
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

149
All Rights Reserved © 2017 IJARTET

 Systematic Resulting Approach for Software

Requirement Priority Reordering

M.H.Revathi

Guest Lecturer,

Department of Computer Science,

Thiruvalluvar University Constituent College of Arts and Science, Arakkonam

Abstract— We have some set of requirements that are

considered for strategic process in software development lifecycle

process. This resulting procedure used for ranking the results

based on priority. In this paper requirements ranking will use

Case-Based Ranking, in which combines project stakeholders

preferences with requirements reordering accurately by

computed through systematic resulting(learning) techniques,

bringing best result as advantages. Initially, the human input

preferences used to reduce the process, also to get the final

ranked results. In other hand, the domain knowledge would be

encoded some attributes that is defined in the requirement

attributes can be utilized. The CBRank techniques associated

prioritization process are handled. A set of data compared with a

state-of-the-art prioritization method, providing accurate result,

ability to give the support to the management effort and ranking

accuracy in the domain knowledge. In proposed CBRank method

that are supports and coordination among different stakeholders

through negotiation. Further we analyze the "anytime

prioritization method" for real time software project with

resulting and ranking the requirements. Which is updating

requirements ranking when new requirements are added, its

update every time ranking and resulting is performed.

Keywords— Case Based Ranking(CB Ranking); Analytical

Hierarchy Process (AHP).

I INTRODUCTION

1.1 MACHINE LEARNING

Machine learning, a branch of artificial intelligence, concerns

the construction and study of systems that can learn from data.

For example, a machine learning system could be trained on

email messages to learn to distinguish between spam and non-

spam messages. After learning, it can then be used to classify

new email messages into spam and non-spam folders.

The core of machine learning deals with representation and

generalization. Representation of data instances and functions

evaluated on these instances are part of all machine learning

systems. Generalization is the property that the system will

perform well on unseen data instances; the conditions under

which this can be guaranteed are a key object of study in the

subfield of computational learning theory.

Machine learning and data mining

These two terms are commonly confused, as they often

employ the same methods and overlap significantly. They can

be roughly defined as follows:

• Machine learning focuses on prediction, based on

known properties learned from the training data.

• Data mining focuses on the discovery of (previously)

unknown properties in the data. This is the analysis step of

Knowledge Discovery in Databases.

The two areas overlap in many ways: data mining uses many

machine learning methods, but often with a slightly different

goal in mind. On the other hand, machine learning also

employs data mining methods as "unsupervised learning" or as

a preprocessing step to improve learner accuracy.

Figure 1 Linear-svm-scatterplot.svg

Much of the confusion between these two research

communities (which do often have separate conferences and

separate journals, ECML PKDD being a major exception)

comes from the basic assumptions they work with: in machine

learning, performance is usually evaluated with respect to the

ability to reproduce known knowledge, while in Knowledge

Discovery and Data Mining (KDD) the key task is the

discovery of previously unknown knowledge.

Evaluated with respect to known knowledge, an uninformed

(unsupervised) method will easily be outperformed by

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

150
All Rights Reserved © 2017 IJARTET

supervised methods, while in a typical KDD task;

supervised methods cannot be used due to the unavailability of

training data.

ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the intelligence exhibited by

machines or software. It is also an academic field of study.

Major AI researchers and textbooks define the field as "the

study and design of intelligent agents", where an intelligent

agent is a system that perceives its environment and takes

actions that maximize its chances of success. John McCarthy,

who coined the term in 1955, defines it as "the science and

engineering of making intelligent machines".

AI research is highly technical and specialized, and is deeply

divided into subfields that often fail to communicate with each

other. Some of the division is due to social and cultural

factors: subfields have grown up around particular institutions

and the work of individual researchers. AI research is also

divided by several technical issues. Some subfields focus on

the solution of specific problems. Others focus on one of

several possible approaches or on the use of a particular tool

or towards the accomplishment of particular applications.

The central problems (or goals) of AI research include

reasoning, knowledge, planning, learning, natural language

processing (communication), perception and the ability to

move and manipulate objects. General intelligence (or "strong

AI") is still among the field's long term goals. Currently

popular approaches include statistical methods, computational

intelligence and traditional symbolic AI. There are a large

number of tools used in AI, including versions of search and

mathematical optimization, logic, methods based on

probability and economics, and many others. The AI field is

interdisciplinary, in which a number of sciences and

professions converge, including computer science,

psychology, linguistics, philosophy and neuroscience, as well

as other specialized fields such as artificial psychology.

 REQUIREMENTS PRIORITIZATION

Requirement prioritization is used in Software product

management for determining which candidate requirements of

a software product should be included in a certain release.

Requirements are also prioritized to minimize risk during

development so that the most important or high risk

requirements are implemented first. Several methods for

assessing a prioritization of software requirements exist.

