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Abstract— Software-defined networking (SDN) eases network 

management by centralizing the control plane and separating it 
from the data plane. The separation of planes in SDN, however, 
introduces new vulnerabilities in SDN networks, since the 
difference in processing packets at each plane allows an 
adversary to fingerprint the network’s packet-forwarding logic. 
In this paper, we study the feasibility of fingerprinting the 
controller-switch interactions by a remote adversary, whose aim 
is to acquire knowledge about specific flow rules that are 
installed at the switches. This knowledge empowers the 
adversary with a better understanding of the network’s packet-
forwarding logic and exposes the network to a number of threats. 
In this paper, we collect measurements from hosts located across 
the globe using a realistic SDN network comprising of OpenFlow 
hardware and software switches. We show that, by leveraging 
information from the RTT and packet-pair dispersion of the 
exchanged packets, fingerprinting attacks on SDN networks 
succeed with overwhelm-ing probability. We additionally show 
that these attacks are not restricted to active adversaries, but can 
also be mounted by passive adversaries that only monitor traffic 
exchanged with the SDN network. Finally, we discuss the 
implications of these attacks on the security of SDN networks, 
and we present and evaluate an efficient countermeasure to 
strengthen SDN networks against fingerprinting. Our results 
demonstrate the effectiveness of our countermeasure in deterring 
fingerprinting attacks on SDN networks. 
 

Index Terms— Software-defined networking, OpenFlow, 
fingerprinting, security. 

 
I. INTRODUCTION  

SOFTWARE-DEFINED networking (SDN) [14], [27] eases the 

development and deployment of network applications by defining a 
standard interface between the control plane  

and the data plane. In SDN, the control plane is imple-mented 

by a logically centralized controller, which interacts over a bi-

directional communication channel with the data plane’s 

network devices. The controller can query devices for their 

state, e.g., to acquire traffic statistics or information about the 

status of the switches’ ports, and modify their forwarding 

behavior, by installing and deleting flow rules. 
  

 
Network devices can also notify the controller about network 

events (e.g., the reception of certain packets) and device’s state 

changes. For example, a number of advanced reactive control 

plane logic implementations [11], [17], [35], [46] configure 

network devices to send notification to the controller according to 

some installed policy (e.g., when a received packet does not 

match any of the installed flow rules). This notification triggers 

the controller to perform a series of operations, such as installing 

the appropriate forwarding rules at the switches, reserve network 

resources on a given network’s path, etc.  
The separation of the control and data plane in SDN opens 

the doors for a remote adversary to fingerprint the network. In 

particular, whenever packet forwarding is performed in 

hardware, then packets at the data plane are processed several 

orders of magnitude faster than at the software-based control 

plane. This discrepancy acts as a distinguisher for a remote 

adversary to learn whether a given probe packet is handled 

just at the data plane or triggers an interaction between the 

data plane and the control plane. An interaction provides 

evidence that the probe packet does not have any matching 

flow rule stored at the switch’s flow table (or it requires 

special attention from the controller). This knowledge 

empowers an adversary with a better understanding of the 

network’s packet-forwarding logic and, as we outline in this 

work, exposes the network to a number of threats. In spite of 

the plethora of SDN security solutions in the literature [5], 

[15], [33], [39]–[41], no contri-bution analyzes the feasibility 

and realization of fingerprint-ing attacks on practical SDN 

deployments. Moreover, there are no proposed solutions to 

alleviate fingerprinting attacks on SDN.  
In this paper, we address this problem and study the finger-

printing of controller-switch interactions by a remote adversary 

with respect to various network parameters, such as the number 

of hops in the communication path, and the data link bandwidth. 

