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Abstract -To protect outsourced data in cloud 

storage against corruptions, enabling integrity 

protection, fault tolerance, and efficient recovery for 

cloud storage becomes critical. Regenerating codes 

provide fault tolerance by striping data across multiple 

servers, while using less repair traffic than traditional 

erasure codes during failure recovery. We design and 

implement a practical data integrity protection (DIP) 

scheme for a specific regenerating code, while 

preserving theintrinsic properties of fault tolerance and 

repair traffic saving. Our DIP scheme is designed under 

a Byzantine adversarial model, and enables a client to 

feasibly verify the integrity of random subsets of 

outsourced data 

againstgeneralormaliciouscorruptions.Itworksunder the 

simple assumption of thin-cloud storage and allows 

different parameters to be fine-tuned for the 

performance-security trade-off. We implement and 

evaluate the overhead of our DIP scheme in a real cloud 

storage tested under different parameter choices. The 

project tend to style and implement a sensible 

information of Data responsibleness security (DRS). To 

tendmoreanalyzethesafetystrengthsofourDRStheme via 

mathematical models. To show that remote integrity 

checking are often presumably incorporated into make 

codes in sensibleoperation. 
 

Index Terms—remote data checking, secure and trusted 

storage systems, implementation, experimentation 

 

 

I.INTRODUCTION 
 

Cloud storage offers an on-demand data 

outsourcing service model, and is gaining popularity 

due to its elasticity and low maintenance cost. 

However, security concerns arise when data storageis 

outsourced to third-party cloud storage providers. It is 

desirable to enable cloud clients to verify the integrity 

oftheiroutsourceddatainthecloud.Onemajoruseof 

cloud storage is long-term archival, which represents 

a workload that is written once and rarely read. While 

the stored data is rarely read, it remains necessary to 

ensureitsintegrityfordisasterrecoveryorcompliance 

with legal requirements. Whole file checking in 2 

processProofofretrievability(POR)andproofofdata 

possession  (PDP).  Integrity  of  a  large  fileby spot- 

checking only a fraction of the file via various 

cryptographic primitives. 

Suppose that we outsource storage to a 

server,whichcouldbeastoragesiteoracloudstorage 

provider. If we detect corruptions in our outsourced 

data (e.g., when a server crashes or is 

compromised).Then we should repair the corrupted 

dataandrestoretheoriginaldata.However,puttingall 

data in a single server is susceptible to the single- 

point-of-failure problem and vendor lock-ins. As 

suggestedinaplausiblesolutionistostripedataacross 

multipleservers.Thus,torepairafailedserver,wecan 

(i) read data from other surviving servers, (ii) 

reconstruct the corrupted data of the failed server,and 

(iii) write the reconstructed data to a new server.POR 

and PDP are proposed for the single-server case (e.g., 

Reed-Solomoncodes). 

Regenerating codes have recently been 

proposed to minimize repair traffic (i.e., the amount 

ofdatabeingreadfromsurvivingservers).Inessence, 

theyachievethisbynotreadingandreconstructingthe 

wholefileduringrepairasintraditionalerasurecodes, but 

instead reading a set of chunks smaller than the 

original file from other surviving servers and 

reconstructingonlythelost(orcorrupted)datachunks. 

An open question is, can we enable integrity checks 

atop regenerating codes, while preserving the repair 

traffic saving over traditional erasure codes? A 

related approach is HAIL, which applies integrity 

protection for erasure codes. It constructs protection 

data on a per-file basis and distributes the protection 

data across different servers. To repair any lost 

protection data in the presence of a server failure, one 

needs to access the whole file, and this violates the 

design of regenerating codes. Thus, we need a 

different design of integrity checking tailored for 

regeneratingcodes. 

The design and implementation of apractical 

data integrity protection (DIP) scheme for 

regenerating-coding-based cloud storage. We 

augment the implementation of the functional 

minimum storage regenerating (FMSR) code and 

construct FMSR-DIP, a code that allows clients to 

remotely verify the integrity of random subsets of 

long-term archival data under a multi-server  setting. 
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FMSR-DIP aims to achieve several design 

features. First, it preserves fault tolerance and repair 

traffic saving as in FMSR. Second, it assumes only 

the thin- cloud interface, i.e., the servers only need to 

support the standard read/write functionalities. Third, 

it exportsseveraltunableparametersthatallowclientsto 

trade performance for security. There are used VII 

sections. 