Complex decision-making situations are not unique to

software engineering. Other disciplines, such as psychology,

and organizational behavior have studied decision- making

thoroughly. Classical decision-making models have been

mapped to various requirements engineering activities to show

the similarities. A comprehensive overview of decision-

making and decision support in requirements engineering.

Current chapter primarily focuses on requirements

prioritization, an integral part of decision-making. The

intention is to describe the current body of knowledge in the

requirements prioritization area. The quality of a software

product is often determined by the ability to satisfy the needs

of the customers and users. Hence, eliciting and specifying the

correct requirements and planning suitable releases with the

right functionality is a major step towards the success of a

project or product. If the wrong requirements are implemented

and users resist using the product, it does not matter how solid

the product is or how thoroughly it has been tested.

Most software projects have more candidate requirements than

can be realized within the time and cost constraints.

Prioritization helps to identify the most valuable requirements

from this set by distinguishing the critical few from the trivial

many. The process of prioritizing requirements provides

support for the following activities;

• For stakeholders to decide on the core requirements for the

system.

• To plan and select an ordered, optimal set of software

requirements for implementation in successive releases.

• To trade off desired project scope against sometimes

conflicting constraints such as schedule, budget, resources,

time to market, and quality.

• To balance the business benefit of each requirement against

its cost.

• To balance implications of requirements on the software

architecture and future evolution of the product and its

associated cost.

• To select only a subset of the requirements and still produce

a system that will satisfy the customer(s).

• To estimate expected customer satisfaction.

• To get a technical advantage and optimize market

opportunity.

• To minimize rework and schedule slippage (plan stability).

• To handle contradictory requirements, focus the negotiation

process, and resolve disagreements between stakeholders.

• To establish relative importance of each requirement to

provide the greatest value at the lowest cost.

Requirements prioritization plays a crucial role in software

development, and in particular it allows for planning software

releases, combining strategies for budget management and

scheduling, as well as market strategies.

It is, in fact, considered a complex multi-criteria decision

making process.

State-of-the-art approaches tend to share a common model for

this process, which consists of the following steps.

1. The definition of a target criterion for ordering.

2. The specification of requirement attributes to encode the

chosen criterion.

3. The acquisition of specific values for those attributes, for all

requirements under consideration.

4. The composition of rankings induced by requirement

attributes associated to the target criterion.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

151
All Rights Reserved © 2017 IJARTET

 REQUIREMENTS MANAGEMENT

Requirements management is the process of documenting,

analyzing, tracing, prioritizing and agreeing on requirements

and then controlling change and communicating to relevant

stakeholders. It is a continuous process throughout a project. A

requirement is a capability to which a project outcome

(product or service) should conform.

The purpose of requirements management is to ensure that an

organization documents, verifies and meets the needs and

expectations of its customers and internal or external

stakeholders.

1.2 OBJECTIVES
The objective of this Machine Learning is to offer a detailed

and comprehensive presentation of the CBRank method,

providing:

1. A formal definition of the prioritization problem it solves,

2. An intuitive description of the machine learning technique it

is based on and a characterization of the prioritization process

supported by CBRank,

3. A comprehensive overview of the empirical measurements

which have been performed to assess key properties of the

method, and

4. A positioning of CBRank with respect to state-of-the art

requirements prioritization methods.

� It produces of a highly secure, “bug

free” system.

� Reduced no of comparison would

be handled.

� High accuracy in prioritization

resulting and ranking process.

� Less no of comparison takes only

less time consumption.

� Systematically handles the ranking

and resulting process.

1.5 PRIORITIZATION TECHNIQUES
The purpose of any prioritization is to assign values to distinct

prioritization objects that allow establishment of a relative

order between the objects in the set. In our case, the objects

are the requirements to prioritize. The prioritization can be

done with various measurement scales and types. The least

powerful prioritization scale is the ordinal scale, where the

requirements are ordered so that it is possible see which

requirements are more important than others, but not how

much more important. The ratio scale is more powerful since

it is possible to quantify how much more important one

requirement is than another (the scale often ranges from 0 -

100 percent). An even more powerful scale is the absolute

scale, which can be used in situations where an absolute

number can be assigned (e.g. number of hours). With higher

levels of measurement, more sophisticated evaluations and

calculations become possible. Below, a number of different

prioritization techniques are presented.

1.5.1 ANALYTICAL HIERARCHY PROCESS (AHP)

The Analytic Hierarchy Process (AHP) is a systematic

decision-making method that has been adapted for

prioritization of software requirements. It is conducted by

comparing all possible pairs of hierarchically classified

requirements, in order to determine which has higher priority,

and to what extent (usually on a scale from one to nine where

one represents equal importance and nine represents

absolutely more important). The total number of comparisons

to perform with AHP are n × (n-1)/2 (where n is the number

of requirements) at each hierarchy level, which results in a

dramatic increase in the number of comparisons as the number

of requirements increases. Studies have shown that AHP is not

suitable for large numbers of requirements. Researchers have

tried to find ways to decrease the number of comparisons and

variants of the technique have been found to reduce the

number of comparisons by as much as 75 percent.The result

from a prioritization with AHP is a weighted list on a ratio

scale.

