
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

CLOUD GAMING PROPOSES GPU/CPU HYBRID

CLUSTER ON THE USER LEVEL VIRTUALIZATION

Sr.C.Jansi Sophia Mary
1
, A.Kalaiselvi

2

1
Assistant Professor, Department of CSE,

Idhaya Engineering College for Women, Chinnasalem,

Sr.j.sofi@gmail.com

2

PG Scholar, Department of CSE,

Idhaya Engineering College for Women, Chinnasalem,

kalaibecse22@gmail.com

ABSTRACT
The GCloud, a GPU/CPU hybrid cluster for cloud gaming based on the userlevel virtualization technology. Specially, we present a

performance model to analyze the server-capacity and games’ resource-consumptions, which categorizes games into two types: CPU-critical

and memory io critical. Consequently, several scheduling strategies have been proposed to improve the resource utilization and compared with

others. Simulation tests show that both of the First-Fit-like and the Best-Fit-like strategies outperform the others; especially they are near

optimal in the batch processing mode. Other test results indicate that GCloud is efficient: An off-the-shelf PC can support five high-end video-

games run at the same time. In addition, the average per frame processing delay is ms under different image resolutions, which outperforms

other similar solutions.

Keywords - Cloud computing, cloud gaming, resource scheduling, user-level virtualization

I. INTRODUCTION

CLOUD gaming provides game-on-demand services

over the Internet. This model has several advantages. it allows

easy access to games without owning a game console or high

end graphics processing units (GPUs); the game distribution

and maintenance become much easier. For cloud gaming, the

response latency is the most essential factor of the quality of

gamers’ experience “on the cloud”. The number of games that

can run on one machine simultaneously is another important

issue, which makes this mode economical and then really

practical. Thus, to optimize cloud gaming experiences, CPU /

GPU hybrid systems are usually employed because CPU-only

solutions are not efficient for graphics rendering. One of the

industrial pioneers of cloud gaming, Onlive emphasized the

former: it allocated one GPU per instance for high end video

games. To improve utilization, some other service providers

use the virtual machine (VM) technology to share the GPU

among games running on top of VMs. stream games from

cloud servers located around the world to internet-connected

devices. Since the end of 2013, Amazon EC2 has also

493

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

provided the service for streaming games based on VMs. More

technical details can be acquired from noncommercial

projects. GamePipe is a VM-based cloud cluster of CPU/GPU

servers. Its characteristic lies in that, not only cloud resources

but also the local resources clients can be employed to

improve the gaming quality. Another system,

GamingAnywhere [3], has used the userlevel virtualization

technology. Compared with some solutions, its processing

delay is lower.

Besides, task scheduling is regarded as another key issue to

improve the utilization of resources, which has been verified in

the high performance GPU computing fields,. However, to the

best of our knowledge, the scheduling research for cloud

gaming has not received much attention yet. One example

based on VMs is VGRIS including its successor VGASA. It is

a GPU resource management framework in the host OS and

schedules virtualized resource of guest OSes. This paper

proposes the design of a GPU/CPU hybrid sytem for cloud

gaming and its prototype, GCloud. GCloud haused the user

level virtualization technology to implement sandbox for

different types of games, which can isolate more than one

game instance from each other on a game server transparently

capture the game’s video/audio outputs fostreaming, and

handle the remote client-device’s inputs. Moreover, a

performance model has been presented thus we have analyzed

resource consumptions of games and performance bottlenecks

of a server, through excessive experiments using a variety of

hardware performance counters. Accordingly, several task

scheduling strategies have been designed to improve the server

utilization and been evaluated respectively. [4] discussed

about creating Obstacles to Screened networks. In today’s

technological world, millions of individuals are subject to

privacy threats. Companies are hired not only to watch what

you visit online, but to infiltrate the information and send

advertising based on your browsing history.

Fig.1. The whole workflow of cloud gaming.

