
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

EFFICIENT MEASURE STRENGTH SDN

NETWORKS BY FINGER PRINTING
P.SATHYA

1
 ,P.MOHANAVALLI 2

1.PG Student, Department of Computer Science And Engineering, Idhaya Engineering College For Women,Chinnasalem

2.Assistant Professor, Department of Computer Science And Engineering, Idhaya Engineering College For

Women,Chinnasalem
1
sathyaponnan@gmail.com,

2
mohanap05@gmail.com

Abstract— Software-defined networking (SDN) eases network

management by centralizing the control plane and separating it
from the data plane. The separation of planes in SDN, however,
introduces new vulnerabilities in SDN networks, since the
difference in processing packets at each plane allows an
adversary to fingerprint the network’s packet-forwarding logic.
In this paper, we study the feasibility of fingerprinting the
controller-switch interactions by a remote adversary, whose aim
is to acquire knowledge about specific flow rules that are
installed at the switches. This knowledge empowers the
adversary with a better understanding of the network’s packet-
forwarding logic and exposes the network to a number of threats.
In this paper, we collect measurements from hosts located across
the globe using a realistic SDN network comprising of OpenFlow
hardware and software switches. We show that, by leveraging
information from the RTT and packet-pair dispersion of the
exchanged packets, fingerprinting attacks on SDN networks
succeed with overwhelm-ing probability. We additionally show
that these attacks are not restricted to active adversaries, but can
also be mounted by passive adversaries that only monitor traffic
exchanged with the SDN network. Finally, we discuss the
implications of these attacks on the security of SDN networks,
and we present and evaluate an efficient countermeasure to
strengthen SDN networks against fingerprinting. Our results
demonstrate the effectiveness of our countermeasure in deterring
fingerprinting attacks on SDN networks.

Index Terms— Software-defined networking, OpenFlow,
fingerprinting, security.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) [14], [27] eases the

development and deployment of network applications by defining a
standard interface between the control plane

and the data plane. In SDN, the control plane is imple-mented

by a logically centralized controller, which interacts over a bi-

directional communication channel with the data plane’s

network devices. The controller can query devices for their

state, e.g., to acquire traffic statistics or information about the

status of the switches’ ports, and modify their forwarding

behavior, by installing and deleting flow rules.

Network devices can also notify the controller about network

events (e.g., the reception of certain packets) and device’s state

changes. For example, a number of advanced reactive control

plane logic implementations [11], [17], [35], [46] configure

network devices to send notification to the controller according to

some installed policy (e.g., when a received packet does not

match any of the installed flow rules). This notification triggers

the controller to perform a series of operations, such as installing

the appropriate forwarding rules at the switches, reserve network

resources on a given network’s path, etc.
The separation of the control and data plane in SDN opens

the doors for a remote adversary to fingerprint the network. In

particular, whenever packet forwarding is performed in

hardware, then packets at the data plane are processed several

orders of magnitude faster than at the software-based control

plane. This discrepancy acts as a distinguisher for a remote

adversary to learn whether a given probe packet is handled

just at the data plane or triggers an interaction between the

data plane and the control plane. An interaction provides

evidence that the probe packet does not have any matching

flow rule stored at the switch’s flow table (or it requires

special attention from the controller). This knowledge

empowers an adversary with a better understanding of the

network’s packet-forwarding logic and, as we outline in this

work, exposes the network to a number of threats. In spite of

the plethora of SDN security solutions in the literature [5],

[15], [33], [39]–[41], no contri-bution analyzes the feasibility

and realization of fingerprint-ing attacks on practical SDN

deployments. Moreover, there are no proposed solutions to

alleviate fingerprinting attacks on SDN.
In this paper, we address this problem and study the finger-

printing of controller-switch interactions by a remote adversary

with respect to various network parameters, such as the number

of hops in the communication path, and the data link bandwidth.