For that purpose, we collect measurements from 20 different 

hosts located across the globe (Australia, Asia, Europe, and North 

America) using an SDN network compris-ing of several 

OpenFlow hardware and software switches. Our results show 

that, by leveraging information from the packet-pair dispersion of 

the exchanged packets, fingerprinting attacks on SDN networks 

succeed with overwhelming probability. For instance, an 

adversary can correctly identify, with an accuracy of almost 99%, 

whether a probe packet triggers the installation of forwarding 

rules at three hardware switches in our SDN network. 
460 
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We also show that fingerprinting attacks can be mounted by 

passive adversaries that, e.g., capture a snapshot of the traffic 

exchanged with the SDN network. Although existing traffic 

might not contain packet pair traces, our findings show that a 

passive adversary can leverage the RTT of packets (that are 

exchanged within a short time interval) to fingerprint the SDN 

network with an accuracy up to almost 99%. The 

fingerprinting accuracy due to the RTT of packets is, 

however, largely affected by the SDN network size, and 

significantly deteriorates with time. [3] discussed about 

Reconstruction of Objects with VSN. By this object 

reconstruction with feature distribution scheme, efficient 

processing has to be done on the images received from nodes 

to reconstruct the image and respond to user query.  
This work extends our prior work in [2]. For instance, an 

adversary that knows which packets cause an interaction with the 

controller can, e.g., acquire evidence about the occurrence of a 

particular communication event. This enables the adversary to 

understand the logic adopted by the controller in managing the 

SDN network, or to launch Denial-of-Service (DoS) attacks by 

overloading the switches with bogus flow-table updates [22]. In 

light of our findings, we present and evaluate an efficient 

countermeasure to strengthen SDN networks against 

fingerprinting. Our evaluation shows that our countermeasure 

considerably reduces the ability of an adversary to mount 

fingerprinting attacks on SDN networks.  
The remainder of this paper is organized as follows. In 

Section II, we define our problem statement. In Section III, we 

describe our setup, the performed experiments, and sum-

marize the collected data. In Section IV, we present and detail 

our results. In Section V, we analyze the implications of our 

findings on the security of SDN networks. In Section VI, we 

present and evaluate an efficient countermeasure to deter 

fingerprinting in SDN networks. In Section VII, we discuss 

related work, and we conclude the paper in Section VIII. 

 

II. PROBLEM STATEMENT 
 

Before describing the focus of our work, we give a brief 

refresher on OpenFlow, a widely deployed realization of SDN. 

 

A. Background 
 

SDN separates the control and data planes by defining a 

switch’s programming interface and a protocol to access such 

interface, i.e., the OpenFlow protocol [31]. The controller 

leverages the OpenFlow protocol to access the switch’s pro-

gramming interface and configure the forwarding behavior of 

the switch’s data plane. The communication between the 

controller and switches is established using an out-of-band 

control channel. 

 

The core entities exposed by the OpenFlow switch’s pro-

gramming interface are flow tables and flow rules. A flow table 

of a switch is just a container for its flow rules, which define the 

switch’s forwarding behavior. The controller can add, delete, or 

modify flow rules of a switch’s flow table by sending an 

OFPT_FLOW_MOD OpenFlow message to the switch. The 

parameters of an OFPT_FLOW_MOD message specify how the 

flow table of the switch should be modified. A flow rule, for 

instance, provides a semantic like “if a network packet’s IP 

destination address is 1.2.3.4, then forward the packet to port 2.” 

In general, a flow rule contains a match set that defines the 

network packets to which the rule applies. It further contains an 

action set that defines the actions that should be applied to such 

packets, for example, forward to port 2. Whenever a packet is 

received by a switch, the packet’s header is used as a search key 

to retrieve the rule that applies to the packet, by performing a 

lookup in the flow table. The lookup operation compares the 

packet’s header with the rules’ match set to find the rule that 

matches the packet. Rules are prioritized in case multiple rules 

match. For the cases in which the controller needs to inspect a 

network packet, before performing a forwarding decision and 

installing the corresponding forwarding rules, OpenFlow defines 

a special “forward to controller” action. When this action is 

applied to a packet, the switch generates an OFPT_PACKET_IN 

message that is sent to the controller. This message contains the 

original packet and some additional information, such as the 

switch and the port ID onto which the packet was received. 

