
ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 14, March 2017

70

All Rights Reserved © 2017 IJARTET

SLA-based Virtual Machine Scheduler In Cloud

Environment

D.Dhivya

Department of CSE

Kongu Engineering College

Perundurai

Erode

divyaduraisamy1995@gmail.com

M.Deebiga

Department of CSE

Kongu Engineering College

Perundurai

Erode

deepikamathan96@gmail.com

P.Gowthaman

Department of CSE

Kongu Engineering College

Perundurai

Erode

gowthaman.p1996@gmail.com

B.Krishnakumar

Assistant Professor

Department of CSE

Kongu Engineering College

Perundurai

Erode

Krishnakumarpri@gmail.com

ABSTRACT
Cloud computing is emerging as a new paradigm of large-

scale distributed computing. In order to utilize the power of

cloud computing completely, we need an efficient task

scheduling algorithm. The traditional Min-Min algorithm is

a simple, efficient algorithm that produces a better schedule

that minimizes the total completion time of tasks than other

algorithms in the literature. However the biggest drawback

of it is SLA.Service-level agreement (SLA) is a major issue

in cloud computing because it defines important parameters

such as quality of service, uptime, downtime, period of

service, pricing, and security. To overcome this drawback

SLA-based minmin Scheduling algorithm aims at

minimizing the total completion time as well as reducing

the SLA violation during VM scheduling. The proposed

algorithms support three levels of SLA determined by the

customers.Furthermore, the algorithms incorporate the SLA

gain cost for the successful completion of the service and

SLA violation cost for the unsuccessful end of the service.

The results of the proposed SLA-Min-Min have four

performance metrics, namely makespan, average cloud

utilization, gain, and penalty cost of the services in VM.

Keywords
Cloud computing; Service-level agreement; Task

scheduling; Min-Min Algorithm; Minimum completion

time; makespan;

1. INTRODUCTION
Currently Cloud computing has evolved as great

potential technology that is known as a provider of

dynamic services using very large scalable and virtualized

resources over the Internet. The term cloud refers to the

service provider that organizes all categories of resources

like storage, computing, etc. In the cloud computing

environment, three types of services in the form of

infrastructure, platform and software are provided for the

customers on the cloud market. IaaS provides the

infrastructure for different functions such as storage and

computing. Secondly, PaaS gives platform to the client so

that the users can effortlessly make the applications. At

last, SaaS provides software to the clients and it does not

require installing the software.

Efficient allocation of resources is naturally

associated with a Service Level Agreement (SLA) in

service computing. SLA provides a wide range of services

and the cost is decided between users accessing cloud

service request model with their constraints. Cloud is

subjected to User Requirement and other constraints that

have direct effect on user consumption of resources

controlled by cloud provider. In order to utilize the power

of cloud computing completely, we need an effective and

efficient task scheduling algorithm. Task scheduling

algorithm is responsible for dispatching tasks submitted by

users to cloud provider onto heterogeneous available

resources. This paper focuses on the efficient tasks

scheduling considering the total completion time of tasks,

resources utilization and various service levels in a cloud

environment. The SLA specifies various parameters such as

quality of service (QoS),uptime, downtime, period of

service,pricing,data protection,security and backup policy.

The CSP earns money on successful completion of the

customer’s job. Otherwise, they pay the penalty cost for the

violation of the SLA. The SLA for a particular cloud

service may vary from one CSP to another CSP. However,

in the multi-cloud environment, there is a requirement of

one common SLA so that a unified service can be delivered

to the customer. Therefore, task scheduling in

heterogeneous multi-cloud environment is more

challenging and not well studied in the current literatures.

The rest of this paper is organized in the

following manner: The previous research on scheduling is

discussed in Section 2.Section 3 introduces an existing

algorithm and presents the task scheduling problem.

Section 4 presents the proposed algorithm of SLA-based

min-min scheduling. The experimental results are discussed

in the Section 5. The conclusion is given in Section 6 along

with the direction for future work.

2. LITERATURE REVIEW
Many SLA-based algorithms have been proposed

that focus on the resource management, negotiation, fault

tolerance, agreement violation, and cost analysis. Gao et al.

 have presented a dynamic resource management approach

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 14, March 2017

71

All Rights Reserved © 2017 IJARTET

to achieve SLA in the data centers. Ranaldo et al. have

proposed a SLA negotiation process of cloud services.