For that purpose, we collect measurements from 20 different

hosts located across the globe (Australia, Asia, Europe, and North

America) using an SDN network compris-ing of several

OpenFlow hardware and software switches. Our results show

that, by leveraging information from the packet-pair dispersion of

the exchanged packets, fingerprinting attacks on SDN networks

succeed with overwhelming probability. For instance, an

adversary can correctly identify, with an accuracy of almost 99%,

whether a probe packet triggers the installation of forwarding

rules at three hardware switches in our SDN network.
460

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

We also show that fingerprinting attacks can be mounted by

passive adversaries that, e.g., capture a snapshot of the traffic

exchanged with the SDN network. Although existing traffic

might not contain packet pair traces, our findings show that a

passive adversary can leverage the RTT of packets (that are

exchanged within a short time interval) to fingerprint the SDN

network with an accuracy up to almost 99%. The

fingerprinting accuracy due to the RTT of packets is,

however, largely affected by the SDN network size, and

significantly deteriorates with time. [3] discussed about

Reconstruction of Objects with VSN. By this object

reconstruction with feature distribution scheme, efficient

processing has to be done on the images received from nodes

to reconstruct the image and respond to user query.
This work extends our prior work in [2]. For instance, an

adversary that knows which packets cause an interaction with the

controller can, e.g., acquire evidence about the occurrence of a

particular communication event. This enables the adversary to

understand the logic adopted by the controller in managing the

SDN network, or to launch Denial-of-Service (DoS) attacks by

overloading the switches with bogus flow-table updates [22]. In

light of our findings, we present and evaluate an efficient

countermeasure to strengthen SDN networks against

fingerprinting. Our evaluation shows that our countermeasure

considerably reduces the ability of an adversary to mount

fingerprinting attacks on SDN networks.
The remainder of this paper is organized as follows. In

Section II, we define our problem statement. In Section III, we

describe our setup, the performed experiments, and sum-

marize the collected data. In Section IV, we present and detail

our results. In Section V, we analyze the implications of our

findings on the security of SDN networks. In Section VI, we

present and evaluate an efficient countermeasure to deter

fingerprinting in SDN networks. In Section VII, we discuss

related work, and we conclude the paper in Section VIII.

II. PROBLEM STATEMENT

Before describing the focus of our work, we give a brief

refresher on OpenFlow, a widely deployed realization of SDN.

A. Background

SDN separates the control and data planes by defining a

switch’s programming interface and a protocol to access such

interface, i.e., the OpenFlow protocol [31]. The controller

leverages the OpenFlow protocol to access the switch’s pro-

gramming interface and configure the forwarding behavior of

the switch’s data plane. The communication between the

controller and switches is established using an out-of-band

control channel.

The core entities exposed by the OpenFlow switch’s pro-

gramming interface are flow tables and flow rules. A flow table

of a switch is just a container for its flow rules, which define the

switch’s forwarding behavior. The controller can add, delete, or

modify flow rules of a switch’s flow table by sending an

OFPT_FLOW_MOD OpenFlow message to the switch. The

parameters of an OFPT_FLOW_MOD message specify how the

flow table of the switch should be modified. A flow rule, for

instance, provides a semantic like “if a network packet’s IP

destination address is 1.2.3.4, then forward the packet to port 2.”

In general, a flow rule contains a match set that defines the

network packets to which the rule applies. It further contains an

action set that defines the actions that should be applied to such

packets, for example, forward to port 2. Whenever a packet is

received by a switch, the packet’s header is used as a search key

to retrieve the rule that applies to the packet, by performing a

lookup in the flow table. The lookup operation compares the

packet’s header with the rules’ match set to find the rule that

matches the packet. Rules are prioritized in case multiple rules

match. For the cases in which the controller needs to inspect a

network packet, before performing a forwarding decision and

installing the corresponding forwarding rules, OpenFlow defines

a special “forward to controller” action. When this action is

applied to a packet, the switch generates an OFPT_PACKET_IN

message that is sent to the controller. This message contains the

original packet and some additional information, such as the

switch and the port ID onto which the packet was received.

The OFPT_PACKET_IN feature is used in basic network

control logic implementations, such as the one of an Ethernet

learning switch. It is also used in more complex dynamic con-trol

plane implementations. In both cases, the network operates as

follows: a packet received by the switch generates an

OFPT_PACKET_IN message; the controller receives and ana-

lyzes the message to take a forwarding decision; the decision is

finally implemented by sending OFPT_FLOW_MOD messages,

which install rules at the relevant switches. This ensures that all

similar packets, i.e., those that belong to the same network flow,

are forwarded directly by the switches with no further

interactions with the controller. Note that the controller can use

barrier messages to ensure that message dependencies are met,

e.g., when multiple switches are reconfigured by the controller

for handling a new network flow. When a switch receives a

barrier request (OFPT_BARRIER_REQUEST), the switch must

finish all previously received messages before processing new

messages. After processing all messages, it notifies the controller

by sending a barrier reply message (OFPT_BARRIER_REPLY).