1.5.2 IMPORTANCE
When prioritizing importance, the stakeholders should

prioritize which requirements are most important for the

system. However, importance could be an extremely

multifaceted concept since it depends very much on which

perspective the stakeholder has. Importance could for example

be urgency of implementation, importance of a requirement

for the product architecture, strategic importance for the

company, etc. Consequently, it is essential to specify which

kind of importance the stakeholders should prioritize in each

case.

1.5.3 PENALTY

It is possible to evaluate the penalty that is introduced if a

requirement is not fulfilled . Penalty is not just the opposite of

importance. For example, failing to conform to a standard

could incur a high penalty even if it is of low importance for

the customer (i.e. the customer does not get excited if the

requirement is fulfilled). The same goes for implicit

requirements that users take for granted, and whose absence

could make the product unsuitable for the market.

1.5.4 COST
The implementation cost is usually estimated by the

developing organization. Measures that influence cost include:

complexity of the requirement, the ability to reuse existing

code, the amount of testing and documentation needed, etc.

Cost is often expressed in terms of staff hours (effort) since

the main cost in software development is often primarily

related to the number of hours spent. Cost by using any of the

techniques, but also by simply estimating the actual cost on an

absolute or normalized scale.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

152
All Rights Reserved © 2017 IJARTET

1.5.4 TIME
As can be seen in the section above, cost in software

development is often related to number of staff hours.

However, time (i.e. lead time) is influenced by many other

factors such as degree of parallelism in development, training

needs, need to develop support infrastructure, complete

industry standards, etc.

1.5.5 RISK
Every project carries some amount of risk. In project

management, risk management is used to cope with both

internal (technical and market risks) and external risks (e.g.

regulations, suppliers). Both likelihood and impact must be

considered when determining the level of risk of an item or

activity. Risk management can also be used when planning

requirements into products and releases by identifying risks

that are likely to cause difficulties during development .Such

risks could for example include performance risks, process

risks, schedule risks etc.. Based on the estimated risk

likelihood and risk impact for each requirement, it is possible

to calculate the risk level of a project.

Volatility

Volatility of requirements is considered a risk factor and is

sometimes handled as part of the risk aspect. Others think that

volatility should be analyzed separately and that volatility of

requirements should be taken into account separately in the

prioritization process. The reasons for requirements volatility

vary, for example: the market changes, business requirements

change, legislative changes occur, users change, or

requirements become more clear during the software life cycle

Irrespective of the reason, volatile requirements affect the

stability and planning of a project, and presumably increase

the costs since changes during development increase the cost

of a project.

Supporting the Requirements Prioritization Process a

Machine learning approach
Requirements prioritization has been pointed out as a relevant

research area in requirements engineering, calling for the

definition of effective methods and techniques that enable to

rank a whole set of requirements, according to relevant

criteria, such as business goals (e.g. customer value) or

technical features (e.g. development cost) . Several approaches

have been recently proposed which adopts a common model

for the requirements prioritization process, based on the

following three steps:

(i) selection of one or more prioritization

criteria (or prioritization features) among business

goals and technical features;

(ii) acquisition of a requirements ordering

according to a specific criterion from one or more

stakeholders (e.g. customers, users, project manager);

(iii) Composition of the acquired orderings into

a final one based upon an appropriate composition

schema. These approaches tend to focus on how to

choose the most relevant criteria and on how to

combine them, while giving minor emphasis to the

acquisition of the ranks according to a given

criterion.

In our approach we exploit machine learning techniques to

reduce the elicitation effort by approximating part of the pair

wise preferences. The approximation step computes an

estimate of unknown preferences looking at the other ranks

acquired according to predefined prioritization criteria.

Moreover, we adopt a Boolean metrics to lower the human

effort associated to the requirements evaluation and we prove

that it can be effective as much as multi values metrics, as far

as a large set of requirements has to be prioritized.

Figure 2: the basic iteration of the requirements

prioritization process.
Figure 2, depicts the basic process that the evaluator

undertakes. The types of data involved in the process are

depicted as rectangles, namely: Requirements represent data

in input to the process, that is the finite collection of

requirements that have to be ranked; Requirements pair is a

pair of candidate requirements whose relative preference is to

be specified; Preference is the order relation between two

alternative requirements elicited from the stakeholder.

The preference is formulated as a Boolean choice on a pair;

Ranking criteria are a collection of order relations that

represents ordering induced by other criteria (e.g. the cost for

the realization of the requirements, the estimated utility)

defined on the initial set of requirements; Final ranking

represents the resulting preference structure on the set of

requirements. This final ranking which results from the output

of the process represents an approximation of the exact

ranking. Notice that this ranking may become the input to a

further iteration of the process.