 
 

II. EXISTING SYSTEM 
 

Design and implement a practical Data 

Integrity Protection (DIP) scheme for regenerating 

coding-based cloud storage. FMSR-DIP codes 

preserve fault tolerance and repair traffic saving as 

in FMSR codes. . This adds to the portability of 

FMSRDIP codes and allows simple deployment in 

general types of storage services. By combining 

integrity checking and efficient recovery, FMSR- 

DIP codes provide a low-cost solution for 

maintaining data availability in cloud storage. In 

summary, we make the following contributions. 

� These schemes can only provide the 

detection of corrupteddata. 

� It does not recover the originaldata. 

� Clientscannotgetthedatawhenthedata 

loss occurred in theserver. 

� Time consumption for find the original 

data is veryhigh. 

 

III. PROPOSEDSYSTEM 

 
 
 

The proposed technique is based on DRS theme uses 

solely the place and acquire info to work with every 

server. Our thin-cloud setting permits our DRS theme 

tobeconvenienttogeneralstylesofstorageprocedure or 

services, since no execution changes area unit needed 

on the storage backend. It differs from different 

“thick-”cloud-storage services wherever servers have 

machine capabilities and area unit capable of 

aggregating the proofs of multiple checks. 

Additionally, to cut back the native storage load, we 

are able to encipher all file keys with a passkey, and 

source the storage of the encrypted keys to the cloud. 

Transfer the code chunks from another server. A last 

various is to transfer the code chunks from all n 

servers.Wetendtocheckallrowsofthechunksas 

wellastheirAECCparities.Therowswithasetofthe bytes 

obvious correct is improved with FMSR codes; the 

rows with all bytes obvious corrupted area unit 

treated as erasures and can be corrected withAECC. 

� It provides a low-cost solution for maintaining 

data present in the cloudstorage. 

� Time for checking the data integrity in cloud is 

verylow. 

� The security is analyzed by the mathematical 

model. 

� Clients can get the data from the server in a fast 

manner. 

 

 

IV. RELATEDWORK 

 

We consider the problem of checking the 

integrity of static data, which is typical in long-term 

archival storage systems. This problem is first 

consideredunderasingleserverscenariobyJulesetal and 

Ateniese et al, giving rise to the similar notions proof 

of retrievability(POR) and proof of data 

possession(PDP),respectively.Errorcorrectingcodes 

arealsoincludedinthestoredfiletoallowrecoveryof a 

small amount of errors within a file. The client to 

keep a small amount of metadata. The client can then 

challengetheserveragainstasetofrandomfileblocks to 

see if the server returns the proofs that match the 

metadata on the client side. The client can then 

challengetheserveragainstasetofrandomfileblocks to 

see if the server returns the proofs that match the 

metadata on the client side. A major limitation of the 

above schemes is that they are designed for a single 

server setting. If the server is fully controlled by an 

adversary, then the above schemes can only provide 

detection of corrupted data, but cannot recover the 

originaldata.WepointoutthatalthoughWebelievea 

better solution is possible by exploiting the cross- 

server redundancies in a multiple-server setting. 

Second, the storage scheme of assumes that storage 

servers have the encoding capabilities of generating a 

random linear combination of the data, while we 

consider a thin-cloud setting where servers only need 

to support standard read/write functionalities. Multi- 

server (or multi-cloud) storage has been proposed and 

implemented to protect against data loss and mitigate 

vendorlock-ins. 
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V. PRELIMINARIES 
 

It Provide background details. We state the 

threat model and the cryptographic primitives being 

used in our DIP scheme. 

 

A.FMSR Implementation 

 

We first review the FMSR implementation. 