B. Problem Statement

The main objective of our work is to study the ability of a

remote adversary to identify whether an interaction between

the controller and the switches (and a subsequent rule

installation) has been triggered by a given packet.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

Fig. 1. Sketch of our measurement setup. Our testbed comprises three NEC PF5240 OpenFlow hardware switches and one OpenVSwitch (version 2.3.1).

then this suggests that the received packet requires further

examination by the controller, e.g., since it does not have any

matching entry stored at the switch’s flow table, or because

the controller requires additional information before installing

a forwarding decision at the switches.
In our study, we consider both active and passive adver-

saries. We assume that an active adversary can compromise a

remote client, inject probe packets of her choice, and capture

the timing of the corresponding responses issued by a server.

In contrast, a passive adversary cannot inject packets in the

network but only monitors the exchanged traffic between the

server and the client. Notice that passive adversaries are hard

to detect by standard intrusion detection systems since they do

not generate any extra network traffic.
Our study focuses on answering the following questions:

• Is it possible to remotely identify whether the installation

of flow rules has been triggered by a given packet?

• What is the accuracy of fingerprinting attacks in SDN

networks?

• What is the impact of the number of switches that need to

be configured on the fingerprinting accuracy?

• What is the impact of the data link bandwidth on the

fingerprinting accuracy?

• Is the fingerprinting accuracy affected by the presence of

software switches in the SDN network?

• How and to which extent can such fingerprinting attacks

be efficiently mitigated?

III. EXPERIMENTAL SETUP

In this section, we detail our experimental setup. This

includes a description of our testbed, the used features, the

conducted experiments, and the collected datasets.

A. Testbed

Our measurement setup is summarized in Figure 1. The test-

bed comprises three OpenFlow hardware switches (three NEC

PF5240 switches [29]) and one OpenFlow software switch (an

OpenVSwitch, version 2.3.1 [32]). The switches are connected to

the data plane over a 100 Mbps data channel. We also consider

the case where the data channel bandwidth increases to 1 Gbps.

Note that, although our testbed only comprises three hardware

switches, it can emulate the processing of packets in many

realistic datacenters. Recall that a conven-tional datacenter’s

network typically consists of three layers of switches: top-of-

rack, aggregation, and core [1]. Packets are

usually processed by at most one switch in each of these

layers, that is, each packet traverses (at most) three hops in the

datacenter’s network. The testbed’s switches interface with a

Floodlight v0.9 controller [12], which runs on a computer

with a 6-core Intel Xeon L5640 2.26 GHz CPU and 24 GB of

RAM. A legacy Ethernet switch bridges the connections

between the OpenFlow switches and the controller. To

emulate realistic network load on the control channel, we limit

the control interface of the switches to 100 Mbps.
The controller is configured to minimize the processing

delay for an incoming packet-in event, i.e., we only require

the controller to perform a table lookup and retrieve pre-

computed forwarding rules in response to packet-in events.

Furthermore, the controller always performs bi-directional

flow installation; that is, the handling of a packet-in event

triggers the installa-tion of a pair of rules, one per flow

direction, at each involved switch. We ensure that the

controller’s CPU is not overloaded during our measurements.
We deploy a cross-traffic generator on an AMD dual core

processor running at 2.5 GHz to emulate realistic WAN traffic

load on the switches’ ports that were used in our study. The

generated cross traffic follows a Pareto distribution with 20

ms mean and 4 ms variance [7].
To analyze the effect of the data link bandwidth on the

fingerprinting accuracy, we bridge our SDN network to the

Internet using 100 Mbps and 1 Gbps links (respectively), by

means of a firewall running on an AMD Athlon dual core

processor 3800+ machine. For the purpose of our

experiments, we collect measurement traces between an Intel

Xeon E3-1230 3.20 GHz CPU server with 16 GB RAM and

20 remote clients deployed across the globe. Table I details

the specifications and locations of the clients used in our

experiments. In our testbed, the server and the software switch

were co-located on the same machine.
Note that, by reducing the time required for rule installation

to a minimum, our testbed emulates a scenario that is partic-

ularly hard for fingerprinting. In Section IV-C, we discuss the

implications of our setup on our findings.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

