
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

Enabling Data Integrity Protection in

Regenerating-Coding-Based Cloud Storage
S.Ayyappan.

AP / MCA

SVCET-Puliangudi

samratayyappa@gmail.com

Abstract -To protect outsourced data in cloud

storage against corruptions, enabling integrity

protection, fault tolerance, and efficient recovery for

cloud storage becomes critical. Regenerating codes

provide fault tolerance by striping data across multiple

servers, while using less repair traffic than traditional

erasure codes during failure recovery. We design and

implement a practical data integrity protection (DIP)

scheme for a specific regenerating code, while

preserving theintrinsic properties of fault tolerance and

repair traffic saving. Our DIP scheme is designed under

a Byzantine adversarial model, and enables a client to

feasibly verify the integrity of random subsets of

outsourced data

againstgeneralormaliciouscorruptions.Itworksunder the

simple assumption of thin-cloud storage and allows

different parameters to be fine-tuned for the

performance-security trade-off. We implement and

evaluate the overhead of our DIP scheme in a real cloud

storage tested under different parameter choices. The

project tend to style and implement a sensible

information of Data responsibleness security (DRS). To

tendmoreanalyzethesafetystrengthsofourDRStheme via

mathematical models. To show that remote integrity

checking are often presumably incorporated into make

codes in sensibleoperation.

Index Terms—remote data checking, secure and trusted

storage systems, implementation, experimentation

I.INTRODUCTION

Cloud storage offers an on-demand data

outsourcing service model, and is gaining popularity

due to its elasticity and low maintenance cost.

However, security concerns arise when data storageis

outsourced to third-party cloud storage providers. It is

desirable to enable cloud clients to verify the integrity

oftheiroutsourceddatainthecloud.Onemajoruseof

cloud storage is long-term archival, which represents

a workload that is written once and rarely read. While

the stored data is rarely read, it remains necessary to

ensureitsintegrityfordisasterrecoveryorcompliance

with legal requirements. Whole file checking in 2

processProofofretrievability(POR)andproofofdata

possession (PDP). Integrity of a large fileby spot-

checking only a fraction of the file via various

cryptographic primitives.

Suppose that we outsource storage to a

server,whichcouldbeastoragesiteoracloudstorage

provider. If we detect corruptions in our outsourced

data (e.g., when a server crashes or is

compromised).Then we should repair the corrupted

dataandrestoretheoriginaldata.However,puttingall

data in a single server is susceptible to the single-

point-of-failure problem and vendor lock-ins. As

suggestedinaplausiblesolutionistostripedataacross

multipleservers.Thus,torepairafailedserver,wecan

(i) read data from other surviving servers, (ii)

reconstruct the corrupted data of the failed server,and

(iii) write the reconstructed data to a new server.POR

and PDP are proposed for the single-server case (e.g.,

Reed-Solomoncodes).

Regenerating codes have recently been

proposed to minimize repair traffic (i.e., the amount

ofdatabeingreadfromsurvivingservers).Inessence,

theyachievethisbynotreadingandreconstructingthe

wholefileduringrepairasintraditionalerasurecodes, but

instead reading a set of chunks smaller than the

original file from other surviving servers and

reconstructingonlythelost(orcorrupted)datachunks.

An open question is, can we enable integrity checks

atop regenerating codes, while preserving the repair

traffic saving over traditional erasure codes? A

related approach is HAIL, which applies integrity

protection for erasure codes. It constructs protection

data on a per-file basis and distributes the protection

data across different servers. To repair any lost

protection data in the presence of a server failure, one

needs to access the whole file, and this violates the

design of regenerating codes. Thus, we need a

different design of integrity checking tailored for

regeneratingcodes.

The design and implementation of apractical

data integrity protection (DIP) scheme for

regenerating-coding-based cloud storage. We

augment the implementation of the functional

minimum storage regenerating (FMSR) code and

construct FMSR-DIP, a code that allows clients to

remotely verify the integrity of random subsets of

long-term archival data under a multi-server setting.