FMSR belongs to Maximum Distance Separable 

(MDS) codes. An MDS code is defined by the 

parameters (n, k), where k < n. It encodes a file F of 

size |F| into n pieces of size |F|/k each. An (n,k)-MDS 

code states that the original file can be reconstructed 

from any k out of n pieces (i.e., the total size of data 

required is |F|). An extra feature of FMSR is that a 

specific piece can be reconstructed from data of size 

less than |F|. FMSR is built on regenerating codes, 

whichminimizetherepairbandwidthwhilepreserving 

the MDS property based on the concept of network 

coding. We consider a distributed storage setting in 

which a file is striped over n servers using an (n, k)- 

MDScode.Eachservercanbeastoragesiteorevena cloud 

storage provider, and is independent of other servers. 

Suppose that one server fails. To guarantee that the 

MDS fault tolerance is preserved after multiple 

rounds of repair, NC Cloud performs two- phase 

checking on the new code chunks generated in the 

repair operation. In the case of (4,2)-FMSR the repair 

traffic is reduced by 25% to 0.75|F|. To access part of 

a file, the client needs to download anddecode 

theentirefile,andthisisnotsuitedtoapplicationsthat need 

random reads of different parts of a file. 

Nevertheless, FMSR is suited to long-term archival 

applications,wherethereadfrequencyislowandeach 

read operation typically restores the entire file. . We 

define the repair traffic as the amount of data being 

read from other surviving servers so as to reconstruct 

the lostdata. 

 

B. Threat Model 

 

We adopt the adversarial model in as our threat 

model. We assume that an adversary is mobile 

Byzantine, meaning that the adversary compromises a 

subsetofserversindifferenttimeepochs(i.e.,mobile) and 

exhibits arbitrary behaviors on the data stored in the 

compromised servers (i.e., Byzantine). To ensure 

meaningful file availability, we assume that the 

adversary can compromise and corrupt data in atmost 

n – k out of the n servers in any epoch, subject to the 

(n, k)-MDS fault tolerance requirement. At the end of 

each epoch, the client can ask for randomly chosen 

parts of remotely stored data and run a probabilistic 

checking protocol to verify the data integrity. 

Intuitively,   it   means   that   it   is   computationally 

infeasible for an adversary to break the security of a 

primitive without knowing its corresponding secret 

key. We also need a systematic adversarial error- 

correcting code (AECC) to protect against the 

corruptionofachunk.Inconventionalerror-correcting 

codes (ECC), when a large file is encoded, it is first 

broken down into smaller stripes to which ECC is 

applied independently. AECC uses a family of PRPs 

asabuildingblocktorandomizethestripestructureso 

thatitiscomputationallyinfeasibleforanadversaryto 

target and corrupt any particular stripe. Note that both 

FMSR and AECC provide fault tolerance. The 

difference is that FMSR applies to a file that isstriped 

across servers, while AECC applies to a single chunk 

stored within aserver. 

 

VI. DESIGN 

 

We now present our design of DIP atop the 

FMSR code, and we call the new code FMSR-DIP. 

Our DIP scheme operates on the FMSR code chunks 

generated by NC Cloud [22], which is deployed as a 

client-side proxy that stripes data among multiple 

servers. 

 

A. Design Goals 

 

We first state the design goals of    FMSR- 

DIP. 

 

Preservation of regenerating code 
properties: We preserve the fault tolerance 

requirement and repair traffic saving of FMSR (with 
up to a small constant overhead) as compared to the 

conventional repair method in erasure codes 

Thin-cloud storage: Each server (or cloud 

storage provider) only provides the basic interface for 

clients to read and write their stored files. No 

computation capabilities on the servers are requiredto 

support our DIP scheme. Cloud storage servers with 

encoding capabilities can be achieved by combining 

these two services, with the additional expense of 

renting the computation service. However, this 

approachreducesportabilityandintroducesacomplex 

costmodel. 

 

Flexibility:Thereshouldnotbeanylimitson the 

number of possible challenges that the client can 

make, since files can be kept for long-term archival. 

