduce clusters needs to carefully determine an 
appropriate time point to conduct the algorithm since slaves 
might become idle at different time points. Ehsan and Sion [8] 
introduced a co-scheduler called LiPS, which utilizes linear 
programming to simultaneously co-schedule map-input data 
and map tasks to nodes such that dollar cost can be minimized. 
But their assumption, i.e., MapReduce jobs and their input data 
are submitted together, might increase job turnaround time 
since replicating the data to the distributed filesystem of the 
cluster needs to take a while. Polo et al. [9] introduced a task 
scheduler to dynamically predict the performance of concurrent 
MapReduce jobs and adjust the resource allocation for the jobs. 
The goal is to allow MapReduce jobs to meet their 
performance objectives without over-provisioning of physical 
resources. Some other studies aim to enhance the performance 
of MapReduce in a cloud environment. 

Palanisamy et al. [10] presented a MapReduce resource 
allocation system called Purlieus, which enables a cloud 
provider to place MapReduce input data to appropriate physical 
machines and then place VMs to the physical machines so as to 
provide both map locality and reduce locality. Different from 
Purlieus, JoSS presented in this paper is designed from the 
perspective of a tenant who rents VPSs from a VPS provider to 
build a virtual MapReduce cluster, rather than from the 
perspective of a cloud provider. Park et al. [11] introduced a 
locality-aware dynamic VM reconfiguration technique for 
virtual clusters running the Hadoop platform by dynamically 
changing the computing resource of a VM to maximize the 
data locality of map tasks. Bu et al. [12] proposed a task 
scheduling strategy called ILA to mitigate interference between 
virtual machines and meanwhile preserve MapReduce task data 
locality. Similar to [10], the schemes proposed in [11] and [12] 
were designed from the viewpoint of a cloud provider since the 
data locality in all layers including node locality, rack locality, 
and off-rack are clear to the provider. However, in a virtual 
MapReduce cluster considered in this study, a tenant does not 
know all of the above mentioned data-locality levels. 

IV. THE EXISTING SCHEME 

A.Hadoop default FIFO scheduler 

The Hadoop default FIFO scheduler has already taken data 
locality into account. When a slave node with empty map slots 
sends the heartbeat signal, the MapReduce scheduler checks 
the first job in the queue. If the job has map tasks whose input 
data blocks are stored in the slave node, the scheduler assigns 
the node one of these local tasks. If a slave node has more 
unused map slots, the scheduler will keep assigning local tasks 
to the node. However, if the scheduler can no longer find a 
local task from the first job, it assigns the node one and only 
one non-local task during this heartbeat interval, no matter how 
many free slots the node has. This default FIFO scheduler, 
however, has deficiencies. First of all, it follows the strict FIFO 
job order to assign tasks, which means it will not allocate any 
task from other jobs if the first job in the queue still has an 
unassigned map task. Secondly, the data locality is   randomly 
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decided by the heartbeat sequence of slave nodes. If we have a 
large cluster that executes many small jobs, the data locality 
rate could be quite low. As mentioned, in a MapReduce cluster, 
tasks are assigned to a slave node in response to the node’s 
heartbeat. With the FIFO scheduler, heartbeats are also 
processed in a FIFO order and a node is assigned a non-local 
map task when there is no local task from the first job. In a 
large cluster many nodes heartbeat simultaneously. However, a 
small job has less input data that are stored in a small number 
of nodes. It is thus a high probability event that the scheduler 
assigns tasks to slave nodes that do not have the small job’s 
input data but give heartbeats first. A slave node with empty 
map slots that sends in a heartbeat first will always be assigned 
at least one map task, local or non-local. It is highly likely that 
the job’s tasks will be assigned to many of the nodes which do 
not have the input data blocks before a node even gets a chance 
to grab a local task from the job. 

B.The Fair Scheduler 

The Fair Scheduler aims to give every user a fair share of 
the cluster capacity over time. If a single job is running, it gets 
all of the cluster. As more jobs are submitted, free task slots are 
given to the jobs in such a way as to give each user a fair share 
of the cluster. A short job belonging to one user will complete 
in a reasonable time even while another user’s long job is 
running, and the long job will still make progress. Jobs are 
placed in pools, and by default, each user gets their own pool. 
A user who submits more jobs than a second user will not get 
any more cluster resources than the second, on average. It is 
also possible to define custom pools with  guaranteed 
minimum capacities defined in terms of the number of map and 
reduce slots, and to set weightings for each pool. The Fair 
Scheduler supports preemption, so if a pool has not received its 
fair share for a certain period of time, then the scheduler will 
kill tasks in pools running over capacity in order to give the 
slots to the pool running under capacity 