94

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

FMSR-DIP aims to achieve several design

features. First, it preserves fault tolerance and repair

traffic saving as in FMSR. Second, it assumes only

the thin- cloud interface, i.e., the servers only need to

support the standard read/write functionalities. Third,

it exportsseveraltunableparametersthatallowclientsto

trade performance for security. There are used VII

sections.

II. EXISTING SYSTEM

Design and implement a practical Data

Integrity Protection (DIP) scheme for regenerating

coding-based cloud storage. FMSR-DIP codes

preserve fault tolerance and repair traffic saving as

in FMSR codes. . This adds to the portability of

FMSRDIP codes and allows simple deployment in

general types of storage services. By combining

integrity checking and efficient recovery, FMSR-

DIP codes provide a low-cost solution for

maintaining data availability in cloud storage. In

summary, we make the following contributions.

� These schemes can only provide the

detection of corrupteddata.

� It does not recover the originaldata.

� Clientscannotgetthedatawhenthedata

loss occurred in theserver.

� Time consumption for find the original

data is veryhigh.

III. PROPOSEDSYSTEM

The proposed technique is based on DRS theme uses

solely the place and acquire info to work with every

server. Our thin-cloud setting permits our DRS theme

tobeconvenienttogeneralstylesofstorageprocedure or

services, since no execution changes area unit needed

on the storage backend. It differs from different

“thick-”cloud-storage services wherever servers have

machine capabilities and area unit capable of

aggregating the proofs of multiple checks.

Additionally, to cut back the native storage load, we

are able to encipher all file keys with a passkey, and

source the storage of the encrypted keys to the cloud.

Transfer the code chunks from another server. A last

various is to transfer the code chunks from all n

servers.Wetendtocheckallrowsofthechunksas

wellastheirAECCparities.Therowswithasetofthe bytes

obvious correct is improved with FMSR codes; the

rows with all bytes obvious corrupted area unit

treated as erasures and can be corrected withAECC.

� It provides a low-cost solution for maintaining

data present in the cloudstorage.

� Time for checking the data integrity in cloud is

verylow.

� The security is analyzed by the mathematical

model.

� Clients can get the data from the server in a fast

manner.

IV. RELATEDWORK

We consider the problem of checking the

integrity of static data, which is typical in long-term

archival storage systems. This problem is first

consideredunderasingleserverscenariobyJulesetal and

Ateniese et al, giving rise to the similar notions proof

of retrievability(POR) and proof of data

possession(PDP),respectively.Errorcorrectingcodes

arealsoincludedinthestoredfiletoallowrecoveryof a

small amount of errors within a file. The client to

keep a small amount of metadata. The client can then

challengetheserveragainstasetofrandomfileblocks to

see if the server returns the proofs that match the

metadata on the client side. The client can then

challengetheserveragainstasetofrandomfileblocks to

see if the server returns the proofs that match the

metadata on the client side. A major limitation of the

above schemes is that they are designed for a single

server setting. If the server is fully controlled by an

adversary, then the above schemes can only provide

detection of corrupted data, but cannot recover the

originaldata.WepointoutthatalthoughWebelievea

better solution is possible by exploiting the cross-

server redundancies in a multiple-server setting.

Second, the storage scheme of assumes that storage

servers have the encoding capabilities of generating a

random linear combination of the data, while we

consider a thin-cloud setting where servers only need

to support standard read/write functionalities. Multi-

server (or multi-cloud) storage has been proposed and

implemented to protect against data loss and mitigate

vendorlock-ins.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

V. PRELIMINARIES

It Provide background details. We state the

threat model and the cryptographic primitives being

used in our DIP scheme.

A.FMSR Implementation

We first review the FMSR implementation.