TABLE I

REMOTE CLIENTS US ED IN OUR EXP ERIMENTS. BANDWIDTHS ARE BAS ED ON ES TIMATES FROM THE CLOUD PROVIDERS

hop i ; that is, τLi =
S

, where S is the size of the packetB
Li

and B
L

i is the capacity of L
i
 . Furthermore, let d

j
refer to

 L
i

the additional delay that is experienced by packet j when

traversing L
i
 . The delay d

j
generally results from additional

 L
i

j due to cross-traffic at hop i . queuing exhibited by packet
To identify a communication event between the switches

and the controller, we rely on two time-based features: packet-

pair dispersion and RTT.
1) Packet-Pair Dispersion: The dispersion between two

packets sent by the client after a link L
i
cs refers to the time

interval between the complete transmission of these packets

on L
i
cs. When measuring the dispersion of a packet pair

traversing an SDN network, two cases emerge.
a) Case 1—Packets do Not Trigger Rule Installation:

Assuming that two probe packets (labeled in the sequel by “1”

and “2”) are sent by the client with an initial dispersion 0, and
that they do not trigger any interaction on the control plane,

then the resulting dispersion measured after a link L
i
cs is

given by [8], [18]:

immediately issues small replies to the packets sent by the
client (e.g., by issuing ACKs), then these packets are unlikely

to queue on the reverse path Psc, and the measured dispersion

between the reply packets will approximately correspond to n

[8]. As shown in [8] and [18], the packet-pair dispersion is a
feature that is relatively stable over time (since it depends on
the bottleneck bandwidth of the path)—assuming moderate
noise traffic crossing the link.

b) Case 2—Packets Trigger Rule Installation: n is typ-
ically in the order of tens of microseconds in current Internet

paths [19]. However, we expect n to increase (e.g., to the
order of few milliseconds) if the probe packet pair triggered
an interaction on the control plane. This is mainly due to the

(relatively slow) handling of a notification by the controller.
1

Namely, when the packet pair triggers an interaction on the
control plane, then:

S

 n

d

2
 min

= (d
2
 i

d

1
 i)

max δ

i
 .

n

=

 Bcs + + − +
L

cs
L

cs
L

cs k k
 min i min 1 ∀

 +
 2 1 Here, δ

i
 refers to the delay introduced by a possible commu-

τ
Lcs

i

+

d

Lcsi

if

τ

Lcs
i

+

d

Lcsi
≥

 (i−1) k

d
1
 i)

i =(i 1)
+

(d
2
 i otherwise. (1) nication between the controller and OpenFlow switch k on the

 − Lcs
− L

cs path between the sender and receiver. Since we assume that

In our setup, the client sends large packet pairs back-to-back the controller installs bi-directional rules on all switches at
once, only the maximum installation delay is accounted (and

in time with an initial dispersion 0 =
S

. These packets are B
L0

is only witnessed when packets traverse Pcs).

 cs

then highly likely to queue at the bottleneck link (the link for
2) Round Trip Times

(RTT): The RTT witnessed by a

which B
cs

 is minimal). Let min be the index of the bottleneck

packet i sent from the client to the server is:

i

link on the internet path Pcs. Following from Equation 1, n
n

m

(measured by the server) is then given by:

RTT i =

(τ j +

d
i
 j)

+
(τ j +

d
i
 j) +

max δ
i
 . (2)

n

S

1

L
cs

L
cs

j 1

L
sc

L
sc ∀ k k

2

2

1

=

=

n =

+
d

Lcsmin +
(d

Lcs
i
−

d
Lcsi

),

Bcs
1

Before any packet is forwarded by the switch, it undergoes the following
 min i min+1

where d
2 =

steps: (i) the packet (or just its header) is transmitted

to the controller;refers to the additional queuing delay that is expe-

(ii) the controller performs a table-lookup in order to invoke the corresponding
Lmin

cs

forwarding rule for the packet; (iii) the decision is transmitted to the involved

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

rienced by the second packet on the bottleneck link. Notice

that in the absence of cross-traffic, n ≈

S switch(es) in the form of a flow table entry; (iv) the switch installs the entry,

Bmin
cs . If the server and, finally, the packet is forwarded by the switch.