First, it implements a virtual input-layer for each of con-

currently-running instances, rather than a system-wide one,

which can support more than one Direct-3D games at the same

time. Second, it designs a virtual storage layer to trans-

parently store each client’s configurations across all servers,

which has not been mentioned by related projects.

In summary, the following contributions have been
accomplished:

[1] Enabling-technologies based on the light-weight virtu-
alization are introduced, especially those of GCloud ‘s

characteristics. (Section 3)

[2] To balance the gaming-responsiveness and costs, we

adopt a “just good enough” principle to fix the FPS

(frame per second) of games to an acceptable level.

Under this principle, a performance model is con-

structed to analyze resource consumptions of games,

which categorizes games into two types: CPU-critical

and memory-io-critical; thus several scheduling mech-

anisms have been presented to improve the utiliza-tion

and compared. In addition, different from previous

jobs focused on the GPU-resource, our work has found

the host CPU or the memory bus is the system

bottleneck when several games are run-ning

simultaneously. (Section 4)

[3] Such a cloud-gaming cluster has been constructed,

which supports the mainstream game-types. Results of

tests show that GCloud is highly efficient: An off-the-

shelf PC can support up to five concurrently-run-ning

video-games (each game’s image-resolution is

1024 768 and the frame per second is 30). The aver-

age per-frame processing delay is 8 19 ms under

different image-resolutions, which can satisfy the

stringent delay requirement of highly-interactive

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

games. Tests have also verified the effects of our

performance model.

II. RELATED WORK

1 Cloud Gaming

Cloud gaming is a type of online gaming that allows direct and
on-demand streaming of game-scenes to

networked-devices, in which the actual game is running on the
server-end (main steps have been described in Fig. 1).
Moreover, to ensure the interactivity, all of these serial oper-
ations must happen in the order of milliseconds, which
challenges the system design critically.

The amount of latencies is defined as interaction delay.

Existing researches [10] have shown that different types of
games put forward different requirements.

One solution type of cloud-gaming is VM-based. For the

solutions based on VMs, Step 1 is completed in the guest OS

while others on the server-end are accomplish by the host.

Barboza et al. [11] presents such a solution, which provides

cloud gaming services and uses three levels of managers for

the cloud, hosts and clients. Some existing work, like GaiKai,

G-cluster, Amazon EC2 for streaming games and GamePipe

[2], also belong to this category.

In contrast to VM-based solutions, the user-level solution

inserts the virtualization layer between applications and the

run-time environment. This mode simplifies the processing

stack; thus it can reduce the extra overhead. GamingAny-

where [3] is such a user-level implementation, which sup-ports

Direct3D/SDL games on Windows and SDL games on Linux.

Some solutions have enhanced the thin-client protocol to

support interactive gaming applications. Dependent on the

concrete implementation, they can be classified into the two

types. For example, Winter et al. [12] have enhanced the thin-

client server driver to integrate a real-time desktop streamer to

stream the graphical output of applications after GPU

processing, which can be regarded as a light-weight

virtualization-based solution. In contrast, Muse [13] uses VMs

to isolate and share GPU resources on the cloud-end, which

has enhanced the remote frame buffer (RFB) protocol to

compress the frame-buffer contents of server-side VMs.

However, these researches have focused on the optimiza-

tion of interaction delay, namely, taken care of the perfor-

mance of a single game on the cloud, rather than the

interference between concurrently-running instances. More-

over, none of these systems has presented any specific

scheduling strategy.

Fig 2.System architecture

SYSTEM ARCHITECTURE AND ENABLING

TECHNOLOGIES

3.1 The Framework

The system (in Fig. 2) is built with a cluster of CPU / GPU-

hybrid computing servers; a dedicated storage server is used as

the shared storage. Each computing server can host the

execution of several games simultaneously. One of these

servers is employed as the manager-node, which collects real-

time running information of all servers and completes

management tasks, including the task-assignment, user

authentication, etc.