Also, the challenge size should be adjustable with 

differentparameterchoices,andthisisusefulwhenwe 

want to lower the detection rate when the stored data 

growslessimportantovertime.Suchflexibilityshould 

come without any additionalpenalties. 
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Cost minimization: The cloud 

storage usage fee is mainly charged based on the 

storage space, transfer bandwidth, and number of 

requests. To 

minimizethestoragespaceandtransferbandwidth,we 

useAECC(whichisalsoanMDScode).Inparticular, the 

storage overhead of FMSR-DIP should come only 

from the AECC applied to each code chunk. Also, to 

reduce the number of requests while beingcompatible 

with the thin-cloud setting, we seek to reduce the 

numberofchallenge/responsepairsbetweentheclient 

and theservers. 

A .Notation 

 

We now define notation for FMSR-DIP, 

based on FMSR described in Section III-A. For an (n, 

k)-FMSR code, we define 

{_ij}1_i_n(n−k),1_j_k(n−k) as the set of encoding 

coefficients    that    encode    k(n−k)    native  chunks 

{Fj}1_j_k(n−k)    into    n(n    −    k)    code    chunks 

{Pi}1_i_n(n−k). Thus, each code chunk Pi is formed 

by Pi = Pk(n−k) j=1 _ijFj . We define a row as a 

collection of all bytes that are at the same offset of all 

FMSR-DIP-encoded chunks. That is, the rth row 

corresponds to the bytes {P0 ir}1_i_n(n−k). 

 

C. Overview ofFMSR-DIP 

 

Our goal is to augment the basic file operations 

Upload, Download, and Repair of NC Cloud with the 

DIP feature. During Upload, FMSR-DIP expands the 

code chunk size by a factor of n0/k0 from the AECC. 

UnlikeHAIL,whichappliesDIPtothewholefile,we 

applyDIPtoeachFMSRcodechunkgeneratedbyNC 

Cloud. Thus, when NC Cloud reconstructs new code 

chunks during the repair of a failed server, we can 

directly apply DIP to the new code chunks without 

accessing the whole file. This preserves the property 

of repair traffic saving of FMSR. We describe the 

detailsoftheoperationsbelowtoexplainhowourDIP 

schemeworks. 

 

D. BasicOperations 

 

In the following discussion, we assume that 

FMSR-DIP operates in units of bytes. In Section V-C, 

we discuss how we relax this assumption to trade 

security for performance. 

Upload operation. We first describe how we upload a 

file F to servers using FMSR-DIP. 

Step 1: Generate the per-file secrets. 

Step 2: Encode the file using FMSR. 

Step3:EncodeeachcodechunkwithFMSR- 

DIP. 

Step 4: Update the metadata file and upload. 

Check operation: In the Check operation, we verify 

randomly chosen rows of bytes based on the FMSR 

code chunks generated by NC Cloud. 

Step 1: Check the metadata file. 

Step 2: Sampling and row verification. 

Step 3: Error localization. 

Step 4: Trigger repair 

 

Download operation: We now describe how we 

download a file F from servers. 

Step 1: Check the metadata file. 

Step 2: Download and decode the FMSR- 

DIP-encoded chunks for file F. 

 

Repair operation: If some server fails then we trigger 

the repair operation via NCCloud as follows. 

Step 1: Check the metadata file. 

Step 2: Download and decode the needed 

chunks. 

Step 3: Encode, update metadata, and upload. 

 

 
VII. IMPLEMENTATION 

 

FMSR-DIP implementation atop NC Cloud and 

how we instantiate cryptographic primitives. Also,we 

addresshowwefine-tunevariousdesignparametersto 

trade security forperformance. 

A. Integration of DIP into NCCloud 

We implement a standalone DIP module and a 

storage interface module, and integrate them with NC 

Cloud .In the Upload operation, NC Cloud generates 

code chunks for a file based on FMSR. The code 

chunks will be temporarily stored in the local file 

system instead of being uploaded to the servers. The 

DIP module then reads the FMSR code chunks from 

the local file system, encodes them with DIP, and 

passes the resulting FMSR-DIP code chunks to the 

storage interface module, which will upload the 

FMSR-DIP chunks to multiple servers 
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In the Download operation, the DIP 

module checks the integrity of the chunks retrieved 

from the servers before relaying the chunks to NC 

Cloud for decoding. 

