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Abstract— We have some set of requirements that are 

considered for strategic process in software development lifecycle 

process. This resulting procedure used for ranking the results 

based on priority. In this paper requirements ranking will use 

Case-Based Ranking, in which combines project stakeholders 

preferences with requirements reordering accurately by 

computed through systematic resulting(learning) techniques, 

bringing best result as advantages. Initially, the human input 

preferences used to reduce the process, also to get the final 

ranked results. In other hand, the domain knowledge would be 

encoded some attributes that is defined in the requirement 

attributes can be utilized. The CBRank techniques associated 

prioritization process are handled. A set of data compared with a 

state-of-the-art prioritization method, providing accurate result, 

ability to give the support to the management effort and ranking 

accuracy in the domain knowledge. In proposed CBRank method 

that are supports and coordination among different stakeholders 

through negotiation. Further we analyze the "anytime 

prioritization method" for real time software project with 

resulting and ranking the requirements. Which is updating 

requirements ranking when new requirements are added, its 

update every time ranking and resulting is performed. 

Keywords— Case Based Ranking(CB Ranking); Analytical 

Hierarchy Process (AHP).  

I INTRODUCTION 

 

1.1 MACHINE LEARNING 

Machine learning, a branch of artificial intelligence, concerns 

the construction and study of systems that can learn from data. 

For example, a machine learning system could be trained on 

email messages to learn to distinguish between spam and non-

spam messages. After learning, it can then be used to classify 

new email messages into spam and non-spam folders. 

The core of machine learning deals with representation and 

generalization. Representation of data instances and functions 

evaluated on these instances are part of all machine learning 

systems. Generalization is the property that the system will 

perform well on unseen data instances; the conditions under 

which this can be guaranteed are a key object of study in the 

subfield of computational learning theory. 

 

Machine learning and data mining 

These two terms are commonly confused, as they often 

employ the same methods and overlap significantly. They can 

be roughly defined as follows: 

• Machine learning focuses on prediction, based on 

known properties learned from the training data. 

• Data mining focuses on the discovery of (previously) 

unknown properties in the data. This is the analysis step of 

Knowledge Discovery in Databases. 

The two areas overlap in many ways: data mining uses many 

machine learning methods, but often with a slightly different 

goal in mind. On the other hand, machine learning also 

employs data mining methods as "unsupervised learning" or as 

a preprocessing step to improve learner accuracy.  

 
Figure 1 Linear-svm-scatterplot.svg 

Much of the confusion between these two research 

communities (which do often have separate conferences and 

separate journals, ECML PKDD being a major exception) 

comes from the basic assumptions they work with: in machine 

learning, performance is usually evaluated with respect to the 

ability to reproduce known knowledge, while in Knowledge 

Discovery and Data Mining (KDD) the key task is the 

discovery of previously unknown knowledge.  

Evaluated with respect to known knowledge, an uninformed 

(unsupervised) method will easily be outperformed by 
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supervised methods, while in a typical KDD task; 

supervised methods cannot be used due to the unavailability of 

training data. 

ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is the intelligence exhibited by 

machines or software. It is also an academic field of study. 

Major AI researchers and textbooks define the field as "the 

study and design of intelligent agents", where an intelligent 

agent is a system that perceives its environment and takes 

actions that maximize its chances of success. John McCarthy, 

who coined the term in 1955, defines it as "the science and 

engineering of making intelligent machines". 

AI research is highly technical and specialized, and is deeply 

divided into subfields that often fail to communicate with each 

other. Some of the division is due to social and cultural 

factors: subfields have grown up around particular institutions 

and the work of individual researchers. AI research is also 

divided by several technical issues. Some subfields focus on 

the solution of specific problems. Others focus on one of 

several possible approaches or on the use of a particular tool 

or towards the accomplishment of particular applications. 

The central problems (or goals) of AI research include 

reasoning, knowledge, planning, learning, natural language 

processing (communication), perception and the ability to 

move and manipulate objects. General intelligence (or "strong 

AI") is still among the field's long term goals. Currently 

popular approaches include statistical methods, computational 

intelligence and traditional symbolic AI. There are a large 

number of tools used in AI, including versions of search and 

mathematical optimization, logic, methods based on 

probability and economics, and many others. The AI field is 

interdisciplinary, in which a number of sciences and 

professions converge, including computer science, 

psychology, linguistics, philosophy and neuroscience, as well 

as other specialized fields such as artificial psychology. 

 REQUIREMENTS PRIORITIZATION 

Requirement prioritization is used in Software product 

management for determining which candidate requirements of 

a software product should be included in a certain release. 

Requirements are also prioritized to minimize risk during 

development so that the most important or high risk 

requirements are implemented first. Several methods for 

assessing a prioritization of software requirements exist. 