 

The OFPT_PACKET_IN feature is used in basic network 

control logic implementations, such as the one of an Ethernet 

learning switch. It is also used in more complex dynamic con-trol 

plane implementations. In both cases, the network operates as 

follows: a packet received by the switch generates an 

OFPT_PACKET_IN message; the controller receives and ana-

lyzes the message to take a forwarding decision; the decision is 

finally implemented by sending OFPT_FLOW_MOD messages, 

which install rules at the relevant switches. This ensures that all 

similar packets, i.e., those that belong to the same network flow, 

are forwarded directly by the switches with no further 

interactions with the controller. Note that the controller can use 

barrier messages to ensure that message dependencies are met, 

e.g., when multiple switches are reconfigured by the controller 

for handling a new network flow. When a switch receives a 

barrier request (OFPT_BARRIER_REQUEST), the switch must 

finish all previously received messages before processing new 

messages. After processing all messages, it notifies the controller 

by sending a barrier reply message (OFPT_BARRIER_REPLY). 

 
B. Problem Statement 
 

The main objective of our work is to study the ability of a 

remote adversary to identify whether an interaction between 

the controller and the switches (and a subsequent rule 

installation) has been triggered by a given packet. 
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Fig. 1. Sketch of our measurement setup. Our testbed comprises three NEC PF5240 OpenFlow hardware switches and one OpenVSwitch (version 2.3.1). 

 
then this suggests that the received packet requires further 

examination by the controller, e.g., since it does not have any 

matching entry stored at the switch’s flow table, or because 

the controller requires additional information before installing 

a forwarding decision at the switches.  
In our study, we consider both active and passive adver-

saries. We assume that an active adversary can compromise a 

remote client, inject probe packets of her choice, and capture 

the timing of the corresponding responses issued by a server. 

In contrast, a passive adversary cannot inject packets in the 

network but only monitors the exchanged traffic between the 

server and the client. Notice that passive adversaries are hard 

to detect by standard intrusion detection systems since they do 

not generate any extra network traffic.  
Our study focuses on answering the following questions: 

 
• Is it possible to remotely identify whether the installation 

of flow rules has been triggered by a given packet?  

• What is the accuracy of fingerprinting attacks in SDN 

networks?  

• What is the impact of the number of switches that need to 

be configured on the fingerprinting accuracy?  

• What is the impact of the data link bandwidth on the 

fingerprinting accuracy?  

• Is the fingerprinting accuracy affected by the presence of 

software switches in the SDN network?  

• How and to which extent can such fingerprinting attacks 

be efficiently mitigated? 

 
III. EXPERIMENTAL SETUP 

 
In this section, we detail our experimental setup. This 

includes a description of our testbed, the used features, the 

conducted experiments, and the collected datasets. 

 
A. Testbed 
 

Our measurement setup is summarized in Figure 1. The test-

bed comprises three OpenFlow hardware switches (three NEC 

PF5240 switches [29]) and one OpenFlow software switch (an 

OpenVSwitch, version 2.3.1 [32]). The switches are connected to 

the data plane over a 100 Mbps data channel. We also consider 

the case where the data channel bandwidth increases to 1 Gbps. 

Note that, although our testbed only comprises three hardware 

switches, it can emulate the processing of packets in many 

realistic datacenters. Recall that a conven-tional datacenter’s 

network typically consists of three layers of switches: top-of-

rack, aggregation, and core [1]. Packets are 

 

 

usually processed by at most one switch in each of these 

layers, that is, each packet traverses (at most) three hops in the 

datacenter’s network. The testbed’s switches interface with a 

Floodlight v0.9 controller [12], which runs on a computer 

with a 6-core Intel Xeon L5640 2.26 GHz CPU and 24 GB of 

RAM. A legacy Ethernet switch bridges the connections 

between the OpenFlow switches and the controller. To 

emulate realistic network load on the control channel, we limit 

the control interface of the switches to 100 Mbps.  
The controller is configured to minimize the processing 

delay for an incoming packet-in event, i.e., we only require 

the controller to perform a table lookup and retrieve pre-

computed forwarding rules in response to packet-in events. 