The steps of the basic process iteration are depicted as ovals in

Figure 1, they are:

1. Pair sampling

 An automated procedure selects from the requirements

repository a pair of requirements and submits it to the

stakeholder who can judge their relative priority. Notice that

in this step, the selection of a pair takes into account

information on the current available rankings (this information

is stored in the data Preference, see the arrows between

Preference and Pair sampling in Figure 1);

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

153
All Rights Reserved © 2017 IJARTET

2. Preference elicitation

This represents a mixed initiative step in the process: given a

pair of requirements the stakeholder chooses which one is to

be preferred with respect to the current criterion;

3. Ranking learning

Given a partial elicitation of the user preferences, a learning

algorithm produces an approximation of the unknown

preferences and a ranking of the whole set of requirements is

derived.

II LITERATURER SURVEY

The objective of this paper is to conduct a controlled

experiment with the three requirements prioritization

techniques: Numerical Assignment (NA), Analytic Hierarchy

Process (AHP) and Extensive Numerical Assignment (ENA),

each based on ordinal, ratio and interval scales respectively.

NA and AHP are widely used traditional requirements

prioritization techniques. ENA is a novel technique introduced

by the authors, which acknowledges the uncertain and

incomplete nature of human judgment about requirements

priorities, which are in turn uncertain guesses about the

upcoming product. The aim of the experiment is to examine

the three techniques using various objective and subjective

measures like number of decisions, time consumption, ease of

use, attractiveness, scalability and reprioritizability. The

experiment was executed by prioritizing the requirements of a

university website system with students as participants in the

experiment. The results of the experiment proved that ENA

transcends NA and AHP.

A. Supporting the Requirements Prioritization

Process. A Machine Learning Approach
Requirements prioritization plays a key role in the

requirements engineering process, in particular with respect to

critical tasks such as requirements negotiation and software

release planning. This paper presents a novel framework

which is based on a requirements prioritization process that

interleaves human and machine activities, enabling for an

accurate prioritization of requirements. Similarly to the

Analytic Hierarchy Process (AHP) method, our framework

adopts an elicitation process based on the acquisition of pair

wise preferences. Differently from AHP, where scalability is a

big issue, the framework enables a prioritization process even

over a large set of requirements, thanks to the exploitation of

machine learning techniques that induce requirements ranking

approximations at run time, and to the use of a Boolean

metrics. Moreover the new approach allows reducing the bias

of a dominance hierarchy, a strategy introduced by AHP to

deal with the scalability issue. The paper describes also a

methodology for the experimental evaluation of the

framework and discusses the results of a first set of

experiments designed on a real case study which shows that a

high accuracy in the final ranking can be obtained within a

limited elicitation effort.

B. Facing Scalability Issues in Requirements

Prioritization with Machine Learning Techniques

Case-based driven approaches to requirements prioritization

proved to be much more effective than first-principle methods

in being tailored to a specific problem, that is they take

advantage of the implicit knowledge that is available, given a

problem representation. In these approaches, first-principle

prioritization criteria are replaced by a pairwise preference

elicitation process. Nevertheless case-based approaches, using

the analytic hierarchy process (AHP) technique, become

impractical when the size of the collection of requirements is

greater than about twenty since the elicitation effort grows as

the square of the number of requirements. We adopt a case-

based framework for requirements prioritization, called case-

based ranking, which exploits machine learning techniques to

overcome the scalability problem. This method reduces the

acquisition effort by combining human preference elicitation

and automatic preference approximation. Our goal in this

paper is to describe the framework in details and to present

empirical evaluations which aim at showing its effectiveness

in overcoming the scalability problem. The results prove that

on average our approach outperforms AHP with respect to the

trade-off between expert elicitation effort and the requirement

prioritization accuracy.

C. Case Based Ranking For Decision Support

Systems
Very often a planning problem can be formulated as a ranking

problem: i.e. to find an order relation over a set of alternatives.

The ranking of a finite set of alternatives can be designed as a

preference elicitation problem. While the case-based

preference elicitation approach is more effective with respect

to the first principle methods, still the scaling problem remains

an open issue because the elicitation effort has a quadratic

relation with the number of alternative cases. In this paper we

propose a solution based on the machine learning techniques.

We illustrate how a boosting algorithm can effectively

estimate pair wise preferences and reduce the effort of the

elicitation process. Experimental results, both on artificial data

and a real world problem in the domain of civil defense,

showed that a good trade-off can be achieved between the

accuracy of the estimated preferences, and the elicitation effort

of the end user.