 he Capacity Scheduler 

The Capacity Scheduler takes a slightly different approach 

to multiuser scheduling. A cluster is made up of a number of 

queues (like the Fair Scheduler’s pools), which may be 

hierarchical (so a queue may be the child of another queue), 

and each queue has an allocated capacity. This is like the Fair 

Scheduler, except that within each queue, jobs are scheduled 

using FIFO scheduling (with priorities). In effect, the Capacity 

Scheduler allows users or organizations (defined using queues) 

to simulate a separate MapReduce cluster with FIFO 

scheduling for each user or organization. The Fair   Scheduler, 

overhead without causing too much overhead, regardless of job 
type and scale. 

The contributions of this proposed system are as follows. 

1. We introduce JoSS to appropriately schedule Map- 
Reduce jobs in a virtual MapReduce cluster by 
addressing both map-data locality and reduce-data 
locality from the perspective of a tenant. 

2. By classifying jobs into map-heavy and reduce heavy 
jobs and designing the corresponding policies to 
schedule each class of jobs, JoSS increases data 
locality and improves job performance. Furthermore, 
by classifying jobs into large and small jobs and 
scheduling them in a round-robin fashion, JoSS avoids 
job starvation and improves job performance. 

3. A formal proof is also provided to determine the best 
threshold for classifying MapReduce jobs. 

4. JoSS-T is proposed to achieve two conflicting goals: 
speeding up task assignment and further increasing the 
VPS-locality. 

5. We refer to a set of MapReduce benchmarks to create 
two different MapReduce workloads for evaluating and 
comparing JoSS-T with three known scheduling 
algorithms supported by Hadoop. Moreover, a set of 
metrics showing data-locality, network overhead, job 
performance, and load balance are used to achieve a 
comprehensive comparison. 

A.Job Classification 

Before introducing the algorithm of JoSS, first describe 

how JoSS classifies jobs and schedules each class of jobs. Let 

Sreduce and Smap be the total reduce-input size and the total 

map-input size of J, respectively. Based on the ratio of Sreduce 

over Smap, J can be classified into either a reduce heavy job or 

a map-heavy job. If J satisfies Eq. (1), implying that the 

network overhead is dominated by J’s reduce-input data, then J 

is classified as a reduce-heavy job (RH job for short). 

Otherwise, J is classified as a map-heavy job (MH job for 

short). Note that td is a threshold to determine the 

classification, td ≥ 0. 

 

��ed�ce 
> td (1)

 
���� 

 
In fact, Smap =  ∑�    ∣ �i ∣ 

by contrast, enforces fair sharing within each pool, so  running and   Sreduce  = ∑�
 	=1 where |Bi| is the size of   Bi, (∣        �i         ∣·     
�i) 

 

jobs share the pool’s resources. 

 

V. PROPOSED SYSTEM 

The proposed system implements JoSS-T in Hadoop-0.20.2 
and conduct extensive experiments to compare them with 
several known scheduling algorithms supported by Hadoop, 
including the FIFO algorithm, Fair scheduling algorithm,   and 

	=1 where  FPi  is  the filtering 
percentage of Bi showing the ratio of Mi’s map-output size 
over Mi’s map-input size, FPi ≥ 0. In order to reduce Eq. (1) 

and the above classification, we chose five MapReduce 

benchmarks: Word-Count, Grep, Inverted-Index, Sequence- 

Count and Permu from PUMA to conduct experiments. Eq. (1) 

can be reduced as based on the analysis from [1], 

Capacity   scheduling   algorithm.   The   experimental  results �
ed�ce � 
	=1 (∣        �i         ∣·    
�i) 

demonstrate that JoSS-T outperform the other tested algorithms 
in terms of map-data locality, reduce-data locality, and network 
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and the condition used to classify J can be reduced

 

J= {
a R� job, if  �j    >  td 

a M� job, else. 

Based on the input scale of J to Navg VPS, which is the
average datacenter scale of a virtual MapReduce ,cluster the 

classification rule is below, 

 

� = {
a small job, if m ≤ Na�g_��S  a 
large job, else. 

 

 cheduling Policies 

JoSS utilizes the following three scheduling policies.