FMSR belongs to Maximum Distance Separable

(MDS) codes. An MDS code is defined by the

parameters (n, k), where k < n. It encodes a file F of

size |F| into n pieces of size |F|/k each. An (n,k)-MDS

code states that the original file can be reconstructed

from any k out of n pieces (i.e., the total size of data

required is |F|). An extra feature of FMSR is that a

specific piece can be reconstructed from data of size

less than |F|. FMSR is built on regenerating codes,

whichminimizetherepairbandwidthwhilepreserving

the MDS property based on the concept of network

coding. We consider a distributed storage setting in

which a file is striped over n servers using an (n, k)-

MDScode.Eachservercanbeastoragesiteorevena cloud

storage provider, and is independent of other servers.

Suppose that one server fails. To guarantee that the

MDS fault tolerance is preserved after multiple

rounds of repair, NC Cloud performs two- phase

checking on the new code chunks generated in the

repair operation. In the case of (4,2)-FMSR the repair

traffic is reduced by 25% to 0.75|F|. To access part of

a file, the client needs to download anddecode

theentirefile,andthisisnotsuitedtoapplicationsthat need

random reads of different parts of a file.

Nevertheless, FMSR is suited to long-term archival

applications,wherethereadfrequencyislowandeach

read operation typically restores the entire file. . We

define the repair traffic as the amount of data being

read from other surviving servers so as to reconstruct

the lostdata.

B. Threat Model

We adopt the adversarial model in as our threat

model. We assume that an adversary is mobile

Byzantine, meaning that the adversary compromises a

subsetofserversindifferenttimeepochs(i.e.,mobile) and

exhibits arbitrary behaviors on the data stored in the

compromised servers (i.e., Byzantine). To ensure

meaningful file availability, we assume that the

adversary can compromise and corrupt data in atmost

n – k out of the n servers in any epoch, subject to the

(n, k)-MDS fault tolerance requirement. At the end of

each epoch, the client can ask for randomly chosen

parts of remotely stored data and run a probabilistic

checking protocol to verify the data integrity.

Intuitively, it means that it is computationally

infeasible for an adversary to break the security of a

primitive without knowing its corresponding secret

key. We also need a systematic adversarial error-

correcting code (AECC) to protect against the

corruptionofachunk.Inconventionalerror-correcting

codes (ECC), when a large file is encoded, it is first

broken down into smaller stripes to which ECC is

applied independently. AECC uses a family of PRPs

asabuildingblocktorandomizethestripestructureso

thatitiscomputationallyinfeasibleforanadversaryto

target and corrupt any particular stripe. Note that both

FMSR and AECC provide fault tolerance. The

difference is that FMSR applies to a file that isstriped

across servers, while AECC applies to a single chunk

stored within aserver.

VI. DESIGN

We now present our design of DIP atop the

FMSR code, and we call the new code FMSR-DIP.

Our DIP scheme operates on the FMSR code chunks

generated by NC Cloud [22], which is deployed as a

client-side proxy that stripes data among multiple

servers.

A. Design Goals

We first state the design goals of FMSR-

DIP.

Preservation of regenerating code
properties: We preserve the fault tolerance

requirement and repair traffic saving of FMSR (with
up to a small constant overhead) as compared to the

conventional repair method in erasure codes

Thin-cloud storage: Each server (or cloud

storage provider) only provides the basic interface for

clients to read and write their stored files. No

computation capabilities on the servers are requiredto

support our DIP scheme. Cloud storage servers with

encoding capabilities can be achieved by combining

these two services, with the additional expense of

renting the computation service. However, this

approachreducesportabilityandintroducesacomplex

costmodel.

Flexibility:Thereshouldnotbeanylimitson the

number of possible challenges that the client can

make, since files can be kept for long-term archival.

Also, the challenge size should be adjustable with

differentparameterchoices,andthisisusefulwhenwe

want to lower the detection rate when the stored data

growslessimportantovertime.Suchflexibilityshould

come without any additionalpenalties.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

Cost minimization: The cloud

storage usage fee is mainly charged based on the

storage space, transfer bandwidth, and number of

requests. To

minimizethestoragespaceandtransferbandwidth,we

useAECC(whichisalsoanMDScode).Inparticular, the

storage overhead of FMSR-DIP should come only

from the AECC applied to each code chunk. Also, to

reduce the number of requests while beingcompatible

with the thin-cloud setting, we seek to reduce the

numberofchallenge/responsepairsbetweentheclient

and theservers.