III ARCHITECTURE OF MACHINE LEARNING

SYSTEM USING THE CASE-BASED RANK METHOD

3.1 INTRODUCTION
The CBRank method rests on a framework, which supports

decision-making for ordering a set of items, e.g., product

features or software requirements.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

154
All Rights Reserved © 2017 IJARTET

The framework provides an iterative prioritization

process that can handle single and multiple human decision

makers (stakeholders) and different ordering criteria. A

peculiarity of this framework is the use of machine learning to

reduce the elicitation effort, that is, the amount of information

required from stakeholders, for achieving rankings of a given

quality degree. Besides the problem of requirements

prioritization, the framework has been applied to the problem

of prioritizing test cases in software testing.

In order to illustrate CBRank, we first define a set of basic

concepts that help describe the prioritization process, then we

introduce the specific machine learning techniques it is based

on in terms of an algorithmic procedure that we apply to a toy

example to give an intuitive account of how the algorithm

works.

3.2 SYSTEM ARCHITECTURE

3.3 EXISTING SYSTEM

The Analytical Hierarchy Process (AHP) can be considered

the reference method among those which are based on the

case-based paradigm. In this method, the ranking criteria are

defined upon an assessment of the relative priority between a

couple of requirements, expressed by project stakeholders.

This assessment encompasses all possible pairs of

requirements. The effort required by the human evaluator

when pair preferences are elicited grows rapidly with the

number of requirements since the number of pairs grows

quadratically. This makes AHP difficult to use with large sets

of requirements, a problem that is typically dealt with by

defining ad hoc heuristics for deciding when the pair

preference elicitation process can be stopped without

compromising the accuracy of the resulting ranking. This may

be a main reason for ex-post approaches being less commonly

used than ex-ante approaches in requirements prioritization

practices.

Disadvantages
1. More time consumption of performing prioritization

tasks.

2. Less accuracy in resulting and ranking.

3. Large no of comparison would be handled.

3.4 PROPOSED SYSTEM

We propose a method called Case-Based Ranking(CBRank).

First, it allows for combining sets of preferences elicited from

human decision makers with sets of preferences, which are

automatically computed through machine learning techniques.

These techniques exploit knowledge about (partial) orders of

the requirements that may be encoded in the description of the

requirements itself (i.e., in terms of the actual requirement

attributes), thus enabling what we call domain adaptively. This

accounts for the straightforward applicability of CBRank to

different application domains and for the fact that the accuracy

of machine-estimated ranking increases with the level of

significance of the encoded domain knowledge.

Second, CBRank is organized according to an iterative schema

which allows for deciding when to stop the elicitation process

on the basis of a measure of the tradeoff between the

elicitation effort and the accuracy of the resulting ranking.

With a reasonable effort, the method can be applied up to 100

requirements. The objective of this paper is to offer a detailed

and comprehensive presentation of the CBRank method,

providing:

1. A formal definition of the prioritization problem it solves,

an intuitive description of the machine learning technique it is

based on and a characterization of the prioritization process

supported by CBRank,

2. A comprehensive overview of the empirical measurements

which have been performed to assess key properties of the

method, and a positioning of CBRank with respect to state-of-

theart requirements prioritization methods.

Advantages
1. It produces of a highly secure, “bug free” system.

2. Reduced no of comparison would be handled.

3. High accuracy in prioritization resulting and ranking

process.

4. Less no of comparison takes only less time

consumption.

5. Systematically handles the ranking and resulting

process.

3.5 THE PRIORITIZATION PROCESS
The CBRank requirements prioritization process interleaves

human activities with machine computation. The process is

sketched in Fig. 1, where three steps are represented as

rounded corner rectangles. The basic artifacts in input and

Administrator

E- Voting Process

User Voting Report

Pair

Comparis
Priority

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

155
All Rights Reserved © 2017 IJARTET

output (see dashed arrows) are: the set of

Requirements (Req), the decision maker’s Priorities (Φγ), the

set of Ranking Functions (F), encoding the requirement

attributes, and the Approximated Rank (^Hγ) or the Final

Approximated Rank (H) when Ґ corresponds to the last

process iteration. Additional artifacts are produced by internal

activities of the process’s steps, namely, the set of Sampled

Requirements Pairs that is the set of requirements pairs for

which the end user preference is unknown and that have been

selected for the following priority elicitation.

Figure: Basic steps of the requirements prioritization

process in CBRank

1. Pair Sampling. An automated procedure selects from the set

of Requirements a set of Sampled Requirements Pairs whose

relative preference is unknown (i.e., Unordered Requirement

Pairs, as defined in (1)), according to a sampling policy. A

sampling policy can be a random choice or it may take into

account the rankings.

2. Priority Elicitation. This takes the collection of Sampled

Requirements Pairs produced by the Pair Sampling step in

input and produces as output a set of Ordered Requirements

Pairs on the basis of the Priorities expressed by a decision

maker.

3. Priority Learning. Given a partial elicitation of the

stakeholder priority and eventually a set of Ranking Functions,

the learning algorithm produces an approximation of the

unknown preferences and then the correspondent

Approximated Rank for the requirements.