Complex decision-making situations are not unique to 

software engineering. Other disciplines, such as psychology, 

and organizational behavior have studied decision- making 

thoroughly. Classical decision-making models have been 

mapped to various requirements engineering activities to show 

the similarities. A comprehensive overview of decision-

making and decision support in requirements engineering. 

Current chapter primarily focuses on requirements 

prioritization, an integral part of decision-making. The 

intention is to describe the current body of knowledge in the 

requirements prioritization area. The quality of a software 

product is often determined by the ability to satisfy the needs 

of the customers and users. Hence, eliciting and specifying the 

correct requirements and planning suitable releases with the 

right functionality is a major step towards the success of a 

project or product. If the wrong requirements are implemented 

and users resist using the product, it does not matter how solid 

the product is or how thoroughly it has been tested. 

Most software projects have more candidate requirements than 

can be realized within the time and cost constraints. 

Prioritization helps to identify the most valuable requirements 

from this set by distinguishing the critical few from the trivial 

many. The process of prioritizing requirements provides 

support for the following activities; 

• For stakeholders to decide on the core requirements for the 

system. 

• To plan and select an ordered, optimal set of software 

requirements for implementation in successive releases. 

• To trade off desired project scope against sometimes 

conflicting constraints such as schedule, budget, resources, 

time to market, and quality. 

• To balance the business benefit of each requirement against 

its cost. 

• To balance implications of requirements on the software 

architecture and future evolution of the product and its 

associated cost. 

• To select only a subset of the requirements and still produce 

a system that will satisfy the customer(s). 

• To estimate expected customer satisfaction. 

• To get a technical advantage and optimize market 

opportunity. 

• To minimize rework and schedule slippage (plan stability). 

• To handle contradictory requirements, focus the negotiation 

process, and resolve disagreements between stakeholders. 

• To establish relative importance of each requirement to 

provide the greatest value at the lowest cost. 

Requirements prioritization plays a crucial role in software 

development, and in particular it allows for planning software 

releases, combining strategies for budget management and 

scheduling, as well as market strategies. 

It is, in fact, considered a complex multi-criteria decision 

making process. 

State-of-the-art approaches tend to share a common model for 

this process, which consists of the following steps. 

1. The definition of a target criterion for ordering. 

2. The specification of requirement attributes to encode the 

chosen criterion. 

3. The acquisition of specific values for those attributes, for all 

requirements under consideration. 

4. The composition of rankings induced by requirement 

attributes associated to the target criterion. 
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 REQUIREMENTS MANAGEMENT 

Requirements management is the process of documenting, 

analyzing, tracing, prioritizing and agreeing on requirements 

and then controlling change and communicating to relevant 

stakeholders. It is a continuous process throughout a project. A 

requirement is a capability to which a project outcome 

(product or service) should conform. 

The purpose of requirements management is to ensure that an 

organization documents, verifies and meets the needs and 

expectations of its customers and internal or external 

stakeholders. 

 

1.2 OBJECTIVES 
The objective of this Machine Learning is to offer a detailed 

and comprehensive presentation of the CBRank method, 

providing: 

1. A formal definition of the prioritization problem it solves, 

2. An intuitive description of the machine learning technique it 

is based on and a characterization of the prioritization process 

supported by CBRank, 

3. A comprehensive overview of the empirical measurements 

which have been performed to assess key properties of the 

method, and 

4. A positioning of CBRank with respect to state-of-the art 

requirements prioritization methods. 

� It produces of a highly secure, “bug 

free” system. 

� Reduced no of comparison would 

be handled. 

� High accuracy in prioritization 

resulting and ranking process. 

� Less no of comparison takes only 

less time consumption.  

� Systematically handles the ranking 

and resulting process. 

 

1.5 PRIORITIZATION TECHNIQUES 
The purpose of any prioritization is to assign values to distinct 

prioritization objects that allow establishment of a relative 

order between the objects in the set. In our case, the objects 

are the requirements to prioritize. The prioritization can be 

done with various measurement scales and types. The least 

powerful prioritization scale is the ordinal scale, where the 

requirements are ordered so that it is possible see which 

requirements are more important than others, but not how 

much more important. The ratio scale is more powerful since 

it is possible to quantify how much more important one 

requirement is than another (the scale often ranges from 0 - 

100 percent). An even more powerful scale is the absolute 

scale, which can be used in situations where an absolute 

number can be assigned (e.g. number of hours). With higher 

levels of measurement, more sophisticated evaluations and 

calculations become possible. Below, a number of different 

prioritization techniques are presented.  

1.5.1 ANALYTICAL HIERARCHY PROCESS (AHP) 

The Analytic Hierarchy Process (AHP) is a systematic 

decision-making method that has been adapted for 

prioritization of software requirements. It is conducted by 

comparing all possible pairs of hierarchically classified 

requirements, in order to determine which has higher priority, 

and to what extent (usually on a scale from one to nine where 

one represents equal importance and nine represents 

absolutely more important). The total number of comparisons 

to perform with AHP are n × (n-1)/2 (where n is the number 

of requirements) at each hierarchy level, which results in a 

dramatic increase in the number of comparisons as the number 

of requirements increases. Studies have shown that AHP is not 

suitable for large numbers of requirements. Researchers have 

tried to find ways to decrease the number of comparisons and 

variants of the technique have been found to reduce the 

number of comparisons by as much as 75 percent.The result 

from a prioritization with AHP is a weighted list on a ratio 

scale.  