It is necessary to note that the framework in Fig. 2 is for

small / medium system-scales. For a large scale system with

many users, a hierarchical architecture is needed to avoid the

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

bottleneck of information-exchange. In fact, because the

quality of gamers’ experience highly depends on the response

latency and the latter is sensitive to the physical distance

between clients and servers, the architec-ture may be

geographically-distributed, which is out of scape of this paper.

It also means that in one site the scale will not be very large.
5

Initially, gaming-agents on available computing servers
register to the manager, indicating that they are ready
and.which games they can execute. When a client wants to
play some game, the manager will search for candidates
among the registered information. After such a server has been
choosen, a start-up command will be sent to the corresponding
agent to boot up the game within a light weight virtualization
environment. Then, its address will be sent to the client.
Future communication will be done directly between the two
ends.

During the run time, each agent collects local runtime

information and sends it to the manager periodically; the latter

can get the latest status of resource-consumptions.

The storage server is an important role to provide the

personalized game-configuration for each user. For instance,

User A had played Game B on Server C. Now A wants to play

the game again while the manager finds that Server C’s

resources have been depleted. Then the task has to be assigned

to another server, D. Consequently, it is necessary to restore

A’s configurations of B on D, including the game’s progress

and other customized information. The storage server is just

used as the shared storage for all computing nodes.

 III. SYSTEM MODEL

3.2.1 Image Capture

Usually, gaming applications employ the mainstream 3D

computer-graphics-rendering libraries, like Direct3D or

OpenGL, to complete the hardware (GPU) acceleration;

GCloud supports both of them.

In the case of Direct3D, the typical workflow of a game is

usually an endless loop: First, some CPU computation pre-

pares the data for the GPU, e.g., calculating objects in the

upcoming frame. Then, the data is uploaded to the GPU buffer

and the GPU performs the computation, e.g., render-ing, using

its buffer contents and fills the front buffer. To fetch contents

of the image into the system memory for the consequent

processing, we intercept the Direct3D’s Present API.

For OpenGL, we have intercepted the Present-like API in
OpenGL, glutSwapBuffers, to capture images.

For other games based on the common GUI window, we

just set a timer for the application’s main window, then we

intercept the right message handler to capture the image of the

target window periodically.

3.2.2 Audio Capture

Capturing of audio data is a platform-dependent task. Because

our main target platform is MS Windows, we inter-cept

Windows Audio Session APIs to capture the sound. Core

Audio serves as the foundation of quite a few higher-level

APIs; thus this method can bring about the best adaptability.

3.2.3 Virtual Input Layer

Flash-based or OpenGL-based applications are usually using

the window’s default message-loop to handle inputs. Thus, the

solution is straightforward: We inject a dedicated input-thread

into the intercepted game-process. On recep-tion of any

control command from the client, this thread will convert it

into a local input message and send it to the target window.

For Direct3D-based games, the situation is more compli-

cated. The existing work [3] replays input events using the

SendInput API on Windows. However, SendInput inserts

events into a system-wide queue, rather than the queue of a

specific process. So, it is difficult to support more than one

instance for the non-VM solution. To conquer this problem,

we intercepted quite a few DirectInput APIs to simulate input-

queues for any virtualized application; thus the user’s input

can be pushed into these queues and made accessible to

applications.

3.2.4 Virtual Storage Layer

From the storage aspect, a program can be divided into three

parts [31]: Part 1&2 include all resources provided by the OS

and those created/modified by the installation pro-cess; Part 3

is the data created/modified/deleted during the run time, which

contains game-configurations of each user. For the immutable

parts, it is relatively easy to distribute them to servers through

some system clone method. The focus is how to migrate

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

resources of Part 3 across servers to provide personalized

game-configurations for users.