Clearly, if no communication between switch k and the con-
troller occurs (e.g., forwarding rules are already installed),

then δk
i
 = 0. Since there might be more than one OpenFlow

switch on Pcs, RTTi depends on the maximum latency
incurred by a switch-controller interaction across all the

OpenFlow switches included in Pcs.
Since the RTT exhibited by packets largely depends on the

geographical location of hosts, and on the underlying network
condition, we measure in our experiments the difference,

δRTT , between the RTT of two probe packets issued by the

same sender, i.e., δRTT = RTT 1 − RTT 2. This feature does

not depend on the location of hosts, but is mainly dominated
by rule installation overhead and network jitter. Namely,
following from Equation 2:

Otherwise, if one of the packets triggers a rule installation,

then |δRTT | 0, since max∀k δk
1
 0 or max∀k δk

2
 0.

C. Data Collection

To collect timing information based on our features, we

deployed 20 remote clients across the globe (cf. Table I) that

exchange UDP-based probe packet trains with the local server.

Notice that we rely on UDP for transmitting packets since

Internet gateways may filter TCP SYN or ICMP packets.

Each probe train consists of:

• A CLEAR packet signaling the start of the measurements.

Upon reception of this packet, the controller deletes all
the entries stored within the flow tables of the OpenFlow

switches in Pcs.

• After one second
2
 since the transmission of the CLEAR

packet, the client transmits four MTU-sized packet pairs.
Here, different packet pairs are sent with an additional
second of separation.

• After one second since the transmission of the last packet

pair, another CLEAR packet is sent to clear all flow tables.

• Two packets separated by one second finally close the

probe train.

We point out that all of our probe packets belong to the

same network flow, i.e., they are crafted with the same packet

header. For each received packet of every train, the local

server issues a short reply (e.g., a 64 bytes ACK). We

maintain a detailed log of the timing information relevant to

the sending and reception of the exchanged probe packets.

When measuring dispersion, we account for out-of-order

packets; this explains negative dispersion values.
For each of our 20 clients, we exchange 450 probe trains on

the paths Pcs and Psc to the server. Half of these probe trains

are exchanged before noon, while the remaining half is
exchanged in the evening. In our measurements, we vary the
number of OpenFlow switches that need to be configured in

reaction to the exchanged probe packets. Namely, we consider

the following four cases where a probe packets triggers the

reconfiguration of some of the OpenFlow switches: (1) one

hardware switch, (2) two hardware switches, (3) three hard-

ware switches, and (4) the software switch. We remark that

the choice of the configured hardware switches in our testbed

(cf. Figure 1) has no impact on the measured features since we

ensure that the remaining hardware switches have already

matching rules installed. Furthermore, we remark that packets

of a probe train only traverse the software switch in case (4),

i.e., when it is configured. In total, our data collection phase

lapsed from April 27, 2015 until October 27,2015, in which

869,201 probe packets were exchanged with our local server

using all clients/configurations, amounting to almost 0.66 GB

of data.

D. Evaluation Metric

We evaluate two hypotheses based on our features: (i) the

first hypothesis states that no rule installation was triggered by

our probe packets and (ii) the second hypothesis corresponds

to the conjecture that a rule was installed in reaction to our

probes. Here, there are two possible errors: false match and

false non-match. In our case, the former is equivalent to a

decision that no rule was installed, while in reality our probes

triggered the installation of a rule. The latter is equivalent to a

decision that a rule was installed, while in reality no rule was

installed. The False Match Rate (FMR) and False Non-match

Rate (FNR) represent the frequencies at which these errors

occur. The Equal Error Rate (EER), which is used as a single

metric for the accuracy of an identification system [13], is the

rate at which FMR and FNR are equal. In the sequel, we use

the EER to evaluate the effectiveness of our features.
We compute the EER as follows. We compute the Prob-

ability Distribution Function (PDF) of the measured values of
our features (across all configurations and clients location) as
described in Sections III-A and III-B. We then separate the

PDFs in two categories: (i) PDF N that contains all

measurements obtained when our probes did not trigger a rule

installation, and (ii) PDFY that contains those measurements

obtained when the probe packets caused a rule installation at k
OpenFlow switches (with k = 1, 2, 3 hardware switches or k =
1 software switch). We then compute the rate of falsely
accepted and falsely rejected hypotheses given a threshold.