1.5.2 IMPORTANCE 
When prioritizing importance, the stakeholders should 

prioritize which requirements are most important for the 

system. However, importance could be an extremely 

multifaceted concept since it depends very much on which 

perspective the stakeholder has. Importance could for example 

be urgency of implementation, importance of a requirement 

for the product architecture, strategic importance for the 

company, etc. Consequently, it is essential to specify which 

kind of importance the stakeholders should prioritize in each 

case. 

1.5.3 PENALTY 

It is possible to evaluate the penalty that is introduced if a 

requirement is not fulfilled . Penalty is not just the opposite of 

importance. For example, failing to conform to a standard 

could incur a high penalty even if it is of low importance for 

the customer (i.e. the customer does not get excited if the 

requirement is fulfilled). The same goes for implicit 

requirements that users take for granted, and whose absence 

could make the product unsuitable for the market. 

1.5.4 COST 
The implementation cost is usually estimated by the 

developing organization. Measures that influence cost include: 

complexity of the requirement, the ability to reuse existing 

code, the amount of testing and documentation needed, etc. 

Cost is often expressed in terms of staff hours (effort) since 

the main cost in software development is often primarily 

related to the number of hours spent. Cost by using any of the 

techniques, but also by simply estimating the actual cost on an 

absolute or normalized scale. 
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1.5.4 TIME 
As can be seen in the section above, cost in software 

development is often related to number of staff hours. 

However, time (i.e. lead time) is influenced by many other 

factors such as degree of parallelism in development, training 

needs, need to develop support infrastructure, complete 

industry standards, etc. 

1.5.5 RISK 
Every project carries some amount of risk. In project 

management, risk management is used to cope with both 

internal (technical and market risks) and external risks (e.g. 

regulations, suppliers). Both likelihood and impact must be 

considered when determining the level of risk of an item or 

activity. Risk management can also be used when planning 

requirements into products and releases by identifying risks 

that are likely to cause difficulties during development .Such 

risks could for example include performance risks, process 

risks, schedule risks etc.. Based on the estimated risk 

likelihood and risk impact for each requirement, it is possible 

to calculate the risk level of a project. 

Volatility 

Volatility of requirements is considered a risk factor and is 

sometimes handled as part of the risk aspect. Others think that 

volatility should be analyzed separately and that volatility of 

requirements should be taken into account separately in the 

prioritization process. The reasons for requirements volatility 

vary, for example: the market changes, business requirements 

change, legislative changes occur, users change, or 

requirements become more clear during the software life cycle 

Irrespective of the reason, volatile requirements affect the 

stability and planning of a project, and presumably increase 

the costs since changes during development increase the cost 

of a project. 

Supporting the Requirements Prioritization Process a 

Machine learning approach 
Requirements prioritization has been pointed out as a relevant 

research area in requirements engineering, calling for the 

definition of effective methods and techniques that enable to 

rank a whole set of requirements, according to relevant 

criteria, such as business goals (e.g. customer value) or 

technical features (e.g. development cost) . Several approaches 

have been recently proposed which adopts a common model 

for the requirements prioritization process, based on the 

following three steps:  

(i) selection of one or more prioritization 

criteria (or prioritization features) among business 

goals and technical features; 

(ii)  acquisition of a requirements ordering 

according to a specific criterion from one or more 

stakeholders (e.g. customers, users, project manager);  

(iii)  Composition of the acquired orderings into 

a final one based upon an appropriate composition 

schema. These approaches tend to focus on how to 

choose the most relevant criteria and on how to 

combine them, while giving minor emphasis to the 

acquisition of the ranks according to a given 

criterion. 

In our approach we exploit machine learning techniques to 

reduce the elicitation effort by approximating part of the pair 

wise preferences. The approximation step computes an 

estimate of unknown preferences looking at the other ranks 

acquired according to predefined prioritization criteria. 

Moreover, we adopt a Boolean metrics to lower the human 

effort associated to the requirements evaluation and we prove 

that it can be effective as much as multi values metrics, as far 

as a large set of requirements has to be prioritized. 

 
Figure 2: the basic iteration of the requirements 

prioritization process. 
Figure 2, depicts the basic process that the evaluator 

undertakes. The types of data involved in the process are 

depicted as rectangles, namely: Requirements represent data 

in input to the process, that is the finite collection of 

requirements that have to be ranked; Requirements pair is a 

pair of candidate requirements whose relative preference is to 

be specified; Preference is the order relation between two 

alternative requirements elicited from the stakeholder. 