Algorithm 1. A sketch of the Rank Boost algorithm

IV IMPLEMENTATION OF MACHINE LEARNING

APPROACH TO SOFTWARE REQUIREMENTS

PRIORITIZATION

• Administrator

• Login Process

• Stakeholders Decision

Making

• Pair Sampling

• Priority Elicitation and

Learning

Administrator
This module provider by administrator with details of users.

The administrator has to maintain the stake holder’s

information, who have involve in this process. Administrator

performs the resulting and ranking method. Evaluate this

expensive task by using the machine learning approach. It

performs the pair s of requirements comparison of the data

sets.

Login Process
The login page has very simple code and through this page we

will collect user id and password and then send the data by

form post method to another page where we will do the

matching with the database. Users of an e-voting may be

asked to decide which of the requirements “Graphical layout

of the voting form” and “Getting feedback during the voting

procedure” is more important.

Stakeholders Decision Making

First, it allows for combining sets of preferences elicited from

human decision makers with sets of preferences, which are

automatically computed through machine learning techniques.

These techniques exploit knowledge the requirements that

may be encoded in the description of the requirements itself

(i.e., in terms of the actual requirement attributes).

Pair Sampling
This accounts for the straightforward applicability of CBRank

to different application domains and for the fact that the

accuracy of machine-estimated ranking. It supports decision-

making for ordering a set of items, e.g., product features or

software requirements. The framework provides an iterative

prioritization process that can handle single and multiple

human decision makers and different criteria. It take two

different set of information and performs the pair of

comparison with the current requirements.

Priority Elicitation and Learning
 The human effort to input preference information can

be reduced, while preserving the accuracy of the final ranking

estimates. The machine learning to reduce the elicitation

effort, that is, the amount of information required from

stakeholders, for achieving rankings of a given quality degree.

Besides the problem of requirements prioritization, the

framework has been applied to the problem of prioritizing test

cases in software testing. Output of the process, represents an

approximation of the exact ranking and may become the input

for a further iteration of the process. If the result of the

learning step is considered accurate result.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

156
All Rights Reserved © 2017 IJARTET

V PERFOMANCE EVALUATION OF

REQUIREMENTS PRIORITIZATION

The results of a prioritization exercise must be used

judiciously. Dependencies between requirements should be

taken into consideration when choosing which requirements to

include. Dependencies could be related to cost, value,

changes, people, competence, technical precedence, etc.. Such

dependencies might force one requirement to be implemented

before another, implying that it is not possible to just follow

the prioritization list. Another reason for not being able to

solely base the selected requirements on the priority list is that

when the priority list is presented to the stakeholders, their

initial priority might have emerged incorrectly. This means

that when the stakeholders are confronted with the priority list,

they want to change priorities. This is a larger problem in

techniques where the result is not visible throughout the

process (e.g. AHP). The product may have some naturally

built-in constraints. For example, projects have constraints

when it comes to effort, quality, duration, etc.. Such

constraints make the selection of which requirements to

include in a product more complex than if the choice were

solely based on the importance of each requirement.

A common approach to make this selection is to propose a

number of alternative solutions from which the stakeholders

can choose the one that is most suit able based on all implicit

context factors By computerizing the process of selecting

nominated solutions, it is possible to focus the stakeholders’

attention on a relatively small number of candidate solutions

instead of wasting their time by discussing all possible

alternatives. In order to automate and to provide a small set of

candidate solutions to choose from, it is necessary to put some

constraints on the final product. For example, there could be

constraints that the product is not allowed to cost more than a

specific amount, the time for development is not allowed to

exceed a limit, or the risk level is not allowed to be over a

specific threshold.

To illustrate the different aspects, prioritization techniques,

trade-offs between stakeholders, and combinations of

prioritization techniques and aspects, an example of a

prioritization situation is given. The method used in this

example is influenced by a model proposed by Wiegers but is

tailored. The example analyses 15 requirements (R1-R15) in a

situation with three known customers. The analysis is rather

sophisticated to show different issues in prioritization but still

simple with a small amount of requirements. While many

more requirements are common in industry, it is easier to

illustrate how the techniques work on a smaller example. Each

of the 15 requirements is prioritized according to the different

aspects. Table 4.1 presents the aspects that are used in the

example together with the method that is used to prioritize the

aspect and from which perspective it is prioritized.

Table 4. 1. Aspects to Prioritize.

Aspect Prioritization

Technique Perspective

Strategic importance AHP Product

Manager

Customer importance 100-dollar / Top-ten1

Customers

Penalty AHP Product

Manager

Cost 100-dollar

Developers

Time Numerical Assignment

(7) Project Manager

Risk Numerical Assignment

(3) Requirements Specialist

Volatility Ranking

Requirements Specialist

However, two clarifications are in order. First, numerical

assignment for time (7) and risk (3) uses a different number of

groups to show varying levels of granularity. The customer

importance is prioritized both by the top-ten technique and the

100-dollar technique depending how much time and cost the

different customers consider reasonable.