We construct a virtual storage layer by the interception of

file-system and registry accessing APIs of all games. During

the run time, the resource modified by the game instance will

be moved into Part 3. When the previously-described case in

Section 3.1 occurs, the virtual storage layer of Game B on the

current server can redirect resource-accesses to the shared

storage to visit the latest configurations of User A, which were

stored by the last run on Server C.

IV. SCOPE OF RESEARCH

 The response latency and the number of games that one

machine can execute simulta-neously are both essential to a

cloud gaming system. To a large extent, they are in

contradiction and existing systems (like [3], [11], [12]) usually

focus on the first issue.

However, it is not always economical. For example, if the

FPS of a given game is too high, it will consume more

resources. Moreover, the loss compression will counteract the

high video-quality to a certain extent.

Some scheduling work, like VGRIS / VGASA [8], [9], has

presented multi-task scheduling strategies. There are several

essential differences between our work and VGRIS / VGASA:

First, they are focused on how to schedule existing games on a

server, including the allocation of enough GPU resources for a

game, etc. In contrast, GCloud is focused on the assignment of

a new task. Second, they are focused on the GPU resource and

no any other operation (like image-capture, encoding, etc.) has

been considered, while our tests (presented in Section 4.4)

show the host CPU or the memory bus is the bottleneck.

Third, VGRIS and VGASA are VM-specific.

4.1 Game Quality

A cloud gaming system’s interaction delay contains three parts

[27]: (1) Network delay, the time required for a round of data

exchange between the server and client; (2) Play-out delay, the

time required for the client to handle the received for

playback; (3) Processing delay, required for the server to

process a player’s command, and to encode and send the

corresponding frame back.

This paper is mainly about the server-side and the net-work is

assumed to be able to provide the sufficient band-width, thus

we focus on the processing delay that should be confined into

a limited range. The work [25] on measuring the latency of

cloud gaming has disclaimed that, for some existing service-

providers (like Onlive), the processing delay is about 100-

200ms. Thus, we use 100 ms as our scheduling target, denoted

MAX_PD. Another measurement of key metrics is FPS; the

required FPS is illustrated as FIXED_FPS. In this work,

FIXED_FPS is set to 30 by default.

The gaming workflow can be regarded as a pipeline

including four steps: operations of gaming logic, graphic

rendering (including the image cap-ture), encoding (including

the color-space conversion) and transmission. In addition, our

tests show that given the suf-ficient bandwidth, the delay of

transmission is much less than other steps. Thus, the fourth

step can be skipped and we focus on the remaining

three.Furthermore, the first two steps are completed by the

intercepted process, which is transparent to us; thus we should

combine them together and the sum of these laten-cies is

denoted by Tpresent. The average processing time of the

encoding step is denoted by Tencoding (The pipeline is presented

in Fig. 3). Hence, if the following conditions (referred as

Responsiveness Conditions) have been satisfied, the

requirement on the FPS and processing delay will be met

undoubtedly. To be more precise, satisfaction of the first two

conditions means the establishment of the last one, under the

default case.

Tpresent < ¼ 1=FIXED FPS

4.2 Fixed FPS

To provide the “just good enough” gaming quality, the FPS

value should be fixed to some acceptable level (Issue 1).

Because the interface of GPU drivers is not open, our solu-tion

is in the user-space, too.

Take the Direct3D game as an example, we intercept the
Present API to insert a Sleep call for adjusting the loop
latency: The rendering complexity is mostly affected by the
complexity of gaming scenes and the latter changes gradu-
ally. Thus, it is reasonable to predict Tpresent based on its own
historical information. In the implementation, the aver-age
time (denoted Tavg present) of the past 100 loops is used as the
prediction for the upcoming one (the similar method

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

has been adopted by [8], [9]) and the sleep time (Tsleep) is cal-
culated as:

Tsleep < ¼ 1=FIXED FPS Tavg present

The true problem lies in how to judge whether a busy server is

suitable to undertake a new game instance or not. Thus, we

should solve Issue 2 anyway.