A .Notation

We now define notation for FMSR-DIP,

based on FMSR described in Section III-A. For an (n,

k)-FMSR code, we define

{_ij}1_i_n(n−k),1_j_k(n−k) as the set of encoding

coefficients that encode k(n−k) native chunks

{Fj}1_j_k(n−k) into n(n − k) code chunks

{Pi}1_i_n(n−k). Thus, each code chunk Pi is formed

by Pi = Pk(n−k) j=1 _ijFj . We define a row as a

collection of all bytes that are at the same offset of all

FMSR-DIP-encoded chunks. That is, the rth row

corresponds to the bytes {P0 ir}1_i_n(n−k).

C. Overview ofFMSR-DIP

Our goal is to augment the basic file operations

Upload, Download, and Repair of NC Cloud with the

DIP feature. During Upload, FMSR-DIP expands the

code chunk size by a factor of n0/k0 from the AECC.

UnlikeHAIL,whichappliesDIPtothewholefile,we

applyDIPtoeachFMSRcodechunkgeneratedbyNC

Cloud. Thus, when NC Cloud reconstructs new code

chunks during the repair of a failed server, we can

directly apply DIP to the new code chunks without

accessing the whole file. This preserves the property

of repair traffic saving of FMSR. We describe the

detailsoftheoperationsbelowtoexplainhowourDIP

schemeworks.

D. BasicOperations

In the following discussion, we assume that

FMSR-DIP operates in units of bytes. In Section V-C,

we discuss how we relax this assumption to trade

security for performance.

Upload operation. We first describe how we upload a

file F to servers using FMSR-DIP.

Step 1: Generate the per-file secrets.

Step 2: Encode the file using FMSR.

Step3:EncodeeachcodechunkwithFMSR-

DIP.

Step 4: Update the metadata file and upload.

Check operation: In the Check operation, we verify

randomly chosen rows of bytes based on the FMSR

code chunks generated by NC Cloud.

Step 1: Check the metadata file.

Step 2: Sampling and row verification.

Step 3: Error localization.

Step 4: Trigger repair

Download operation: We now describe how we

download a file F from servers.

Step 1: Check the metadata file.

Step 2: Download and decode the FMSR-

DIP-encoded chunks for file F.

Repair operation: If some server fails then we trigger

the repair operation via NCCloud as follows.

Step 1: Check the metadata file.

Step 2: Download and decode the needed

chunks.

Step 3: Encode, update metadata, and upload.

VII. IMPLEMENTATION

FMSR-DIP implementation atop NC Cloud and

how we instantiate cryptographic primitives. Also,we

addresshowwefine-tunevariousdesignparametersto

trade security forperformance.

A. Integration of DIP into NCCloud

We implement a standalone DIP module and a

storage interface module, and integrate them with NC

Cloud .In the Upload operation, NC Cloud generates

code chunks for a file based on FMSR. The code

chunks will be temporarily stored in the local file

system instead of being uploaded to the servers. The

DIP module then reads the FMSR code chunks from

the local file system, encodes them with DIP, and

passes the resulting FMSR-DIP code chunks to the

storage interface module, which will upload the

FMSR-DIP chunks to multiple servers

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

In the Download operation, the DIP

module checks the integrity of the chunks retrieved

from the servers before relaying the chunks to NC

Cloud for decoding.

B. Instantiating CryptographicPrimitives:

We implement all cryptographic operations

using Open SSL 1.0.0g. All cryptographic primitives

use128-bitsecretkeys.Werequirethatallsecretkeys be

securely stored on the client side without being

revealed to any server. The primitives are instantiated

as describedbelow.

Symmetric encryption: We use AES-128 in cipher-

block chaining (CBC) mode.

Pseudorandomfunction(PRF):WeuseAES-128for

PRF. The PRF input is first transformed to a plaintext

block,whichisthenencryptedwithAES-128.Section V-

C discusses how the size of the PRF output can be

fine-tuned.