First, requirements R1 and R2 are requirements that are

absolutely necessary to get the system to work at all. Hence,

they are not prioritized by the customers but they are

estimated when it comes to cost, risk, etc. since R1 and R2

influence these variables no matter what. This is a way of

using the requirements triage approach. Further, two groups of

requirements have been identified as having high

dependencies (must be implemented together) and should

hence be prioritized together. Requirements R3, R4, and R5

are grouped together as R345, and requirements R6 and R7 are

grouped into R67.

The next step is to prioritize the importance of the

requirements. In the case at hand, the three known customers

and the product manager prioritize the requirements.

Furthermore, these four stakeholders are assigned different

weights depending on how important they are deemed by the

company. This is done by using the 100-dollar test to get the

relative weights between the stakeholder’s presents the result

of the prioritization. In the table, the three customers are

denoted C1-C3 and the product manager is denoted PM.

Table 4. 2. Prioritization Results of Strategic and Customer

Importance. Priority, P (RX) = RPC1 × WC1 + RPC2 × WC2

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

157
All Rights Reserved © 2017 IJARTET

+ RPC3 × WC3 + RPPM × WPM, where RP is the

requirement priority, and W is the weight of the stakeholder.

Requirement C1 (0.15) C2 (0.30)

C3 (0.20) PM (0.35) Priority:

R8 0.25 0.24

 0.16 0.15

0.19

R9 0.07

 0.14 0.03

0.06

R10 0.25 0.05

0.13 0.29 0.18

R11 0.05

 0.01 0.02

0.02

R12 0.16

0.04 0.01 0.06

R13 0.05

 0.16 0.02

0.05

R14 0.25 0.02

0.10 0.10 0.10

R15 0.03

0.04 0.05 0.03

R345

0.04 0.18 0.17 0.11

R67 0.25 0.29

0.04 0.16 0.1

Total: 1 1

1 1 1

As can be seen in this table, the different stakeholders have

different priorities, and it is possible to combine their different

views to an overall priority. The weights (within parenthesis

after each stakeholder) represent the importance of each

customer and in this case, the product manager is assigned the

highest weight (0.35). This is very project dependent. In this

case, the mission of this product release is to invest in long-

term requirements and attract new customers at the same time

as keeping existing ones. As also can be seen, C1 used the top-

ten technique and hence the priorities were evenly divided

between the requirements that this customer regarded as most

important. The list to the far right presents the final priority of

the requirements with the different stakeholders and their

weights taken into consideration. This calculation is possible

since a ratio scale has been used instead of an ordinal scale.

The next step is to prioritize based on the other aspects.

Table 4. 3. Descending Priority List Based on Importance and

Penalty (IP). IP(RX) = RPI × WI + RPP × WP, where RP is

the requirement priority, and W is the weight of Importance (I)

and Penalty (P).

Requirement Importance Penalty IP

Cost Time Risk Volatility

 (0.7) (0.3)

R1 1 1 1

0.11 3 1 2

R2 1 1 1

0.13 4 2 1

R8 0.19 0.2 0.20

0.07 1 3 7

R67 0.19 0.09 0.16

0.10 6 3 5

R10 0.18 0.01 0.13

0.24 2 3 11

R14 0.10 0.16 0.12

0.01 1 3 10

R345 0.11 0.02 0.08

0.03 3 2 8

R9 0.06 0.12 0.08

0.09 3 2 9

R15 0.03 0.17 0.08

0.05 5 1 4

R12 0.06 0.06 0.06

0.11 4 2 6

R11 0.02 0.14 0.06

0.02 3 1 3

R13 0.05 0.03 0.05

0.04 7 1 12

Total / Median: 3 3 3

1 3 2

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

158
All Rights Reserved © 2017 IJARTET

Table 4.3 shows a prioritized list of the

requirements (based on IP). With this information there are

two options:

1. pick prioritized items from the top of the list until the

cost constraints are reached,

2. Analyze further based on other prioritized aspects, if

prioritizations of additional aspects are available.

3. The example has two major constraints:

4. the project is not allowed to cost more than 65% of

the total cost of the elicited requirements, and

5. The median risk level of the requirements included is

not allowed to be higher than 2.5. Based on this, we

first try to include the requirements with the highest

IP. The result of this is presented in Table 4.4 where

the list was cut when the sum of costs reached 65%

of the total cost of elicited requirements.

Table 4. 4. Selected Requirements Based on IP and Cost.