• Policy A 

This policy is designed for a small RH job. If J is a small 

RH job, it would be better that each reducer of J is close to all 

mappers of J since the reducer can more quickly retrieve its 

input data from all the mappers. But this also implies that all 

mappers of J should be close to each other. Hence, policy A 

works as follows. It first chooses cenw, which is a datacenter 

having the least amount of unprocessed tasks among all the k 

datacenters, cenw, belongs to cen1,cen2, . . . ,cenk

schedules all tasks of J to cenw by putting J’s map

reduce tasks at the end of MQw,0 and RQw,0, respectively. In 

this way, all these tasks can be executed only by the VPSs at 

cenw, and each reducer of J can retrieve its input data from its 

local datacenter (i.e., reduce-data locality can be improved).
 

 
Fig. 1. An example showing block locations of job Y in a virtual 

MapReduce  cluster   comprising   three  datacenters. 
 
 

• Policy B 

This policy is designed for a small MH job. If J is a small 

MH job, it would be better that each mapper of J is close to its 

input block, and  each  reducer of J is close  to most mappers  

of J . Hence,   policy B works   as follows:   It schedules   J  

map tasks based on the number of unique input blocks

held   by each   datacenter. If a datacenter holds more   

blocks of J , more map tasks of J will be scheduled to the  

VPSs at this datacenter. The purpose  is  allowing  each 

mapper of J to retrieve its input block from its  local  

datacenter. In addition, to make  J ’s reducers  close  to   
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reduced as 
J ’s  mappers,  policy  B  schedules  all reduce tasks   of J to 

the datacenter that holds the maximum number of J ’s unique 

blocks. 

(3)   

The task scheduler of JoSS 
Based on the input scale of J to Navg VPS, which is the 

average datacenter scale of a virtual MapReduce ,cluster the 

JoSS utilizes the following three scheduling policies. 

This policy is designed for a small RH job. If J is a small 

RH job, it would be better that each reducer of J is close to all 

mappers of J since the reducer can more quickly retrieve its 

input data from all the mappers. But this also implies that all 

rs of J should be close to each other. Hence, policy A 

, which is a datacenter 

having the least amount of unprocessed tasks among all the k 

cen1,cen2, . . . ,cenk. Then it 

map tasks and J’s 

, respectively. In 

this way, all these tasks can be executed only by the VPSs at 

, and each reducer of J can retrieve its input data from its 

improved). 

Fig. 1. An example showing block locations of job Y in a virtual 

This policy is designed for a small MH job. If J is a small 

MH job, it would be better that each mapper of J is close to its 

input block, and  each  reducer of J is close  to most mappers  

of J . Hence,   policy B works   as follows:   It schedules   J   ’s 

Input : J and input-data description 

Output:task-scheduling decision 

Procedure: 
 

1. Calculate a hash value for J’s executable code and

input-data type; 

2. Let H be a set of hash values previously generated by 

JoSS; 

3. If the hash value is not in H{ 

4. Append all map tasks of J to the end of
5. Append all reduce tasks of J to the end of 

6. else { 

7. if J is a small RH job {//Use policy

8. Let cenw be a datacenter having the least 

unprocessed tasks among cen1,cen2,…cen

9. Append all map tasks of J to the end of

10. Append all reduce tasks of J to the end of

11. else { 

12. Let Lc be a set of all unique input blocks of 

cenc where c=1,2,…k; 

13. Let α = m; /*m is the number of map tasks of
14. while α > 0{/*i.e., not all map tasks of 

scheduled.*/ 

15. Let Ld is the first largest set among

16. Let |Ld| be the size of Ld; 

17. Let cend be the related datacenter;

18. If J is a small MH job {//Use policy
19. Append |Ld | map tasks of J to the end of

20. else {/*i.e., J is a large job, so use policy

21. Let ρ be the total number of map

cend; 

22. Generate a new map-task queue

23. Append |Ld| map tasks of J to the end of
24. for c=1 to k{ 

25. Delete a block from Lc if the block is in L

26. α  = α-|Ld|;} 

27. Let cenc be a datacenter holding the largest

unique input blocks of J; 

28. If J is a small MH job{//Use policy

29. Append all reduce tasks of J 

30. else { /*i.e., J is large job, so use policy

31. Let q be the total number of reduce

cene; 

32. Generate a new reduce-task queue

33. Append all reduce tasks of J to the end of 

map tasks based on the number of unique input blocks of J   

held   by each   datacenter. If a datacenter holds more    unique 

blocks of J , more map tasks of J will be scheduled to the  

VPSs at this datacenter. The purpose  is  allowing  each 

mapper of J to retrieve its input block from its  local  

datacenter. In addition, to make  J ’s reducers  close  to    most 

Fig 2.The algorithm of task scheduler. 