4.3 Hardware-Assistant Video Encoding

The fixed-FPS can mitigate the inference between games

because it allocates just enough resource for rendering. Fur-

ther, we use the hardware-assistant video-encoding capabil-ity

of commodity CPUs for less inference.

The hardware technology of Intel CPUs, Quick Sync, has

been employed. It owns a full-hardware function pipeline to

compress raw images in the RGB or YUV format into the

H264 video. Now Quick Sync has become one of the main-

stream hardware encoding technologies.
6
 On the test server, a

Quick-Sync-enabled CPU can simultaneously support up to

twenty 30-FPS encoding tasks (the image resolution is 1024

768); the latency for one frame is as low as 4.9 ms.

4.4 Resource-Metrics

Five types of system-resources have been focused on,

including the CPU, GPU, system-RAM, video-RAM and the

system bandwidth: The first two can be denoted by utiliza-tion

ratios; the next two are represented by memory con-sumptions

and the last refers to the miss number of the LLC (Last Level

Cache). Correspondingly, the server capacity and the average

resource requirements of a game (under the condition

satisfying the Responsiveness Conditions) can be denoted by a

tuple of five-items, <U_CPU, U_GPU, M_HOST, M_GPU,

B>.

4.4.1 Test Methods

Commercial GPUs usually implement driver / hardware

counters to provide the runtime performance information. For

example, the NVIDIA’s PerfKit APIs7 can collect resource-

consumption information of each GPU in real time. Hence, we

can get results accumulated from the previ-ous time the GPU

was sampled, including the percentage of time the GPU is

idle/busy, the consumption of graphic memories, etc.

For commodity CPUs, the similar method has been used,

too. For instance, Intel has already provided the capability to

monitor performance events inside processors. Through its

performance counter monitor (PCM), a lot of perfor-mance-

related events per CPU-core, including the number of LLC-

misses, instructions per CPU cycle, etc., can be obtained

periodically.

The sample periods for CPU and GPU are both set to 3s. In

addition, we embed monitoring codes into the inter-cepted

gaming APIs to record processing delays of each frame, which

will be used to judge whether the Responsive-ness Conditions

have been met or not.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

5. EXPERIMENTAL RESULTS
 The test environment and configurations are the same
as those in Section 4.4, as well as the testing method.

5.2.1 Overheads of the User-Level Virtualization

Technology Itself

We execute a game on a physical machine directly and record

the game speed (in term of the average FPS) and average

memory consumption. Then, this game is running in the user-

level virtualization environment (all related APIs have been

intercepted but no any real work, like image capture,

encoding, etc., has been enabled) and in a virtual machine

respectively; the same runtime information will be recorded

repeatedly.

5.2.2 Processing Performance of the Server

The processing procedure of a cloud-gaming instance can be

divided into four parts: (1) image capture, which copies a

rendered into the system memory, (2) video encoding,(3)

tferring, which sends each compressed-frame into the network,

and (4) the process of the

5.2.3 Multiple Games

The “just good enough” strategy is used; a Sleep call has been

used to fix the FPS. First, an OpenGL game and three

Direct3D games have been played one by one and the proc-

essing delay (including the sleep time) is sampled periodi-

cally; the sample period is one frame. Second, quite a few

game combinations, each including more than one game, have

been executed and sampled. Without loss of general-ity, FPS

values of some game combinations that are played

simultaneously are presented in Table 4, as well as the aver-

age absolute deviations (AADs). These combinations are:

Case 1: Two NFS instances;

Case 2: One NFS, one Combat and one
Scrolls;

 Case 3: Two NFS, one Combat and one
Scrolls;

Case 4: One NFS, one Combat, one Scrolls and two Birds.
On the whole, the average FPS ranges from 30.5 to 31.5 as

5.2.4 Verification of the Performance Model

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 4, Special Issue 11, March 2017

According to the result of the performance model and

scheduling strategy, we test several typical server loads for

verification. Without loss of generality, the following cases

have been presented.