 

 
B. Instantiating CryptographicPrimitives: 

We implement all cryptographic operations 

using Open SSL 1.0.0g. All cryptographic primitives 

use128-bitsecretkeys.Werequirethatallsecretkeys be 

securely stored on the client side without being 

revealed to any server. The primitives are instantiated 

as describedbelow. 

Symmetric encryption: We use AES-128 in cipher- 

block chaining (CBC) mode. 

Pseudorandomfunction(PRF):WeuseAES-128for 

PRF. The PRF input is first transformed to a plaintext 

block,whichisthenencryptedwithAES-128.Section V-

C discusses how the size of the PRF output can be 

fine-tuned. 

Pseudorandom permutation (PRP): Our PRP 

implementation is based on AES-128, but applied ina 

different way as in PRF. Note that the domain size of 

the PRP is the number of elements to be permuted.To 

implement a PRP with a small and flexible domain 

size. 

Adversarial error-correcting codes (AECCs): We 

applythesystematicAECCadaptedfromasdescribed in 

Section III-C, with two main differences. First, for 

efficiency, Second, for mostnotably. 

 

C. Trade-offParameters. 

InSectionIV,FMSR-DIPoperatesinunitsof 

bytes. However, byte-level operations may make the 

implementation inefficient in practice, especially for 

large files. Here, we describe how FMSR-DIP can 

operate in units of blocks to trade security for 

performance. 

PRP block size: Instead of permuting bytes, we can 

permuteblocksofatunablesize(calledthePRPblock 

size).AlargerPRPblocksizeincreasesefficiency,but at 

the same time decreases securityguarantees. 

Check block size: Reading data from cloud storage is 

priced based on the number of GET requests. In the 

Check operation, downloading one byte per request 

will incur a huge monetary overhead. To reduce the 

number of GET requests, we can check a block of 

bytes of a tunable size (called the check block size). 

AECC parameters: The AECC parameters (n0,k0) 

controltheerrortolerancewithinacodechunkandthe 

domain size of the PRP being used in AECC. Given 

the same k0, a larger n0 implies better protection, but 

introduces a higher computationaloverhead. 

Checking percentage: The checking percentage λ 

defines the percentage of data of a file to be checked 

intheCheckoperation.Alargerλimpliesmorerobust 

checking, at the expense of both higher monetary and 

performance overheads with more data to download 

andcheck. 

 
VIII. SECURITYANALYSIS 

 
We elaborate the design choices of 

FMSRDIP and investigate its securityguarantees. 

A. Uses of SecurityPrimitives 

We briefly summarize the effects of various 

security primitives used in FMSR-DIP. 

Pseudorandom function (PRF): The effect of 

applying PRF on the data is similar to encrypting the 

data. It randomizes the data so that it is infeasible for 

the adversary to manipulate the original data and 

hencecorruptthedatainsuchawaythatthecorrupted 

bytes form consistent systems of linear equations 

during the Checkoperation 

Symmetric encryption: We encrypt the metadata to 

hide the FMSR encoding coefficients. This protects 

against the scenario where the PRF values can be 

recovered with known encoding coefficients and 

original file content. 

Adversarial error-correcting codes (AECC): We use 

AECC to randomize the stripe structure, so that it is 

infeasiblefortheadversarytodeterministicallyrender 

chunks unrecoverable (see SectionIII-C). 

Message authentication codes (MAC): We include 

the MACs of individual chunks as metadata, and 

replicate them to all servers to allow integrity 

verification of any chunks. 
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B. SecurityGuarantees 

We provide a sketch of analysis of the 

robustness of FMSRDIP against adversarial attacks. 

Recall from Section V-B that an FMSR code chunk is 

encoded by (n0,k0)-AECC. The code chunk is divided 

into k0 fragments and b/k0 stripes. Each fragment is 

permutedbyaPRPofsizeb/k0,andtheneachstripeis 

encoded by an (n0,k0)-ECC to give a total of n0 bytes 

each, so the code chunk is encoded by (n0,k0)-AECC 

into n0 fragments Each stripe can correct up to n0 −k0 

erasures or b(n0 − k0)/2cerrors. 