Furthermore, the controller always performs bi-directional 

flow installation; that is, the handling of a packet-in event 

triggers the installa-tion of a pair of rules, one per flow 

direction, at each involved switch. We ensure that the 

controller’s CPU is not overloaded during our measurements.  
We deploy a cross-traffic generator on an AMD dual core 

processor running at 2.5 GHz to emulate realistic WAN traffic 

load on the switches’ ports that were used in our study. The 

generated cross traffic follows a Pareto distribution with 20 

ms mean and 4 ms variance [7].  
To analyze the effect of the data link bandwidth on the 

fingerprinting accuracy, we bridge our SDN network to the 

Internet using 100 Mbps and 1 Gbps links (respectively), by 

means of a firewall running on an AMD Athlon dual core 

processor 3800+ machine. For the purpose of our 

experiments, we collect measurement traces between an Intel 

Xeon E3-1230 3.20 GHz CPU server with 16 GB RAM and 

20 remote clients deployed across the globe. Table I details 

the specifications and locations of the clients used in our 

experiments. In our testbed, the server and the software switch 

were co-located on the same machine.  
Note that, by reducing the time required for rule installation 

to a minimum, our testbed emulates a scenario that is partic-

ularly hard for fingerprinting. In Section IV-C, we discuss the 

implications of our setup on our findings. 
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TABLE I  

REMOTE CLIENTS US ED IN OUR EXP ERIMENTS. BANDWIDTHS ARE BAS ED ON ES TIMATES FROM THE CLOUD PROVIDERS 
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    L
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j due to cross-traffic at hop i . queuing exhibited by packet 
To identify a communication event between the switches 

and the controller, we rely on two time-based features: packet-

pair dispersion and RTT.  
1) Packet-Pair Dispersion: The dispersion between two 

packets sent by the client after a link L
i
cs refers to the time 

interval between the complete transmission of these packets 

on L
i
cs. When measuring the dispersion of a packet pair 

traversing an SDN network, two cases emerge.  
a) Case 1—Packets  do  Not  Trigger  Rule  Installation:  

Assuming that two probe packets (labeled in the sequel by “1” 

and “2”) are sent by the client with an initial dispersion 0, and 
that they do not trigger any interaction on the control plane, 

then the resulting dispersion measured after a link L
i
cs is 

given by [8], [18]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

immediately issues small replies to the packets sent by the 
client (e.g., by issuing ACKs), then these packets are unlikely 

to queue on the reverse path Psc, and the measured dispersion 

between the reply packets will approximately correspond to n 

[8]. As shown in [8] and [18], the packet-pair dispersion is a 
feature that is relatively stable over time (since it depends on 
the bottleneck bandwidth of the path)—assuming moderate 
noise traffic crossing the link.  

b) Case 2—Packets Trigger Rule Installation: n is typ-
ically in the order of tens of microseconds in current Internet 

paths [19]. However, we expect n to increase (e.g., to the 
order of few milliseconds) if the probe packet pair triggered 
an interaction on the control plane. This is mainly due to the 

(relatively slow) handling of a notification by the controller.
1
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Before any packet is forwarded by the switch, it undergoes the following
  min  i min+1   

where d
2      =   

steps: (i) the packet (or just its header) is transmitted 
 

to the controller;refers to the additional queuing delay that is expe-  

(ii) the controller performs a table-lookup in order to invoke the corresponding 
Lmin           

cs           

forwarding rule for the packet; (iii) the decision is transmitted to the involved 
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rienced by the second packet on the bottleneck link. Notice 

that in the absence of cross-traffic,   n  ≈ 

S switch(es) in the form of a flow table entry; (iv) the switch installs the entry, 

Bmin
cs . If the server and, finally, the packet is forwarded by the switch.        