However, they have taken workload as a precondition for

SLA negotiation. Moreover, it does not incorporate the user

and market requirements. Therefore, Maurer et al.have

proposed an adaptive SLA matching approach which gives

a flexibility to the cloud users to define mappings between

SLA templates in the cloud market. Lu et al. have presented

a new approach for optimized SLA negotiation.

Nonetheless, dependent SLAs lead the SLA management

system inefficiently. As a result, multi- domain SLA

management is considered as a future work. Garcia et al.

have introduced an algorithm that handles the resource life

cycle of the generic SLA model. Emeakaroha et al. have

proposed an architecture, called detecting SLA violation

infrastruscture to monitor the agreement violations.

However, detection of violations depends on the service-

level objectives. Most of the literatures discussed above are

not well suited for heterogeneous multi-cloud environment.
In multi-cloud environment, the CSPs may have different

SLAs in providing their services. Therefore, it is very

difficult for the customer to select the CSP. One solution

of this problem is that the CSPs can collaborate each

other to provide services under a common SLA. The

European commission DG CONNECT has taken

initiative to set up cloud select industry group on service-

level agreement (C-SIG-SLA), and they have prepared a

document to provide standard guidelines for

CSPs.However, this is limited to Europe nation boundary

rather than spreading across the world. Later, this

objective is achieved by ISO/IEC 19086. Baset et al. have

studied the SLA guarantees and violation of CSPs. They

have provided a guidance for the future SLA. In our

proposed algorithms, we consider a common SLA for all

the CSPs. Aazam et al. have provided a model to handle

the service reservation and presented a set of customer

characteristics in the dynamic environment. Franke etal.

have presented an investigation on SLA decision making.

The investigation consists of pairwise choices between

various alternatives and uncertainty. Abawajy et al. have

introduced an SLA management framework to optimize

the QoS. This framework helps the service provider to

avoid the violation of the SLA. However, the framework

is limited to a single cloud environment. Ivanovic et al.

have defined the SLA in the form of execution time,

availability, and cost and modeled a constraint

satisfaction problem for SLA violation.
Many one-phase and two-phase task scheduling

algorithms have been proposed for grid computing

environment and which are extended to cloud computing

environment. Ibarra et al. have proposed Min-Min

algorithm which is a two-phase scheduling algorithm.This

algorithm also does not consider the execution cost. We

have incorporated the cost in MCT and Min-Min and call

these algorithms as Profit-MCT and Profit-Min-Min

which aim to minimize the execution cost only. Recently,

Farokhi et al. have presented a hierarchical SLA for the

multi-cloud environment which is applicable for software

as a service (SaaS) providers. The lack of service

selection and SLA management make some issues, to

move from multi-cloud SaaS providers to Infrastructure

as a Service (IaaS). Li et al. have proposed two

scheduling algorithms, namely cloud list scheduling and

cloud Min-Min scheduling for multi-cloud environment.

We have also proposed various scheduling algorithms for

heterogeneous multi-cloud environment. However, the

main objective of these algorithms is to minimize the

makespan and to maximize the average cloud utilization.

Moreover, the execution cost matrices (i.e., gain and

penalty cost) are not considered in these algorithms.
Christo Ananth et al. [4] discussed about a system, In this

proposal, a neural network approach is proposed for

energy conservation routing in a wireless sensor network.

Our designed neural network system has been

successfully applied to our scheme of energy

conservation. Neural network is applied to predict Most

Significant Node and selecting the Group Head amongst

the association of sensor nodes in the network. After

having a precise prediction about Most Significant Node,

we would like to expand our approach in future to

different WSN power management techniques and

observe the results. In this proposal, we used arbitrary

data for our experiment purpose; it is also expected to

generate a real time data for the experiment in future and

also by using adhoc networks the energy level of the node

can be maximized. The selection of Group Head is

proposed using neural network with feed forward learning

method. And the neural network found able to select a

node amongst competing nodes as Group Head.
In this paper, we deal with SLA-based task scheduling

algorithms to make a balance between execution time and

execution cost. The algorithms have following notable

differences with the existing ones. (1) The proposed

algorithms enable the customers to choose one of the

SLA levels (i.e., 1, 2, or 3) that aim to minimize the

execution time, cost, or both, whereas the existing

algorithms deal with either execution time or cost. (2)