 

For example, Fig.  1  illustrates  the  locations  of  all 

blocks of a job  Y over  three  datacenters (Note  that  the  

input file   of   Y is   fragmented   into   six   blocks,   and

(4) 
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J ’s  mappers,  policy  B  schedules  all reduce tasks   of J to 

the datacenter that holds the maximum number of J ’s unique 

 

 

’s executable code and J’s 

be a set of hash values previously generated by 

to the end of MQFIFO; 
to the end of RQFIFO; } 

is a small RH job {//Use policy A. 

be a datacenter having the least 

cen1,cen2,…cenk; 

Append all map tasks of J to the end of MQw,0; 

J to the end of RQw,0;} 

be a set of all unique input blocks of J held by 

; /*m is the number of map tasks of J.*/ 
 > 0{/*i.e., not all map tasks of J are 

Let Ld is the first largest set among L1,L2,..…,Lk; 

datacenter; 

is a small MH job {//Use policy B 
| map tasks of J to the end of MQd,0;} 

is a large job, so use policy C.*/ 

 be the total number of map-task queues in 

task queue MQd,p+1; 

| map tasks of J to the end of MQd,p+1;} 

if the block is in Ld;} 

be a datacenter holding the largest number of 

If J is a small MH job{//Use policy B. 

J to the end of RQe,0;} 

is large job, so use policy C.*/ 

Let q be the total number of reduce-task queue in 

task queue RQe,q+1; 

to the end of RQe,q+1; }}} 

 

For example, Fig.  1  illustrates  the  locations  of  all 

blocks of a job  Y over  three  datacenters (Note  that  the  

input file   of   Y is   fragmented   into   six   blocks,   and each 
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block has two replicas.). Since cen2 holds the largest number 

of Y’s unique blocks (i.e., four), policy B will schedule four 

map tasks of Y to cen2 to process B1 , B2 , B3 , and B5 by 

appending the four map tasks  to  the  end  of  MQ2,0. After 

that,   cen1   still   holds    one unscheduled block of Y (i.e.,  

B4 ) and cen3 still holds two unscheduled blocks of Y (i.e.,  

B4 and  B6 ). Hence,  policy B will schedule the remaining 

two map tasks of Y to cen3 to process B4  and  B6  by 

inserting the two map tasks  to the  end  of MQ3,0 . Finally,  

due to the fact that cen2 holds the maximum number of  

unique blocks of  Y, policy  B schedules  all  reduce  tasks  of 

Y  to  cen2   by  appending them  to the  end  of RQ2,0. 

• Policy C 

This policy is designed for a large job. If J is a large job to a 

virtual MapReduce cluster, using one datacenter of the cluster 

to run all map tasks of J might need several rounds to finish 

these map tasks, implying that job turnaround time will 

prolong. To prevent this from happening, it is better not to use 

Hadoop FIFO algorithm [2] to assign these tasks to idle VPSs. 

Once J is completed, JoSS records the corresponding hash 

value and average filtering-percentage value. 

However, if the hash value is in H (see line 7), it means 

that JoSS knows the average filtering-percentage value of J . 

Then the task scheduler schedules J as follows: If J is a small 

RH job, the abovementioned policy A is used to schedule the 

tasks of J (please see lines 9 to 12). Otherwise, it means that J 

is either a small MH job or a large job, and the task scheduler 

uses lines 14 to 37 to schedule J . Recall that policies B and C 

are used to schedule a small MH job and a large job, 

respectively. If J is a small MH job, the task  scheduler  

directly inserts J ’s map tasks to the permanent map-task  

queue of the determined datacenter (see line 22), and also 

inserts J ’s reduce tasks to  the  permanent  reduce-task queue 

of the determined datacenter (see line 33). In other words, no 

additional queue will be created for any small jobs. The 

purpose is not to increase the queue management overhead of 

JoSS. 
a single datacenter to run all these map tasks. [4] discussed 
about Enhancement of TCP Throughput using enhanced TCP 
Reno Scheme. Mobile Ad-Hoc Networks (MANETs) have 
been an area for active research over the past few years due to 
their potentially widespread application in military and 
civilian communications. Based on the analysis, we proposed 
two simple yet effective ways, namely, TCP Few and 
ROBUST, to improve the system performance. It was shown 
via computer simulation that TCP performance can be 
significantly improved without modifying the basic TCP 
window or the wireless MAC mechanism. Thus, the TCP 
window mechanism can still be a viable solution for IEEE 
802.11 ad-hoc networks. 
C. Job Driven Scheduling Scheme(JoSS) and JoSS-T 

JoSS consists of three components: input-data classifier, 

task scheduler, and task assigner. The input-data classifier is 

designed to classify input data uploaded by a user into one of 

the two types: web document and non-web document. A web 

document refers to a file consisting of a lot of tags enclosed in 

angle brackets. By simply inspecting the first several sentences 

of a document, the input-data classifier can easily know if it is 

a web document or not. After the classification, the input- data 

classifier records the type of the input data in JoSS. 