The measurements from PDF N that are above this threshold

indicate the number of false rejects (FNR), and measurements

from PDFY that are below the threshold indicate the number

of false accepts (FMR). Recall that the EER is the error rate
where FNR and FMR are equal. The value of the EER-based
threshold is our reference for an accept/reject decision. If the
value of a measurement is smaller than the threshold, then we

conjecture it belongs to PDF N ; otherwise, we conjecture that

it belongs to PDFY .
Note that EER values are between 0% and 100%. An EER

value for a feature close to 50% indicates that our hypotheses
cannot be distinguished from each other for the given feature.

In particular, the value 50% means that PDF N and PDFY for

the given feature completely overlap, and, based on the

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

Fig. 2. Fingerprinting SDN networks (100 Mbps link) using packet-pair dispersions. In our plots, we assume a bin size of 250 µs. (a) k = 3 hardware switches.

(b) k = 2 hardware switches. (c) k = 1 hardware switch. (d) k = 1 software switch.

Fig. 3. Fingerprinting SDN networks (1 Gbps link) using packet-pair dispersions. In our plots, we assume a bin size of 250 µs. (a) k = 3 hardware switches.
(b) k = 2 hardware switches. (c) k = 1 hardware switch. (d) k = 1 software switch.

feature, an adversary cannot distinguish at all whether a packet

triggered a rule installation. Conversely, EER values close to 0%

and 100% indicate that our hypotheses are distinguishable based

on our features, i.e., the fingerprinting accuracy is high.

increases by almost 0.2% for k = 2, 3 hardware switches when

the bandwidth of the data link increases from 100 Mbps to 1

Gbps. In this setting, the EER decreases by 0.5% when k = 1

hardware or software switch.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

IV. EVALUATION RESULTS

In this section, we present and analyze our experimental

results using each of our proposed time-based features.

A. Packet-Pair Dispersion Feature

In Figure 2, we show (i) the PDF of dispersion values for
which none of the packets of a pair triggered any rule

installation at the switches (referred to as PDF N), and (ii) the
PDF of dispersion values for which the probes triggered a rule

installation (referred to as PDFY).
As shown in Figure 3, our results are negligibly affected by

the data link bandwidth. Notably, the EER marginally
C. Summary of Results

Our evaluation results in Figures 2, 3, 4, and 5 show that

fingerprinting attacks on SDN networks are feasible;

in fact, they are already realizable using simple features such as

packet-pair dispersions and RTTs.
More specifically, our findings suggest that, irrespective of

the number of OpenFlow switches that need to be configured in

reaction to a given probe packet, the delay introduced by rule

installation, max∀k δk
i
 , provides an effective distinguisher for

an adversary to identify whether packets are only processed on

the fast data plane, or triggers an interaction with the controller

on the relatively slow software-based control plane. This delay

is clearly distinguishable using the packet-pair dispersion,

which is a stable feature over time, and is little affected by the

size of the network (i.e., by the number of OpenFlow switches

that need to be configured).
Although packet pairs can be easily crafted by an active

adversary, packet pairs might not always be extractable from

existing traffic by a passive adversary. However, a passive

adversary can monitor existing traffic for packets that share a

similar packet header, and are sent apart within a short time

interval (e.g., within 10 minutes).

relative difference between the processing speed of packets at

the data plane, and at the control plane is even more

pronounced. Recall that our testbed was devised to emulate a

scenario that is particularly hard for fingerprinting. That is, the

controller’s CPU was idle most of the time during the

measurements; the controller used pre-computed rules when

issuing forwarding decision and was connected to a small

number of switches (i.e., three); at the time of writing, the

deployed OpenFlow hardware switches are among the fastest in

installing new flow rules; furthermore, we ensured that the

switches’ flow tables were empty when performing the

measurements, obtaining a flow rule installation time in the

order of milliseconds [25], [28]. Hence, it is clear that the

fingerprinting accuracy provided by our features only increases

when the controller is under heavy load, the data plane

bandwidth is larger (e.g., 10 Gbps), or the OpenFlow switches

require longer times to update their flow tables. That is, in these

settings, the difference in latencies between the data and the

control planes will be even more pronounced—which will

further increase the accuracy of fingerprinting.
.