The algorithms also facilitate the customers to select the

weight values for execution time and execution cost

parameters. As a result, the customers can determine

which parameter is more important. However, the

existing algorithms do not provide such facilities. (3)

Although our proposed algorithms have the same

complexity as that of existing algorithm existing

algorithm, but they balance between the makespan and

execution cost.
3. Traditional Min-Min Scheduling

Algorithm
The Min-Min algorithm is simple and still basis of

present cloud scheduling algorithm. It starts with a set S of

all unmapped tasks. Then the resource R which has the

minimum completion time for all tasks is found. Next, the

task T with the minimum size is selected and assigned to

the corresponding resource R (hence the name Min-Min).

Last, the task T is removed from set S and the same

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 14, March 2017

procedure is repeated by Min-Min until all tasks are

assigned (i.e., set S is empty).

The pseudo code of Min-Min algorithm is represented

in Fig 1 assuming we have a set of n tasks (T

Tn) need to be scheduled onto m available resources (R

R2, R3 … Rm). We denotes the Expected Completion Time

for task i

(1≤i≤n) on resources j (1≤j≤m) as Ctij that is calculated as

in (1), Where rtj represents the Ready Time of resource R

and Etij represents the Execution Time of task T

resource Rj.

Ctij = Etij + rtj

Traditional Min-min algorithm
An Illustrative Example Of Min-Min Scheduling

Algorithm
In order to illustrate the Min-Min algorithm,

assume we have five tasks submitted by different users

for scheduling on two available resources. Table I,

represents the processing speed and service level of

each resource while Table II, represents the task size

and the user group of each task. Data given in Table I

and Table II are used to calculate the expected

completion time and execution time of the tasks on

each of the resources.

TABLE I. RESOURCES SPECIFICATION

Resources Processing Speed(MB/sec)

R1 10

R2 8

R3 5

TABLE II. TASKS SPECIFICATION

Tasks Task size(MB)

T1 10

T2 15

T3 20

ISSN

 ISSN

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

March 2017

All Rights Reserved © 2017 IJARTET

Min until all tasks are

Min algorithm is represented

in Fig 1 assuming we have a set of n tasks (T1, T2, T3 …

scheduled onto m available resources (R1,

). We denotes the Expected Completion Time

that is calculated as

represents the Ready Time of resource Rj

represents the Execution Time of task Ti on

Min Scheduling

Min algorithm,

different users

for scheduling on two available resources. Table I,

represents the processing speed and service level of

each resource while Table II, represents the task size

and the user group of each task. Data given in Table I

calculate the expected

completion time and execution time of the tasks on

RESOURCES SPECIFICATION

SPECIFICATION

T4 25

T5 50

Table III demonstrates calculated execution time of the

tasks and expected complete time at the same time. On next

step of the algorithm iteration, data in Table III will be

updated until all tasks are allocated.

TABLE III. EXECUTION TIME (EXPECTED COMPLETE

TIME) OF TASKS ON EACH OF THE RESOURCES : MIN

MIN SCHEDULING ALGORITHM

Task/Resources R1 R2

T1 1(1) 1.25(1.25)

T2 1.5(2.5) 1.875(1.875)

T3 2 (3) 2.5(4.375)

T4 2.5 (5.5) 3.125(5)

T5 5(8) 6.25(11.25)

Challenges Of Min-Min Scheduling Algorithm In

Cloud Computing

Based on the experimental result from the illustrative

example Min-Min algorithm fails to utilize the resources

efficiently which lead to a several problems like load

imbalancing , SLA and so on.To reduce SLA violation in

task scheduling an efficient SLA

scheduling Algorithm was proposed.

4. Proposed Algorithm

SLA-based min-min scheduling algorithm

 In this section, we present our proposed

algorithm, SLA-Min-Min. As stated earlier that SLA

Min is a two-phase scheduling (off-line scheduling). In the

single-phase scheduling, a task is assigned to a cloud as

soon as it arrives in the system. In the two

scheduling, the VM are not assigned to the clouds as per

their arrival in the system; instead, they are collected in a

batch that is assigned at predetermined times. It is

noteworthy to mention that two-

feasible in cloud if and only if the mappable VM set i

updated in every scheduling step. Let us illustrate two

phase algorithm through the popular Min

Consider three tasks (T1, T2, and T3) that have execution

time 2, 6, and 4 time units and 3, 5, and 7 time units on

cloud C1 and cloud C2, respectively. In phase 1, it finds the

minimum completion time of the tasks (over the clouds)

which are 2, 5, and 4, respectively. In phase 2, it takes 2

units of time which is minimum out of 2, 5, and 4.