The preference is formulated as a Boolean choice on a pair; 

Ranking criteria are a collection of order relations that 

represents ordering induced by other criteria (e.g. the cost for 

the realization of the requirements, the estimated utility) 

defined on the initial set of requirements; Final ranking 

represents the resulting preference structure on the set of 

requirements. This final ranking which results from the output 

of the process represents an approximation of the exact 

ranking. Notice that this ranking may become the input to a 

further iteration of the process. 

The steps of the basic process iteration are depicted as ovals in 

Figure 1, they are: 

1. Pair sampling 

 An automated procedure selects from the requirements 

repository a pair of requirements and submits it to the 

stakeholder who can judge their relative priority. Notice that 

in this step, the selection of a pair takes into account 

information on the current available rankings (this information 

is stored in the data Preference, see the arrows between 

Preference and Pair sampling in Figure 1); 
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2. Preference elicitation 

This represents a mixed initiative step in the process: given a 

pair of requirements the stakeholder chooses which one is to 

be preferred with respect to the current criterion; 

3. Ranking learning  

Given a partial elicitation of the user preferences, a learning 

algorithm produces an approximation of the unknown 

preferences and a ranking of the whole set of requirements is 

derived. 

II LITERATURER SURVEY 

The objective of this paper is to conduct a controlled 

experiment with the three requirements prioritization 

techniques: Numerical Assignment (NA), Analytic Hierarchy 

Process (AHP) and Extensive Numerical Assignment (ENA), 

each based on ordinal, ratio and interval scales respectively. 

NA and AHP are widely used traditional requirements 

prioritization techniques. ENA is a novel technique introduced 

by the authors, which acknowledges the uncertain and 

incomplete nature of human judgment about requirements 

priorities, which are in turn uncertain guesses about the 

upcoming product. The aim of the experiment is to examine 

the three techniques using various objective and subjective 

measures like number of decisions, time consumption, ease of 

use, attractiveness, scalability and reprioritizability. The 

experiment was executed by prioritizing the requirements of a 

university website system with students as participants in the 

experiment. The results of the experiment proved that ENA 

transcends NA and AHP. 

A. Supporting the Requirements Prioritization 

Process. A Machine Learning Approach 
Requirements prioritization plays a key role in the 

requirements engineering process, in particular with respect to 

critical tasks such as requirements negotiation and software 

release planning. This paper presents a novel framework 

which is based on a requirements prioritization process that 

interleaves human and machine activities, enabling for an 

accurate prioritization of requirements. Similarly to the 

Analytic Hierarchy Process (AHP) method, our framework 

adopts an elicitation process based on the acquisition of pair 

wise preferences. Differently from AHP, where scalability is a 

big issue, the framework enables a prioritization process even 

over a large set of requirements, thanks to the exploitation of 

machine learning techniques that induce requirements ranking 

approximations at run time, and to the use of a Boolean 

metrics. Moreover the new approach allows reducing the bias 

of a dominance hierarchy, a strategy introduced by AHP to 

deal with the scalability issue. The paper describes also a 

methodology for the experimental evaluation of the 

framework and discusses the results of a first set of 

experiments designed on a real case study which shows that a 

high accuracy in the final ranking can be obtained within a 

limited elicitation effort.  

B. Facing Scalability Issues in Requirements 

Prioritization with Machine Learning Techniques 

Case-based driven approaches to requirements prioritization 

proved to be much more effective than first-principle methods 

in being tailored to a specific problem, that is they take 

advantage of the implicit knowledge that is available, given a 

problem representation. In these approaches, first-principle 

prioritization criteria are replaced by a pairwise preference 

elicitation process. Nevertheless case-based approaches, using 

the analytic hierarchy process (AHP) technique, become 

impractical when the size of the collection of requirements is 

greater than about twenty since the elicitation effort grows as 

the square of the number of requirements. We adopt a case-

based framework for requirements prioritization, called case-

based ranking, which exploits machine learning techniques to 

overcome the scalability problem. This method reduces the 

acquisition effort by combining human preference elicitation 

and automatic preference approximation. Our goal in this 

paper is to describe the framework in details and to present 

empirical evaluations which aim at showing its effectiveness 

in overcoming the scalability problem. The results prove that 

on average our approach outperforms AHP with respect to the 

trade-off between expert elicitation effort and the requirement 

prioritization accuracy. 

C. Case Based Ranking For Decision Support 

Systems 
Very often a planning problem can be formulated as a ranking 

problem: i.e. to find an order relation over a set of alternatives. 

The ranking of a finite set of alternatives can be designed as a 

preference elicitation problem. While the case-based 

preference elicitation approach is more effective with respect 

to the first principle methods, still the scaling problem remains 

an open issue because the elicitation effort has a quadratic 

relation with the number of alternative cases. In this paper we 

propose a solution based on the machine learning techniques. 