Pseudorandom permutation (PRP): Our PRP

implementation is based on AES-128, but applied ina

different way as in PRF. Note that the domain size of

the PRP is the number of elements to be permuted.To

implement a PRP with a small and flexible domain

size.

Adversarial error-correcting codes (AECCs): We

applythesystematicAECCadaptedfromasdescribed in

Section III-C, with two main differences. First, for

efficiency, Second, for mostnotably.

C. Trade-offParameters.

InSectionIV,FMSR-DIPoperatesinunitsof

bytes. However, byte-level operations may make the

implementation inefficient in practice, especially for

large files. Here, we describe how FMSR-DIP can

operate in units of blocks to trade security for

performance.

PRP block size: Instead of permuting bytes, we can

permuteblocksofatunablesize(calledthePRPblock

size).AlargerPRPblocksizeincreasesefficiency,but at

the same time decreases securityguarantees.

Check block size: Reading data from cloud storage is

priced based on the number of GET requests. In the

Check operation, downloading one byte per request

will incur a huge monetary overhead. To reduce the

number of GET requests, we can check a block of

bytes of a tunable size (called the check block size).

AECC parameters: The AECC parameters (n0,k0)

controltheerrortolerancewithinacodechunkandthe

domain size of the PRP being used in AECC. Given

the same k0, a larger n0 implies better protection, but

introduces a higher computationaloverhead.

Checking percentage: The checking percentage λ

defines the percentage of data of a file to be checked

intheCheckoperation.Alargerλimpliesmorerobust

checking, at the expense of both higher monetary and

performance overheads with more data to download

andcheck.

VIII. SECURITYANALYSIS

We elaborate the design choices of

FMSRDIP and investigate its securityguarantees.

A. Uses of SecurityPrimitives

We briefly summarize the effects of various

security primitives used in FMSR-DIP.

Pseudorandom function (PRF): The effect of

applying PRF on the data is similar to encrypting the

data. It randomizes the data so that it is infeasible for

the adversary to manipulate the original data and

hencecorruptthedatainsuchawaythatthecorrupted

bytes form consistent systems of linear equations

during the Checkoperation

Symmetric encryption: We encrypt the metadata to

hide the FMSR encoding coefficients. This protects

against the scenario where the PRF values can be

recovered with known encoding coefficients and

original file content.

Adversarial error-correcting codes (AECC): We use

AECC to randomize the stripe structure, so that it is

infeasiblefortheadversarytodeterministicallyrender

chunks unrecoverable (see SectionIII-C).

Message authentication codes (MAC): We include

the MACs of individual chunks as metadata, and

replicate them to all servers to allow integrity

verification of any chunks.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

B. SecurityGuarantees

We provide a sketch of analysis of the

robustness of FMSRDIP against adversarial attacks.

Recall from Section V-B that an FMSR code chunk is

encoded by (n0,k0)-AECC. The code chunk is divided

into k0 fragments and b/k0 stripes. Each fragment is

permutedbyaPRPofsizeb/k0,andtheneachstripeis

encoded by an (n0,k0)-ECC to give a total of n0 bytes

each, so the code chunk is encoded by (n0,k0)-AECC

into n0 fragments Each stripe can correct up to n0 −k0

erasures or b(n0 − k0)/2cerrors.

IX. EVALUATIONS

We evaluate the practicalityof FMSR-DIP in

a real storage setting by measuring the overhead of

DIP in the Upload, Check, Download, and Repair

operations. We empirically evaluate the running time

overhead atop a local cloud storagetested.

A. Running TimeAnalysis

We first conduct tested experiments on a

local cloud platform that is built on Open Stack Swift

1.4.2. We deploy our FMSR-DIP implementation in

single-threaded mode on a machine equipped with

Intel Xeon E5620, 16GB RAM, and 64-bit Ubuntu

11.04. The machine is connected via a Gigabit switch

to an Open Stack Swift platform that is attached with

15nodes.WecreatemultiplecontainersonSwift,such

that each container mimics a storageserver.