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

72

Table III demonstrates calculated execution time of the

tasks and expected complete time at the same time. On next

step of the algorithm iteration, data in Table III will be

EXECUTION TIME (EXPECTED COMPLETE

OF TASKS ON EACH OF THE RESOURCES : MIN-

R3

1.25(1.25) 2(2)

1.875(1.875) 3(3)

2.5(4.375) 4(4)

3.125(5) 5(5)

6.25(11.25) 10(10)

Min Scheduling Algorithm In

Based on the experimental result from the illustrative

Min algorithm fails to utilize the resources

efficiently which lead to a several problems like load

imbalancing , SLA and so on.To reduce SLA violation in

task scheduling an efficient SLA-based Min-Min

min scheduling algorithm

In this section, we present our proposed scheduling

Min. As stated earlier that SLA-Min-

line scheduling). In the

phase scheduling, a task is assigned to a cloud as

soon as it arrives in the system. In the two-phase

e not assigned to the clouds as per

their arrival in the system; instead, they are collected in a

batch that is assigned at predetermined times. It is

-phase scheduling is

feasible in cloud if and only if the mappable VM set is

updated in every scheduling step. Let us illustrate two-

phase algorithm through the popular Min-Min algorithm.

T3) that have execution

time 2, 6, and 4 time units and 3, 5, and 7 time units on

pectively. In phase 1, it finds the

minimum completion time of the tasks (over the clouds)

which are 2, 5, and 4, respectively. In phase 2, it takes 2

units of time which is minimum out of 2, 5, and 4.

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 14, March 2017

73

All Rights Reserved © 2017 IJARTET

Therefore, task T1 is assigned to cloud C1, and the ready

(busy) time of cloud C1 is set to 2. The above two-phase

process is repeated until there is no task in the mappable

set. The key attribute of the proposed algorithms is SLA

which is an agreement between CSP and customer.

 Now for SLA minmin, consider an example as shown.

There are 11 customers’ tasks T = {T1, T2,..., T11}. We

assume that the arrival time of these tasks is zero for the

simplicity of illustration . These tasks are scheduled to

three different clouds with variable computational

resources. The ETC matrix in Table 1a represents the

execution time of each task on three different clouds.

Similarly, the EG and EP matrices in Table 4b, c represent

the gain and penalty/violation cost of each

task on different clouds. We assume that the violation

cost is 50% of the agreement cost for the simplicity of the

illustration. Note that each task takes different execution

time, gain cost, and violation cost because we present this

problem in heterogeneous multi-cloud environment.

Table 4d shows the SLA level of the tasks and their

weight values. Here, “–” denotes that the customer has

not selected the weight values. The type of service with

respect to SLA level is shown in Table 5. Note that “X” is

used to bypass execution time/execution cost which a

customer can adopt in his/her SLA.

Given the matrices in Table 4, the corresponding Gantt

chart for SLA-Min-Min (without weight values).. The

method is illustrated as follows. SLA-Min-Min finds the

minimum completion time for all tasks T1 to T11

followed by the minimum completion time among them

which is 2 for task T11 on cloud C1. However, the task

T11 requires SLA level 1 which shows that the task

needs the service with minimum execution time.

Therefore, it selects cloud C1. The completion of task

T11 results earning of 11 cost units for cloud C1. The

ready time of cloud C1 is updated to 2. Next, it again

finds the minimum completion time for all tasks,

followed by the minimum completion time among them

(i.e., 3 for task T6 on cloud C2). However, the task T6

requires SLA level 3 which shows that the task needs the

service with minimum execution cost. Therefore, it

selects cloud C3. Now the ready time of cloud C3 is

updated to 18. Similarly, it assigns the other tasks to the

respective clouds.
Table 4 Type of service with respect to SLA level

 Level

 Service

Execution time Execution Cost

1 Yes X

2 Yes Yes

3 X Yes

 Notation Definition

Q Queue of all the tasks
ET C Expected time to compute matrix
EG Expected gain matrix
EP Expected penalty matrix
SL A Service-level agreement matrix