We illustrate how a boosting algorithm can effectively 

estimate pair wise preferences and reduce the effort of the 

elicitation process. Experimental results, both on artificial data 

and a real world problem in the domain of civil defense, 

showed that a good trade-off can be achieved between the 

accuracy of the estimated preferences, and the elicitation effort 

of the end user. 

 

III ARCHITECTURE OF MACHINE LEARNING 

SYSTEM USING THE CASE-BASED RANK METHOD 

3.1 INTRODUCTION 
The CBRank method rests on a framework, which supports 

decision-making for ordering a set of items, e.g., product 

features or software requirements. 
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The framework provides an iterative prioritization 

process that can handle single and multiple human decision 

makers (stakeholders) and different ordering criteria. A 

peculiarity of this framework is the use of machine learning to 

reduce the elicitation effort, that is, the amount of information 

required from stakeholders, for achieving rankings of a given 

quality degree. Besides the problem of requirements 

prioritization, the framework has been applied to the problem 

of prioritizing test cases in software testing. 

In order to illustrate CBRank, we first define a set of basic 

concepts that help describe the prioritization process, then we 

introduce the specific machine learning techniques it is based 

on in terms of an algorithmic procedure that we apply to a toy 

example to give an intuitive account of how the algorithm 

works. 

 

3.2 SYSTEM ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 EXISTING SYSTEM 

The Analytical Hierarchy Process (AHP) can be considered 

the reference method among those which are based on the 

case-based paradigm. In this method, the ranking criteria are 

defined upon an assessment of the relative priority between a 

couple of requirements, expressed by project stakeholders. 

This assessment encompasses all possible pairs of 

requirements. The effort required by the human evaluator 

when pair preferences are elicited grows rapidly with the 

number of requirements since the number of pairs grows 

quadratically. This makes AHP difficult to use with large sets 

of requirements, a problem that is typically dealt with by 

defining ad hoc heuristics for deciding when the pair 

preference elicitation process can be stopped without 

compromising the accuracy of the resulting ranking. This may 

be a main reason for ex-post approaches being less commonly 

used than ex-ante approaches in requirements prioritization 

practices. 

Disadvantages 
1. More time consumption of performing prioritization 

tasks. 

2. Less accuracy in resulting and ranking. 

3. Large no of comparison would be handled. 

 

3.4 PROPOSED SYSTEM 

We propose a method called Case-Based Ranking(CBRank). 

First, it allows for combining sets of preferences elicited from 

human decision makers with sets of preferences, which are 

automatically computed through machine learning techniques. 

These techniques exploit knowledge about (partial) orders of 

the requirements that may be encoded in the description of the 

requirements itself (i.e., in terms of the actual requirement 

attributes), thus enabling what we call domain adaptively. This 

accounts for the straightforward applicability of CBRank to 

different application domains and for the fact that the accuracy 

of machine-estimated ranking increases with the level of 

significance of the encoded domain knowledge. 

Second, CBRank is organized according to an iterative schema 

which allows for deciding when to stop the elicitation process 

on the basis of a measure of the tradeoff between the 

elicitation effort and the accuracy of the resulting ranking. 

With a reasonable effort, the method can be applied up to 100 

requirements. The objective of this paper is to offer a detailed 

and comprehensive presentation of the CBRank method, 

providing: 

1. A formal definition of the prioritization problem it solves, 

an intuitive description of the machine learning technique it is 

based on and a characterization of the prioritization process 

supported by CBRank, 

2. A comprehensive overview of the empirical measurements 

which have been performed to assess key properties of the 

method, and a positioning of CBRank with respect to state-of-

theart requirements prioritization methods. 

Advantages 
1. It produces of a highly secure, “bug free” system. 

2. Reduced no of comparison would be handled. 

3. High accuracy in prioritization resulting and ranking 

process. 

4. Less no of comparison takes only less time 

consumption.  

5. Systematically handles the ranking and resulting 

process. 

 

3.5 THE PRIORITIZATION PROCESS 
The CBRank requirements prioritization process interleaves 

human activities with machine computation. The process is 

sketched in Fig. 1, where three steps are represented as 

rounded corner rectangles. The basic artifacts in input and 

Administrator 
 

E- Voting Process 

User Voting Report

Pair 

Comparis
Priority 
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output (see dashed arrows) are: the set of 

Requirements (Req), the decision maker’s Priorities (Φγ), the 

set of Ranking Functions (F), encoding the requirement 

attributes, and the Approximated Rank (^Hγ) or the Final 

Approximated Rank (H) when Ґ corresponds to the last 

process iteration. Additional artifacts are produced by internal 

activities of the process’s steps, namely, the set of Sampled 

Requirements Pairs that is the set of requirements pairs for 

which the end user preference is unknown and that have been 

selected for the following priority elicitation.  