 Our results indicate that our countermeasure considerably
impacts the fingerprinting accuracy of a remote adversary using

the dispersion and δRTT features. More specifically, our

countermeasure increases the EER to almost 40% using the

dispersion feature, and to 33% using the δRTT feature when the

network comprises three hardware switches. Our
countermeasure, however, increases the EER to almost 84%
(using both investigated features) when the network com-prises
a software switch. Recall that the worst attainable fingerprinting
accuracy in this case is when the EER is 50% which signals that

the two distributions P D FY and P D FN completely overlap.

In the case of a software switch, the EER increases to 84%
which means that the adversary has an advantage in

distinguishing P D FY from P D FN , in spite of our

countermeasure. We believe that this discrepancy mainly
originates from the fact that the estimated Generalized-Pareto
distribution does not emulate well delays corresponding to
software switches (cf. Figure 12).

Similarly, we also argue that lower fingerprinting

accuracies can be obtained with our countermeasure if the

delay element is equipped with fine-grained delay

distributions with respect to the different number of

hardware switches that need to be configured in the

network. We validate this hypothesis in a separate

experiment. Here, we assume the delay element is equipped

with best-fit estimates of the distributions of rule

installation delays exhibited by both our features with

respect to the number of switches in the network, and we

measure the corresponding EER witnessed by a remote

adversary in our testbed (cf. Figure 10). Our results in

Figure 13 confirm our hypothesis, and show that when the

delay element is equipped with fine-grained information

about the distributions of rule installation delays in the

network, the EER is closer

to 50%. For example, in this case, the EER increases to

almost 40% using both of our features when the network

comprises a software switch, and is almost 47% when two

hardware switches need to be configured. This shows that our

countermeasure considerably reduces the distinguishing

advantage of a remote adversary, when fine-grained delay

distributions are available to the delay element.

VIII. CONCLUSION

In this paper, we studied the fingerprinting of SDN net-

works by a remote adversary. For that purpose, we collected

measurements from a large number of hosts located across the

globe using a realistic SDN network. Our evaluation shows

that, by leveraging information from the RTT and packet-pair

dispersion of the exchanged packets, fingerprinting attacks on

SDN networks succeed with overwhelming probability. Our

results also suggest that fingerprinting attacks are not

restricted to active adversaries, but can also be mounted by

passive adversaries that capture a snapshot of the traffic

exchanged with the SDN network.
Based on our results, we presented and evaluated a counter-

measure that leverages the switches’ group tables in order to

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 11, March 2017

delay the first few packets of every flow. Our evaluation

results show that our countermeasure considerably reduces the

ability of an adversary to mount fingerprinting attacks against

SDN networks.

ACKNOWLEDGMENTS

This research was partly performed within the 5G-

ENSURE project (www.5GEnsure.eu). The views and

opinions expressed in this paper are those of the authors and

the European Commission is not responsible for any use that

may be made of the information the paper contains.

REFERENCES

[1] M. F. Bari et al., “Data center network virtualization: A survey,” IEEE

Commun. Surv. Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quart., 2013.
[2] R. Bifulco, H. Cui, G. O. Karame, and F. Klaedtke, “Fingerprinting

software-defined networks,” in Proc. 23rd Int. Conf. Netw. Proto-cols
(ICNP), 2015, pp. 453–459.

[3] Christo Ananth, M.Priscilla, B.Nandhini, S.Manju, S.Shafiqa Shalaysha,
“Reconstruction of Objects with VSN”, International Journal of
Advanced Research in Biology, Ecology, Science and Technology
(IJARBEST), Vol. 1, Issue 1, April 2015, pp:17-20

[4] D. Croce, T. En-Najjary, G. Urvoy-Keller, and E. W. Biersack,
“Capacity estimation of ADSL links,” in Proc. 4th ACM Conf. Emerg.
Netw. Experim. Technol. (CoNEXT), 2008, Art. no. 13.

467