Upload: We investigate the effects of four sets of

parameters on the running time of the Upload

operation, including (i) the input file size, (ii) the (n,

k) parameters of FMSR, (iii) the (n0,k0) parameters of

AECC, and (iv) the block sizes of PRP and PRF

Check:Weevaluatetheeffectsofthecheckblocksize and

the checking percentage on the Check operation. By

default, we use the check block size of256KB and the

checking percentage of 1%. We then vary one set of

parameters each time in ourevaluations.

Download and Repair:

We now measure the total running times of

the Download and Repair operations. Here, we only

consider the effects of different file sizes, while other

parameters use the same default values as in Upload.

In the Repair operation, we consider the repair of a

single failed server, which we simulate by setting the

path of one of the Swift containers to a non-existent

location.

B. Monetary CostAnalysis

We now describe the monetary overhead of

FMSR-DIP in each of the operations compared to the

original FMSR implementation in NC Cloud .

Upload: The major source of the monetary overhead

of our DIP scheme compared to NC Cloud is (n0,k0)-

AECC, which expands the stored data and increases

the storage cost by roughly n0/k0 (note that the

inbound transfer cost is free for all commercial cloud

providers that we consider). The cost due to the

expanded file metadata is a negligible constant if the

file size is large enough.

Check: Since NC Cloud does not support the Check

operation, we briefly discuss the sources of the Check

cost. The Check cost is composed of the download

bandwidthcostandtheGETrequestcost.Tominimize the

download bandwidth cost, we can reduce the

checkingpercentage

Repair: The major monetary overhead again comes

from (n0,k0)-AECC in encoding the new FMSR code

blocks. As discussed above, if there is no corrupted

data in surviving servers, we preserve the network

transfer cost of NC Cloud when downloading data

from the surviving servers (aside from the small

constant metadata traffic. Therefore, we still preserve

the cost saving property of the repair operation in NC

Cloud when compared to the conventional repair

method (by up to 50% for RAID-6. [6]discussed

about a method, Sensor network consists of low cost

battery powered nodes which is limited in power.

Hence power efficient methods are needed for data

gathering and aggregation in order to achieve

prolonged network life. However, there are several

energy efficient routing protocols in the literature;

quiet of them are centralized approaches, that is low

energy conservation.

X. CONCLUSION

Seeing the popularity of outsourcingarchival

storage to the cloud, it is desirable to enable clients to

verify the integrity of their data in the cloud. We

design and implement a practical data integrity

protection (DIP) scheme for functional minimum

storage regenerating (FMSR) codes under a

multiserver setting. Our DIP scheme preservesthe

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 5, March 2017

fault tolerance and repair traffic saving

properties of FMSR. FMSR-DRS. The PRFs off the

FMSR-DRS

code chunks to selection the FMSR code chunks, that

area unit then passed to NC Cloud for cryptography if

they'renotcorrupted.DownloaditsAECCparitiesand

have an effect on error modification. To understand

the practicality of the integration of FMSR and DIP,

we analyze its security strength, evaluate its running

time overhead via tested experiments, and conduct

monetary costanalysis.

XI. REFERENCES

[1] H. Abu-Libdeh, L.Princehouse, and H.
Weatherspoon. RACS: A Case for Cloud Storage
Diversity. In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.
Yeung. Network Information Flow. IEEE Trans.
on Information Theory, 46(4):1204– 1216, Jul
2000.

[3] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.

[4] Amazon Simple Storage Service.

http://aws.amazon.com/s3/.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[6] Christo Ananth, S.Mathu Muhila,
N.Priyadharshini, G.Sudha, P.Venkateswari,
H.Vishali, “A New Energy Efficient Routing
Scheme for Data Gathering “,International
Journal Of Advanced Research Trends In
Engineering And Technology (IJARTET), Vol.

2, Issue 10, October 2015), pp: 1-4

[7] [7] G. Ateniese, R.DiPietro, L.V.Mancini, and
G.Tsudik. Scalable and Efficient Provable Data

Possession. In Proc of SecureComm, 2008.

100