 

 
IX. EVALUATIONS 

 

We evaluate the practicalityof FMSR-DIP in 

a real storage setting by measuring the overhead of 

DIP in the Upload, Check, Download, and Repair 

operations. We empirically evaluate the running time 

overhead atop a local cloud storagetested. 

A. Running TimeAnalysis 

We first conduct tested experiments on a 

local cloud platform that is built on Open Stack Swift 

1.4.2. We deploy our FMSR-DIP implementation in 

single-threaded mode on a machine equipped with 

Intel Xeon E5620, 16GB RAM,  and  64-bit   Ubuntu 

11.04. The machine is connected via a Gigabit switch 

to an Open Stack Swift platform that is attached with 

15nodes.WecreatemultiplecontainersonSwift,such 

that each container mimics a storageserver. 

Upload: We investigate the effects of four sets of 

parameters on the running time of the Upload 

operation, including (i) the input file size, (ii) the   (n, 

k) parameters of FMSR, (iii) the (n0,k0) parameters of 

AECC, and (iv) the block sizes of PRP and PRF 

Check:Weevaluatetheeffectsofthecheckblocksize and 

the checking percentage on the Check operation. By 

default, we use the check block size of256KB and the 

checking percentage of 1%. We then vary one set of 

parameters each time in ourevaluations. 

Download and Repair: 

We now measure the total running times of 

the Download and Repair operations. Here, we only 

consider the effects of different file sizes, while other 

parameters use the same default values as in Upload. 

In the Repair operation, we consider the repair of a 

single failed server, which we simulate by setting  the 

path of one of the Swift containers to a non-existent 

location. 

B. Monetary CostAnalysis 
 

We now describe the monetary overhead of 

FMSR-DIP in each of the operations compared to the 

original FMSR implementation in NC Cloud . 

Upload: The major source of the monetary overhead 

of our DIP scheme compared to NC Cloud is (n0,k0)- 

AECC, which expands the stored data and increases 

the storage cost by roughly n0/k0 (note that the 

inbound transfer cost is free for all commercial cloud 

providers that we consider). The cost due to the 

expanded file metadata is a negligible constant if the 

file size is large enough. 

Check: Since NC Cloud does not support the Check 

operation, we briefly discuss the sources of the Check 

cost. The Check cost is composed of the download 

bandwidthcostandtheGETrequestcost.Tominimize the 

download bandwidth cost, we can reduce the 

checkingpercentage 

 

Repair: The major monetary overhead again comes 

from (n0,k0)-AECC in encoding the new FMSR code 

blocks. As discussed above, if there is no corrupted 

data in surviving servers, we preserve the network 

transfer cost of NC Cloud when downloading data 

from the surviving servers (aside from the small 

constant metadata traffic. Therefore, we still preserve 

the cost saving property of the repair operation in NC 

Cloud when compared to the conventional repair 

method (by up to 50% for RAID-6. [6]discussed 

about a method, Sensor network consists of low cost 

battery powered nodes which is limited in power. 

Hence power efficient methods are needed for data 

gathering and aggregation in order to achieve 

prolonged network life. However, there are several 

energy efficient routing protocols in the literature; 

quiet of them are centralized approaches, that is low 

energy conservation.  

 

X. CONCLUSION 
 

Seeing the popularity of outsourcingarchival 

storage to the cloud, it is desirable to enable clients to 

verify the integrity of their data in the cloud. We 

design and implement a practical data integrity 

protection (DIP) scheme for functional minimum 

storage regenerating (FMSR) codes under a 

multiserver  setting.  Our  DIP  scheme  preservesthe 
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fault tolerance and repair traffic saving 

properties of FMSR. FMSR-DRS. The PRFs off the    

FMSR-DRS 

code chunks to selection the FMSR code chunks, that 

area unit then passed to NC Cloud for cryptography if 

they'renotcorrupted.DownloaditsAECCparitiesand 

have an effect on error modification. To understand 

the practicality of the integration of FMSR and DIP, 

we analyze its security strength, evaluate its running 

time overhead via tested experiments, and conduct 

monetary costanalysis. 
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