 

Clearly, if no communication between switch k and the con-
troller occurs (e.g., forwarding rules are already installed), 

then δk
i
 = 0. Since there might be more than one OpenFlow 

switch on Pcs, RTTi depends on the maximum latency 
incurred by a switch-controller interaction across all the 

OpenFlow switches included in Pcs.  
Since the RTT exhibited by packets largely depends on the 

geographical location of hosts, and on the underlying network 
condition, we measure in our experiments the difference, 

δRTT , between the RTT of two probe packets issued by the 

same sender, i.e., δRTT = RTT 1 − RTT 2. This feature does 

not depend on the location of hosts, but is mainly dominated 
by rule installation overhead and network jitter. Namely, 
following from Equation 2: 
 

Otherwise, if one of the packets triggers a rule installation, 

then |δRTT | 0, since max∀k δk
1
 0 or max∀k δk

2
 0. 

 
C. Data Collection 
 

To collect timing information based on our features, we 

deployed 20 remote clients across the globe (cf. Table I) that 

exchange UDP-based probe packet trains with the local server. 

Notice that we rely on UDP for transmitting packets since 

Internet gateways may filter TCP SYN or ICMP packets. 

Each probe train consists of: 
 

• A CLEAR packet signaling the start of the measurements. 

Upon reception of this packet, the controller deletes all  
the entries stored within the flow tables of the OpenFlow 

switches in Pcs.  

• After one second
2
 since the transmission of the CLEAR 

packet, the client transmits four MTU-sized packet pairs. 
Here, different packet pairs are sent with an additional 
second of separation.  

• After one second since the transmission of the last packet 

pair, another CLEAR packet is sent to clear all flow tables.  

• Two packets separated by one second finally close the 

probe train. 
 

We point out that all of our probe packets belong to the 

same network flow, i.e., they are crafted with the same packet 

header. For each received packet of every train, the local 

server issues a short reply (e.g., a 64 bytes ACK). We 

maintain a detailed log of the timing information relevant to 

the sending and reception of the exchanged probe packets. 

When measuring dispersion, we account for out-of-order 

packets; this explains negative dispersion values.  
For each of our 20 clients, we exchange 450 probe trains on 

the paths Pcs and Psc to the server. Half of these probe trains 

are exchanged before noon, while the remaining half is 
exchanged in the evening. In our measurements, we vary the 
number of OpenFlow switches that need to be configured in 

reaction to the exchanged probe packets. Namely, we consider 

the following four cases where a probe packets triggers the 

reconfiguration of some of the OpenFlow switches: (1) one 

hardware switch, (2) two hardware switches, (3) three hard-

ware switches, and (4) the software switch. We remark that 

the choice of the configured hardware switches in our testbed 

(cf. Figure 1) has no impact on the measured features since we 

ensure that the remaining hardware switches have already 

matching rules installed. Furthermore, we remark that packets 

of a probe train only traverse the software switch in case (4), 

i.e., when it is configured. In total, our data collection phase 

lapsed from April 27, 2015 until October 27,2015, in which 

869,201 probe packets were exchanged with our local server 

using all clients/configurations, amounting to almost 0.66 GB 

of data. 
 
 
D. Evaluation Metric 
 

We evaluate two hypotheses based on our features: (i) the 

first hypothesis states that no rule installation was triggered by 

our probe packets and (ii) the second hypothesis corresponds 

to the conjecture that a rule was installed in reaction to our 

probes. Here, there are two possible errors: false match and 

false non-match. In our case, the former is equivalent to a 

decision that no rule was installed, while in reality our probes 

triggered the installation of a rule. The latter is equivalent to a 

decision that a rule was installed, while in reality no rule was 

installed. The False Match Rate (FMR) and False Non-match 

Rate (FNR) represent the frequencies at which these errors 

occur. The Equal Error Rate (EER), which is used as a single 

metric for the accuracy of an identification system [13], is the 

rate at which FMR and FNR are equal. In the sequel, we use 

the EER to evaluate the effectiveness of our features.  
We compute the EER as follows. We compute the Prob-

ability Distribution Function (PDF) of the measured values of 
our features (across all configurations and clients location) as 
described in Sections III-A and III-B. We then separate the 