 
Figure: Basic steps of the requirements prioritization 

process in CBRank 
 

1. Pair Sampling. An automated procedure selects from the set 

of Requirements a set of Sampled Requirements Pairs whose 

relative preference is unknown (i.e., Unordered Requirement 

Pairs, as defined in (1)), according to a sampling policy. A 

sampling policy can be a random choice or it may take into 

account the rankings. 

2. Priority Elicitation. This takes the collection of Sampled 

Requirements Pairs produced by the Pair Sampling step in 

input and produces as output a set of Ordered Requirements 

Pairs on the basis of the Priorities expressed by a decision 

maker. 

3. Priority Learning. Given a partial elicitation of the 

stakeholder priority and eventually a set of Ranking Functions, 

the learning algorithm produces an approximation of the 

unknown preferences and then the correspondent 

Approximated Rank for the requirements. 

Algorithm 1. A sketch of the Rank Boost algorithm 

 

IV  IMPLEMENTATION OF MACHINE LEARNING 

APPROACH TO SOFTWARE REQUIREMENTS 

PRIORITIZATION 

• Administrator 

• Login Process 

• Stakeholders Decision 

Making 

• Pair Sampling 

• Priority Elicitation and 

Learning 

Administrator 
This module provider by administrator with details of users. 

The administrator has to maintain the stake holder’s 

information, who have involve in this process. Administrator 

performs the resulting and ranking method. Evaluate this 

expensive task by using the machine learning approach. It 

performs the pair s of requirements comparison of the data 

sets. 

Login Process 
The login page has very simple code and through this page we 

will collect user id and password and then send the data by 

form post method to another page where we will do the 

matching with the database. Users of an e-voting may be 

asked to decide which of the requirements “Graphical layout 

of the voting form” and “Getting feedback during the voting 

procedure” is more important. 

Stakeholders Decision Making 

First, it allows for combining sets of preferences elicited from 

human decision makers with sets of preferences, which are 

automatically computed through machine learning techniques. 

These techniques exploit knowledge the requirements that 

may be encoded in the description of the requirements itself 

(i.e., in terms of the actual requirement attributes).  

 

Pair Sampling 
This accounts for the straightforward applicability of CBRank 

to different application domains and for the fact that the 

accuracy of machine-estimated ranking. It supports decision-

making for ordering a set of items, e.g., product features or 

software requirements. The framework provides an iterative 

prioritization process that can handle single and multiple 

human decision makers and different criteria. It take two 

different set of information and performs the pair of 

comparison with the current requirements. 

Priority Elicitation and Learning 
 The human effort to input preference information can 

be reduced, while preserving the accuracy of the final ranking 

estimates. The machine learning to reduce the elicitation 

effort, that is, the amount of information required from 

stakeholders, for achieving rankings of a given quality degree. 

Besides the problem of requirements prioritization, the 

framework has been applied to the problem of prioritizing test 

cases in software testing. Output of the process, represents an 

approximation of the exact ranking and may become the input 

for a further iteration of the process. If the result of the 

learning step is considered accurate result. 
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V PERFOMANCE EVALUATION OF 

REQUIREMENTS PRIORITIZATION 

The results of a prioritization exercise must be used 

judiciously. Dependencies between requirements should be 

taken into consideration when choosing which requirements to 

include. Dependencies could be related to cost, value, 

changes, people, competence, technical precedence, etc.. Such 

dependencies might force one requirement to be implemented 

before another, implying that it is not possible to just follow 

the prioritization list. Another reason for not being able to 

solely base the selected requirements on the priority list is that 

when the priority list is presented to the stakeholders, their 

initial priority might have emerged incorrectly. This means 

that when the stakeholders are confronted with the priority list, 

they want to change priorities. This is a larger problem in 

techniques where the result is not visible throughout the 

process (e.g. AHP). The product may have some naturally 

built-in constraints. For example, projects have constraints 

when it comes to effort, quality, duration, etc.. Such 

constraints make the selection of which requirements to 

include in a product more complex than if the choice were 

solely based on the importance of each requirement. 

A common approach to make this selection is to propose a 

number of alternative solutions from which the stakeholders 

can choose the one that is most suit able based on all implicit 

context factors By computerizing the process of selecting 

nominated solutions, it is possible to focus the stakeholders’ 

attention on a relatively small number of candidate solutions 

instead of wasting their time by discussing all possible 

alternatives. In order to automate and to provide a small set of 

candidate solutions to choose from, it is necessary to put some 

constraints on the final product. For example, there could be 

constraints that the product is not allowed to cost more than a 

specific amount, the time for development is not allowed to 

exceed a limit, or the risk level is not allowed to be over a 

specific threshold. 