Expected penalty of the given 11 tasks will be half of EG

and service for all the tasks will be generated through user

input and its execution cost and time will be generated

randomly.
5.a. An ETC matrix with 11 tasks and 3 clouds,

ETC C1 C2 C3

T1 22 8 15

T2 14 25 9

T3 7 23 12

T4 26 15 6

T5 18 21 8

T6 7 3 18

T7 10 13 23

T8 5 8 16

T9 19 7 25

T10 13 19 24

T11 2 3 5

5.b.an EG matrix

EG C1 C2 C3

T1 2 8 6

T2 6 2 8

T3 8 2 6

T4 1 6 8

 International Journal of Advanced Research Trends in Engineering and Technology

 Vol. 4, Special Issue 14, March 2017

T5 4 2 8

T6 8 10 4

T7 8 6 2

T8 10 8 4

T9 4 8 2

T10 6 4 2

T11 11 9 6

Pseudo code for SLA-based task

scheduling algorithms

Algorithm 2 SL A-Min-Min

Input: 1. The following 2D matrices: ET C, EG, and EP
2.matrix:
SLA, WT ,
WC , and
assign
Output:1.The
following
1Dmatrices:
M, G, and P
1: while Q =
NU LL
do
2: l = |Q|
3: Call FI N D-T ASK -SL A(ET C, EG, EP, SL A, WT ,
WC, l, m)
4: end while

Algorithm 3 FI N D-T ASK -SL A(ET C, EG, E P,

SL A, WT , WC, l, m)
1: for h = 1, 2, 3, · · · , l do
2: for j = 1, 2, 3, · · · , l do
3: if assign[j] == 0 then
4: minimum = ET C [j, 1]+ M[1]
5: taskindex = 1
6: cloudi index = 1
7: break
8: end if
9: end for
10: for i = 1, 2, 3, · · · , l do
11: if assign[i] == 0 then
12: for j = 1, 2, 3, · · · , m do
13: if minimum > ET C[i, j]+ M[j]
14: minimum = ET C[i, j]+ M[j]
15: taskindex = i
16: cloudi ndex = j
17: end if
18: end for
19: end if
20: end for
21: SL A_Level = SL A[taskindex]
22: if SL A_Level == 1 then
23: Call SC H E DU L E -T ASK S-EXECUT I O N (ET
C, EG, EP, taskindex , m)
24: assign[taskindex]= 1
25: else
26: if thenSL A_Level == 3
27: Call SC H E DU L E -T ASK S- PRO F I T (ET C,
EG, EP, taskindex , m)

ISSN

 ISSN

 Available online at

International Journal of Advanced Research Trends in Engineering and Technology

March 2017

All Rights Reserved © 2017 IJARTET

based task

1. The following 2D matrices: ET C, EG, and EP

SL A(ET C, EG, EP, SL A, WT ,

SL A(ET C, EG, E P,

minimum > ET C[i, j]+ M[j] then
minimum = ET C[i, j]+ M[j]

EXECUT I O N (ET

PRO F I T (ET C,

28: assign[taskindex]= 1
29: else
30: Set λ1 = WT [i] and λ2 = WC [i]
31: Call SC H E DU L E -T ASK S
EP, taskindex , m, λ1, λ2)
32: assign[taskindex]= 1
33: end if
34: end if
35: end for

2). Then it calculates the ET C, EG, and EP of all the

tasks on different clouds. Next, it calls

select one task among the batch of tasks for scheduling

(Line 3). The while loop iterates until there is no task in

the global queue (Lines 1–4).
Algorithm 3 is used to perform the following things.

(1) Like Min-Min, it selects a task with m

completion time in each iteration (Lines 2

it finds the SLA level of the selected task (Line 21). (3)

Like SLA-MCT, it calls the task to the cloud based on

the SLA level.

5. EXPERIMENTAL RESULTS
Table 6:Comparison of Min-Min and

Min

Algorithm / factors Execution time

Min-Min 70

SLA Min-Min 62

Fig: comparison of Min-Min and SLA

ISSN 2394-3777 (Print)

ISSN 2394-3785 (Online)

Available online at www.ijartet.com

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

74

= WC [i]
T ASK S-SL A(ET C, EG,

2). Then it calculates the ET C, EG, and EP of all the

tasks on different clouds. Next, it calls Algorithm 3 to

select one task among the batch of tasks for scheduling

(Line 3). The while loop iterates until there is no task in

Algorithm 3 is used to perform the following things.