1) One Scrolls, one Combat and two NFS. As presented

in Table 5 (1st row), the FPS value of each game is more

than 27 and the lowest is Scrolls’s, about 27.1. All are not

less than 90 percent of the FIXED_FPS (30), thus they

are accepetable. Because the system-RAM band-width

has been nearly exhausted (about 93 percent of the

MAX_SYSTEM_BANDWIDTH), when another game

join (regardless NFS or Birds), the FPS of Scrolls will

drop below the acceptable level.

5.2.4 Discrepancy between Video and Audio

The delay fluctuations of games. The corresponding FPS-

values will be less than 30, which will increase the timing

discrepancy, because the accumulation process of audio-data

will be slowed.

The network’s delay fluctuations. They will increase the

timing discrepancy, too. Our tests are carried out in the

campus. We believe, for the Internet, this fac-tor will cause

more delays.

The measurement error. The recording software records the

screen periodically, 30 FPS, while the audio recording is

consecutive. Thus, beginnings of some sequences of full-black

images may be lost, which will decrease the gap.

 VI. CONCLUSION

 GCloud, a GPU/CPU hybrid cluster for cloud gaming

based on the user-level virtualization technology. We focus on

the guideline of task scheduling: To balance the gaming-

responsiveness and costs, we fix the game’s FPS to allocate

just enough resources, which can also mitigate the inference

between games. Accordingly, a per-formance model has been

analyzed to explore the server-capacity and the game-demands

on resource, which can locate the performance bottleneck and

guide the task-sched-uling based on games’ critical resource-

demands. Compari-sons show that both the First-Fit-like and

Best-Fit-like scheduling strategies can outperform others.

Moreover, they are near optimal in the batch processing mode.

REFERENCES

[1] R. Shea, L. Jiangchuan, E.C.-H. Ngai, and C. Yong, “Cloud gam-ing:

Architecture and performance,” IEEE Netw., vol. 27, no. 4,

pp. 16–21, Jul./Aug. 2013.

[2] Z. Zhao, K. Hwang, and J. Villeta, “GamePipe: A virtualized cloud
platform design and performance evaluation,” in Proc. ACM 3rd
Workshop Sci. Cloud Comput., 2012, pp. 1–8.

[3] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen,
“GamingAnywhere: An open cloud gaming system,” in Proc. ACM
Multimedia Syst., Feb. 2013, pp. 36–47.

[4] Christo Ananth, P.Muppidathi, S.Muthuselvi, P.Mathumitha,
M.Mohaideen Fathima, M.Muthulakshmi, “Creating Obstacles to
Screened networks”, International Journal of Advanced Research in
Biology, Ecology, Science and Technology (IJARBEST), Volume
1,Issue 4,July 2015, pp:10-14

[5] V. T. Ravi, M. Becchi, G. Agrawal, and S. T. Chakradhar, “Supporting
GPU sharing in cloud environments with a transpar-ent runtime
consolidation framework,” in Proc. 20th ACM Int. Symp. High Perform.
Distrib. Comput., 2011, pp. 217–228.

[6] G. A. Elliott and J. H. Aon, “Globally scheduled real-time
multiprocessor systems with GPUs,” Real-Time Syst., vol. 48, no. 1.
pp. 34–74, 2012.

[7] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, “Dynamic load
balancing on single- and multi-gpu systems,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., 2010, pp. 1–12.

[8] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan, “GRIS:
Virtualized GPU resource isolation and scheduling in cloud gaming,” in
Proc. 22nd Int. Symp. High-Perform. Parallel Distrib. Comput., 2012,
pp. 203–214.

[9] C. Zhang, J. Yao, Z. Qi, M. Yu, and H. Guan, “vGASA: Adaptive
scheduling algorithm of virtualized GPU resource in cloud gaming,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11,

pp. 3036–3045, 2014.

[10] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45,2006

500