To illustrate the different aspects, prioritization techniques, 

trade-offs between stakeholders, and combinations of 

prioritization techniques and aspects, an example of a 

prioritization situation is given. The method used in this 

example is influenced by a model proposed by Wiegers but is 

tailored. The example analyses 15 requirements (R1-R15) in a 

situation with three known customers. The analysis is rather 

sophisticated to show different issues in prioritization but still 

simple with a small amount of requirements.  While many 

more requirements are common in industry, it is easier to 

illustrate how the techniques work on a smaller example. Each 

of the 15 requirements is prioritized according to the different 

aspects. Table 4.1 presents the aspects that are used in the 

example together with the method that is used to prioritize the 

aspect and from which perspective it is prioritized. 

Table 4. 1.  Aspects to Prioritize. 

Aspect                                Prioritization                         

Technique Perspective 

Strategic importance            AHP Product                                

Manager 

Customer importance           100-dollar / Top-ten1                   

Customers 

Penalty                                 AHP Product                                 

Manager 

Cost                                      100-dollar                                      

Developers 

Time                                     Numerical Assignment 

(7)            Project Manager 

Risk                                       Numerical Assignment 

(3)            Requirements Specialist 

Volatility                               Ranking                                          

Requirements       Specialist 

However, two clarifications are in order. First, numerical 

assignment for time (7) and risk (3) uses a different number of 

groups to show varying levels of granularity. The customer 

importance is prioritized both by the top-ten technique and the 

100-dollar technique depending how much time and cost the 

different customers consider reasonable. 

First, requirements R1 and R2 are requirements that are 

absolutely necessary to get the system to work at all. Hence, 

they are not prioritized by the customers but they are 

estimated when it comes to cost, risk, etc. since R1 and R2 

influence these variables no matter what. This is a way of 

using the requirements triage approach. Further, two groups of 

requirements have been identified as having high 

dependencies (must be implemented together) and should 

hence be prioritized together. Requirements R3, R4, and R5 

are grouped together as R345, and requirements R6 and R7 are 

grouped into R67. 

The next step is to prioritize the importance of the 

requirements. In the case at hand, the three known customers 

and the product manager prioritize the requirements. 

Furthermore, these four stakeholders are assigned different 

weights depending on how important they are deemed by the 

company. This is done by using the 100-dollar test to get the 

relative weights between the stakeholder’s presents the result 

of the prioritization. In the table, the three customers are 

denoted C1-C3 and the product manager is denoted PM. 

Table 4. 2. Prioritization Results of Strategic and Customer 

Importance. Priority, P (RX) = RPC1 × WC1 + RPC2 × WC2 
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+ RPC3 × WC3 + RPPM × WPM, where RP is the 

requirement priority, and W is the weight of the stakeholder. 

Requirement          C1 (0.15)       C2 (0.30)         

C3 (0.20)        PM (0.35)           Priority: 

R8           0.25          0.24 

          0.16           0.15             

0.19 

R9             0.07 

          0.14           0.03             

0.06 

R10           0.25                0.05           

0.13                 0.29             0.18 

R11            0.05 

          0.01           0.02             

0.02 

R12             0.16                  

0.04           0.01             0.06 

R13             0.05 

          0.16           0.02             

0.05 

R14            0.25                0.02                  

0.10                 0.10                   0.10 

R15             0.03                  

0.04                 0.05                   0.03 

R345             

0.04                  0.18                 0.17                   0.11 

R67                          0.25                0.29                   

0.04                0.16                    0.1 

Total:             1                      1                        

1                     1                        1 

As can be seen in this table, the different stakeholders have 

different priorities, and it is possible to combine their different 

views to an overall priority. The weights (within parenthesis 

after each stakeholder) represent the importance of each 

customer and in this case, the product manager is assigned the 

highest weight (0.35). This is very project dependent. In this 

case, the mission of this product release is to invest in long-

term requirements and attract new customers at the same time 

as keeping existing ones. As also can be seen, C1 used the top-

ten technique and hence the priorities were evenly divided 

between the requirements that this customer regarded as most 

important. The list to the far right presents the final priority of 

the requirements with the different stakeholders and their 

weights taken into consideration. This calculation is possible 

since a ratio scale has been used instead of an ordinal scale. 

The next step is to prioritize based on the other aspects.  

Table 4. 3. Descending Priority List Based on Importance and 

Penalty (IP). IP(RX) = RPI × WI + RPP × WP, where RP is 

the requirement priority, and W is the weight of Importance (I) 

and Penalty (P).  

Requirement     Importance   Penalty         IP         

Cost         Time      Risk    Volatility 

                                 (0.7)          (0.3) 

R1              1                   1                1             

0.11           3            1              2 

R2                              1                   1                1             

0.13            4           2              1 

R8                              0.19              0.2            0.20         

0.07            1           3              7 

R67                            0.19              0.09          0.16          

0.10           6           3              5 

R10                            0.18              0.01          0.13          

0.24          2            3              11 

R14                            0.10              0.16          0.12          

0.01          1            3              10 

R345                          0.11              0.02          0.08          

0.03           3           2               8 

R9                              0.06              0.12          0.08          

0.09           3           2               9 

R15                            0.03              0.17          0.08          

0.05           5           1                4 

R12                            0.06              0.06          0.06          

0.11           4           2                6 

R11                            0.02              0.14          0.06          

0.02           3            1                3 

R13                            0.05              0.03          0.05           

0.04          7            1               12 

Total / Median:            3                   3               3                 

1            3           2 
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Table 4.3 shows a prioritized list of the 

requirements (based on IP). With this information there are 

two options:  

1. pick prioritized items from the top of the list until the 

cost constraints are reached,  

2. Analyze further based on other prioritized aspects, if 

prioritizations of additional aspects are available.  