PDFs in two categories: (i) PDF N that contains all 

measurements obtained when our probes did not trigger a rule 

installation, and (ii) PDFY that contains those measurements 

obtained when the probe packets caused a rule installation at k 
OpenFlow switches (with k = 1, 2, 3 hardware switches or k = 
1 software switch). We then compute the rate of falsely 
accepted and falsely rejected hypotheses given a threshold. 

The measurements from PDF N that are above this threshold 

indicate the number of false rejects (FNR), and measurements 

from PDFY that are below the threshold indicate the number 

of false accepts (FMR). Recall that the EER is the error rate 
where FNR and FMR are equal. The value of the EER-based 
threshold is our reference for an accept/reject decision. If the 
value of a measurement is smaller than the threshold, then we 

conjecture it belongs to PDF N ; otherwise, we conjecture that 

it belongs to PDFY .  
Note that EER values are between 0% and 100%. An EER 

value for a feature close to 50% indicates that our hypotheses 
cannot be distinguished from each other for the given feature. 

In particular, the value 50% means that PDF N and PDFY for 

the given feature completely overlap, and, based on the 
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Fig. 2. Fingerprinting SDN networks (100 Mbps link) using packet-pair dispersions. In our plots, we assume a bin size of 250 µs. (a) k = 3 hardware switches. 

(b) k = 2 hardware switches. (c) k = 1 hardware switch. (d) k = 1 software switch. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Fingerprinting SDN networks (1 Gbps link) using packet-pair dispersions. In our plots, we assume a bin size of 250 µs. (a) k = 3 hardware switches.  
(b) k = 2 hardware switches. (c) k = 1 hardware switch. (d) k = 1 software switch. 

 

 
feature, an adversary cannot distinguish at all whether a packet 

triggered a rule installation. Conversely, EER values close to 0% 

and 100% indicate that our hypotheses are distinguishable based 

on our features, i.e., the fingerprinting accuracy is high. 

 

 

increases by almost 0.2% for k = 2, 3 hardware switches when 

the bandwidth of the data link increases from 100 Mbps to 1 

Gbps. In this setting, the EER decreases by 0.5% when k = 1 

hardware or software switch. 
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IV. EVALUATION RESULTS 
 

In this section, we present and analyze our experimental 

results using each of our proposed time-based features. 

 

A. Packet-Pair Dispersion Feature 
 

In Figure 2, we show (i) the PDF of dispersion values for 
which none of the packets of a pair triggered any rule 

installation at the switches (referred to as PDF N ), and (ii) the 
PDF of dispersion values for which the probes triggered a rule 

installation (referred to as PDFY ).   
As shown in Figure 3, our results are negligibly affected by 

the data link bandwidth. Notably, the EER marginally  
C. Summary of Results 
 

Our evaluation results in Figures 2, 3, 4, and 5 show that 

fingerprinting attacks on SDN networks are feasible; 

in fact, they are already realizable using simple features such as 

packet-pair dispersions and RTTs.  
More specifically, our findings suggest that, irrespective of 

the number of OpenFlow switches that need to be configured in 

reaction to a given probe packet, the delay introduced by rule 

installation, max∀k δk
i
 , provides an effective distinguisher for 

an adversary to identify whether packets are only processed on 

the fast data plane, or triggers an interaction with the controller 

on the relatively slow software-based control plane. This delay 

is clearly distinguishable using the packet-pair dispersion, 

which is a stable feature over time, and is little affected by the 

size of the network (i.e., by the number of OpenFlow switches 

that need to be configured).  
Although packet pairs can be easily crafted by an active 

adversary, packet pairs might not always be extractable from 

existing traffic by a passive adversary. However, a passive 

adversary can monitor existing traffic for packets that share a 

similar packet header, and are sent apart within a short time 

interval (e.g., within 10 minutes). 