Whenever receiving a MapReduce job from a user,  the 

task scheduler determines the type of the job and then 

schedules the job based on one of policies A, B, and  C. 

Fig.2 illustrates the algorithm of the task scheduler. Upon 

receiving J , the task scheduler retrieves J ’s input- data type 

classified by the input-data classifier and  checks whether  

JoSS has executed J on such input-data type or not by 

calculating the corresponding hash value and comparing the 

value with H, where H is a set of hash values previously 

generated and recorded by JoSS. 

If the hash value is not in H (see line 4), it means that JoSS 

does not know J ’s average filtering-percentage value and J’s 

job classification. To obtain the above information, the task 

scheduler simply appends J ’s all map tasks and J  ’s  all 

reduce tasks to two queues,  denoted  by  MQFIFO  and  

RQFIFO , respectively. This allows the task assigner to use  the 

Task-driven Task Assigner(TTA) 

Input: an idle slot of VPSc,l 

Output: a task assigned to VPSc,l 

Procedure: 
 

 

1. Let Imap and Ired be two indexes with the same initial 

value 0; 

2. while VPSc,l has an idle slot{ 

3. Let Nmap be the total number of map-task queues in 

cenc; 

4. Let Nred be the total number of reduce-task queues in 

cenc; 

5. if the slot is a map slot{ 

6. if MQFIFO is not empty{ 

7. Use FIFO to assign a map task from MQFIFO to 

VPSc,l 

8. Remove the task from MQFIFO;} 

9. else{ 

10. Imap = Imap mod (Nmap +1); 

11. Assign the first task from MQc,Imap to VPSc,l; 

12. Remove the task from MQc,Imap; 

13. Imap ++;}} 

14. else{/*i.e., the idle slot is a reduce slot;*/ 

15. if RQFIFO is not empty { 

16. Assign the first reduce task from RQFIFO to VPSc,l; 

17. Remove the task from RQFIFO;} 

18. else { 

19. Ired=Ired mod (Nred+1); 

20. Assign the first reduce task from RQc,Ired to VPSc,l; 

21. Remove the task from RQc,Ired; 

22. Ired++; }}} 
 

 

Fig. 3. The algorithm of task-driven task assigner (TTA) 
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In another case, if J is a large job, the task scheduler addi- 

tionally generates a new map-task queue and a new reduce- 

task queue to respectively put J ’s map tasks and J ’s reduce 

tasks (see lines 24 to 26 and lines 35 to 37). This will allow  

the task assigner to properly assign  small  jobs  and  large  

jobs to VPSs. 

Fig. 3 illustrates how TTA works. Whenever VPSc has an 

idle map slot, TTA preferentially assigns a map task from 

MQFIFO to VPSc based on the Hadoop FIFO algorithm (see 

lines 7 to 8). The goal is to preferentially execute all newly 

submitted jobs one by one and obtain their  filtering- 

percentage values to determine their job classifications. 

However, if MQFIFO is empty, TTA assigns one of the first 

map tasks from all the other map-task queues of cenc in a 

round-robin fashion (see lines 10 to 13) such that  tasks  can  

be assigned quickly and job starvation can be avoided. 

Similarly, whenever VPSc has an idle reduce slot, TTA 

preferentially assigns a reduce task from RQFIFO to VPSc . 

Only when RQFIFO is empty, TTA assigns one of the first 

reduce tasks from other reduce-task queues of cenc to VPSc;‘ 

(see lines 19 to 22). 

VI. CONCLUSION 

In this paper, we have introduced JoSS for  scheduling 

Map- Reduce jobs in a virtual MapReduce cluster consisting of 

a set of VPSs rented from a VPS provider. Different from 

current MapReduce scheduling algorithms, JoSS takes both the 

map-data locality and reduce-data locality of a virtual 

MapReduce cluster into consideration. JoSS classifies  jobs 

into three job types, i.e., small map-heavy job, small reduce- 

heavy job, and large job, and introduced appropriate policies  

to schedule each type of job. In addition, JoSS-T is further 

introduced to respectively achieve a fast task assignment and 

improve the VPS-locality. 
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