3. The example has two major constraints:  

4. the project is not allowed to cost more than 65% of 

the total cost of the elicited requirements, and 

5. The median risk level of the requirements included is 

not allowed to be higher than 2.5. Based on this, we 

first try to include the requirements with the highest 

IP. The result of this is presented in Table 4.4 where 

the list was cut when the sum of costs reached 65% 

of the total cost of elicited requirements. 

Table 4. 4. Selected Requirements Based on IP and Cost. 

Requirement           IP              Cost             IP/Cost          

Time           Risk           Volatility 

R1                              1                0.11                9.09                

3                  1                   2 

R2                              1                0.13                7.69                

4                  2                   1 

R8                             0.20            0.07                 2.80               

1                  3                   7 

R6 7                          0.16            0.1                   1.59                

6                 3                   5 

R10                           0.13            0.24                  0.54               

2                 3                   11               

Total / Median:         2.48            0.65                 21.71              

3                 3 

 

Table 4.4 shows that we managed to fit within the cost 

constraints but could not satisfy the risk constraint. As a result, 

the project becomes too risky. Instead, another approach is 

taken to find a suitable collection of requirements. In this 

approach, we take the IP/Cost ratio into consideration. This 

shows which requirements provide most IP at the least cost. In 

this case, we try to set up a limit of only selecting 

requirements that have an IP/Cost-ratio higher than 1.0. The 

result is presented in Table 4.7. Table 4. 5. Selected 

Requirements Based on Cost and IP/Cost Ratio.  

 

 

 

 

 

Requirement         IP            Cost           IP/Cost          

Time               Risk              Volatility 

R1                         1              0.11              9.09                 3                    

1                       2 

R2                         1              0.13              7.69                 4                    

2                       1 

R8                        0.20          0.07              2.80                  1                    

3                      7 

R67                      0.16          0.1                1.59                   6                   

3                      5 

R14                      0.12          0.01             11.70                  1                   

3                      10 

R345                    0.08          0.03              2.71                   3                   

2                       8 

R15                      0.08          0.05               1.50                  5                    

1                      4 

R11                      0.06          0.02                2.94                 2                    

1                      3 

R13                   0.05            0.04                 1.17                 7                     

1                     12 

Total / Median:   2.73            0.56               41.19       

3                    2 

 

CONCLUSION 

In this paper, we provided a detailed account of the CBRank 

method for requirements prioritization. 

The CBRank method follows the case-based paradigm for 

problem solving, according to which a solution to a new 

problem can be derived from (partial) examples of previous 

solutions to similar problems. In the context of requirements 

prioritization, these examples are elicited from project 

stakeholders as pair wise preferences on samples of the set of 

requirements to be prioritized, and used to compute an 

approximated ranking for the whole set. 

The machine learning technique exploited by the method has 

been presented, both with the help of an intuitive example and 

by describing the Rank Boost algorithm, which is 

implemented in the method. The prioritization process based 

on CBRank has been presented. 

A discussion of the method performance, which is defined in 

terms of tradeoff between preference elicitation effort and 
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ranking accuracy and of its domain adaptively, has 

been given, with the support of a set of different experimental 

measurements and of a case study. The experimental 

measurements were taken by applying CBRank to different 

prioritization problems, varying the number of requirements, 

the number of elicited pairs, and the accuracy of the computed 

ranking. Indicators for the statistical significance of the 

measurements have been provided. 

Finally, the CBRank method has been positioned with respect 

to state-of-the art approaches, with particular reference to the 

AHP method, which can also be considered an instance of the 

case-based problem solving paradigm. 

Differently from AHP, the CBRank method enables a 

prioritization process, even over 100 requirements, thanks to 

the exploitation of machine learning techniques that induce 

requirements ranking approximations from the acquired data. 

 

FUTURE WORK 
In Future work, we should address the non-

monotonic case and more sophisticated pair sampling policies, 

possibly contributing to improving the effectiveness of the 

method in more complex real settings. Further we implement 

the CBRank method that are supports and coordination among 

different stakeholders through negotiation. Further we analyze 

the anytime prioritization method for real time software 

project with resulting and ranking the requirements. The 

requirements prioritization problem such as handling 

requirements dependencies and “anytime” prioritization, 

which is updating requirements ranking when new 

requirements are added, its update every time ranking and 

resulting is performed. 
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