relative difference between the processing speed of packets at 

the data plane, and at the control plane is even more 

pronounced. Recall that our testbed was devised to emulate a 

scenario that is particularly hard for fingerprinting. That is, the 

controller’s CPU was idle most of the time during the 

measurements; the controller used pre-computed rules when 

issuing forwarding decision and was connected to a small 

number of switches (i.e., three); at the time of writing, the 

deployed OpenFlow hardware switches are among the fastest in 

installing new flow rules; furthermore, we ensured that the 

switches’ flow tables were empty when performing the 

measurements, obtaining a flow rule installation time in the 

order of milliseconds [25], [28]. Hence, it is clear that the 

fingerprinting accuracy provided by our features only increases 

when the controller is under heavy load, the data plane 

bandwidth is larger (e.g., 10 Gbps), or the OpenFlow switches 

require longer times to update their flow tables. That is, in these 

settings, the difference in latencies between the data and the 

control planes will be even more pronounced—which will 

further increase the accuracy of fingerprinting.  
. 

                     Our results indicate that our countermeasure considerably                                           
impacts the fingerprinting accuracy of a remote adversary using 

the dispersion and δRTT features. More specifically, our 

countermeasure increases the EER to almost 40% using the 

dispersion feature, and to 33% using the δRTT feature when the 

network comprises three hardware switches. Our 
countermeasure, however, increases the EER to almost 84% 
(using both investigated features) when the network com-prises 
a software switch. Recall that the worst attainable fingerprinting 
accuracy in this case is when the EER is 50% which signals that 

the two distributions P D FY and P D FN completely overlap. 

In the case of a software switch, the EER increases to 84% 
which means that the adversary has an advantage in 

distinguishing P D FY from P D FN , in spite of our 

countermeasure. We believe that this discrepancy mainly 
originates from the fact that the estimated Generalized-Pareto 
distribution does not emulate well delays corresponding to 
software switches (cf. Figure 12).  

Similarly, we also argue that lower fingerprinting 

accuracies can be obtained with our countermeasure if the 

delay element is equipped with fine-grained delay 

distributions with respect to the different number of 

hardware switches that need to be configured in the 

network. We validate this hypothesis in a separate 

experiment. Here, we assume the delay element is equipped 

with best-fit estimates of the distributions of rule 

installation delays exhibited by both our features with 

respect to the number of switches in the network, and we 

measure the corresponding EER witnessed by a remote 

adversary in our testbed (cf. Figure 10). Our results in 

Figure 13 confirm our hypothesis, and show that when the 

delay element is equipped with fine-grained information 

about the distributions of rule installation delays in the 

network, the EER is closer 

to 50%. For example, in this case, the EER increases to 

almost 40% using both of our features when the network 

comprises a software switch, and is almost 47% when two 

hardware switches need to be configured. This shows that our 

countermeasure considerably reduces the distinguishing 

advantage of a remote adversary, when fine-grained delay 

distributions are available to the delay element. 

VIII. CONCLUSION 
 

In this paper, we studied the fingerprinting of SDN net-

works by a remote adversary. For that purpose, we collected 

measurements from a large number of hosts located across the 

globe using a realistic SDN network. Our evaluation shows 

that, by leveraging information from the RTT and packet-pair 

dispersion of the exchanged packets, fingerprinting attacks on 

SDN networks succeed with overwhelming probability. Our 

results also suggest that fingerprinting attacks are not 

restricted to active adversaries, but can also be mounted by 

passive adversaries that capture a snapshot of the traffic 

exchanged with the SDN network.  
Based on our results, we presented and evaluated a counter-

measure that leverages the switches’ group tables in order to 
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delay the first few packets of every flow. Our evaluation 

results show that our countermeasure considerably reduces the 

ability of an adversary to mount fingerprinting attacks against 

SDN networks. 
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