Min, it selects a task with minimum

completion time in each iteration (Lines 2–20). (2) Then

it finds the SLA level of the selected task (Line 21). (3)

MCT, it calls the task to the cloud based on

EXPERIMENTAL RESULTS
Min and SLA-based Min-

Execution time Gain Penalty

93 46.5

71 35.5

Min and SLA-based Min-Min

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 14, March 2017

75

All Rights Reserved © 2017 IJARTET

RESULTS AND DISCUSSION
In order to obtain results of the proposed

algorithm the simulation was done using CloudSim 3.0.2

Simulator..In Our simulation scenario, the proposed

algorithm is compared to the existing task scheduling

algorithm, for this purpose following illustrative example is

taken.
CONCLUSION

Cloud computing is a distributed computing

which mainly focuses on providing services to the

customers and it provides computational as well as storage

resources to users. To utilize the resources efficiently, task

scheduling provides the solution. Scheduling is the process

in which the tasks are assigned to the VM’s. In cloud

computing environment, many algorithms are available to

solve scheduling of tasks and resource allocation problems.

Since scheduling of tasks in cloud computing is an NP-hard

optimization problem, an efficient task scheduling strategy

is required. The proposed task scheduling strategy aims at

minimizing the total completion time as well as reducing

 the SLA problems for all tasks. It considers the process

size, time and service type requirement of each task to

realize the optimization for cloud computing environment.

The proposed scheduling strategy provides the better result

compared to traditional min-min scheduling.
In future, the work shall include other important

QoS parameters such as performance, availability, and

reliability. Our future research work will include all these

parameters to develop more efficient algorithms for its

applicability in the heterogeneous multi-cloud environment.
References

[1] Gao Y, Guan H, Qi Z, Song T, Huan F, Liu L (2014)

Service level agreement based energy-efficient resource

management in cloud data centers. Comput Electr Eng

40:1621–1633

[2] Li J, Qiu M, Ming Z, Quan G, Qin X, Gu Z (2012)

Online optimization for scheduling preemptable tasks

on IaaS cloud system. J Parallel Distrib Comput

72:666–677

[3] Panda SK, Jana PK (2015) Efficient task scheduling

algorithms for heterogeneous multi-cloud environment.

J Supercomput 71(4):1505–1533

[4] Christo Ananth, A.Nasrin Banu, M.Manju, S.Nilofer,

S.Mageshwari, A.Peratchi Selvi, “Efficient Energy

Management Routing in WSN”, International Journal of

Advanced Research in Management, Architecture,

Technology and Engineering (IJARMATE), Volume 1,

Issue 1, August 2015,pp:16-19

[5] Son S, Jung G, Jun SC (2013) An SLA-based cloud

computing that facilitates resource allocation in the

distributed data centers of a cloud provider. J

Supercomput 64(2):606–637

[6] Cloud Service Level Agreement Standardisation

Guidelines. http://ec.europa.eu/information_society/

newsroom/cf/dae/document.cfm?action=display&doc_i

d=6138. Accessed on 4 June 2015

[7] Liu L, Mei H, Xie B (2016) Towards a multi-QoS

human-centric cloud computing load balance resource

allocation method. J Supercomput 72(7):2488–2501

[8] Son S, Kang D, Huh SP, Kim W, Choi W (2016)

Adaptive trade-off strategy for bargaining-based multi-

objective SLA establishment under varying cloud

workload. J Supercomput 72(4):1597–1622

[9] Ranaldo N, Zimeo E (2016) Capacity-driven utility

model for service level agreement negotiation of cloud

services. Future Gen Comput Syst 55:186–199

[10] Baset SA (2012) Cloud SLAs: present and future. ACM

SIGOPS Oper Syst Rev 46:57–66

[11] Emeakaroha VC, Netto MAS, Calheiros RN, Brandic I,

Buyya R, Rose CAFD (2012) Towards auto- nomic

detection of SLA violations in cloud infrastructures.

Future Gen Comput Syst 28:1017–1029

[12] Maurer M, Emeakaroha VC, Brandic I, Altmann J (2012)

Cost-benefit analysis of an SLA mapping approach for

defining standardized cloud computing goods. Future

Gen Comput Syst 28:39–47