Requirement IP Cost IP/Cost

Time Risk Volatility

R1 1 0.11 9.09

3 1 2

R2 1 0.13 7.69

4 2 1

R8 0.20 0.07 2.80

1 3 7

R6 7 0.16 0.1 1.59

6 3 5

R10 0.13 0.24 0.54

2 3 11

Total / Median: 2.48 0.65 21.71

3 3

Table 4.4 shows that we managed to fit within the cost

constraints but could not satisfy the risk constraint. As a result,

the project becomes too risky. Instead, another approach is

taken to find a suitable collection of requirements. In this

approach, we take the IP/Cost ratio into consideration. This

shows which requirements provide most IP at the least cost. In

this case, we try to set up a limit of only selecting

requirements that have an IP/Cost-ratio higher than 1.0. The

result is presented in Table 4.7. Table 4. 5. Selected

Requirements Based on Cost and IP/Cost Ratio.

Requirement IP Cost IP/Cost

Time Risk Volatility

R1 1 0.11 9.09 3

1 2

R2 1 0.13 7.69 4

2 1

R8 0.20 0.07 2.80 1

3 7

R67 0.16 0.1 1.59 6

3 5

R14 0.12 0.01 11.70 1

3 10

R345 0.08 0.03 2.71 3

2 8

R15 0.08 0.05 1.50 5

1 4

R11 0.06 0.02 2.94 2

1 3

R13 0.05 0.04 1.17 7

1 12

Total / Median: 2.73 0.56 41.19

3 2

CONCLUSION

In this paper, we provided a detailed account of the CBRank

method for requirements prioritization.

The CBRank method follows the case-based paradigm for

problem solving, according to which a solution to a new

problem can be derived from (partial) examples of previous

solutions to similar problems. In the context of requirements

prioritization, these examples are elicited from project

stakeholders as pair wise preferences on samples of the set of

requirements to be prioritized, and used to compute an

approximated ranking for the whole set.

The machine learning technique exploited by the method has

been presented, both with the help of an intuitive example and

by describing the Rank Boost algorithm, which is

implemented in the method. The prioritization process based

on CBRank has been presented.

A discussion of the method performance, which is defined in

terms of tradeoff between preference elicitation effort and

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)
 Vol. 4, Special Issue 4, March 2017

159
All Rights Reserved © 2017 IJARTET

ranking accuracy and of its domain adaptively, has

been given, with the support of a set of different experimental

measurements and of a case study. The experimental

measurements were taken by applying CBRank to different

prioritization problems, varying the number of requirements,

the number of elicited pairs, and the accuracy of the computed

ranking. Indicators for the statistical significance of the

measurements have been provided.

Finally, the CBRank method has been positioned with respect

to state-of-the art approaches, with particular reference to the

AHP method, which can also be considered an instance of the

case-based problem solving paradigm.

Differently from AHP, the CBRank method enables a

prioritization process, even over 100 requirements, thanks to

the exploitation of machine learning techniques that induce

requirements ranking approximations from the acquired data.

FUTURE WORK
In Future work, we should address the non-

monotonic case and more sophisticated pair sampling policies,

possibly contributing to improving the effectiveness of the

method in more complex real settings. Further we implement

the CBRank method that are supports and coordination among

different stakeholders through negotiation. Further we analyze

the anytime prioritization method for real time software

project with resulting and ranking the requirements. The

requirements prioritization problem such as handling

requirements dependencies and “anytime” prioritization,

which is updating requirements ranking when new

requirements are added, its update every time ranking and

resulting is performed.

REFERENCES

[1] A. Aamodt and E. Plaza, “Case-Based Reasoning:

Foundational Issues, Methodological Variations, and System

Approaches,” Artificial Intelligence Comm., vol. 7, no. 1, pp.

39-59, 1994.

[2] V. Ahl, “An Experimental Comparison of Five

Prioritization Methods—Investigating Ease of Use, Accuracy

and Scalability,” master’s thesis, School of Eng., Blekinge

Inst. of Technology, Aug. 2005.

[3] Y. Akao, Quality Function Deployment: Integrating

Customer Requirements into Product Design. Productivity

Press, 1990.

[4] P. Avesani, C. Bazzanella, A. Perini, and A. Susi,

“Supporting the Requirements Prioritization Process. A

Machine Learning Approach,” Proc. 16th Int’l Conf. Software

Eng. and Knowledge Eng., pp. 306-311, June 2004.

[5] P. Avesani, C. Bazzanella, A. Perini, and A. Susi,

“Exploiting Domain Knowledge in Requirements

Prioritization,” Proc. 17
th

 Int’l Conf. Software Eng. and

Knowledge Eng., pp. 467 472, July 2005.

[6] P. Avesani, C. Bazzanella, A. Perini, and A. Susi, “Facing

Scalability Issues in Requirements Prioritization with Machine

Learning Techniques,” Proc. 13th IEEE Int’l Conf.

Requirements Eng., pp. 297-306, Sept. 2005.

[7] P. Avesani, S. Ferrari, and A. Susi, “Case-Based Ranking

for Decision Support Systems,” Proc. Fifth Int’l Conf. Case-

Based Reasoning: Research and Development, pp. 35-49,

2003.

[8] P. Avesani, A. Susi, and D. Zanoni, “Collaborative Case-

Based Preference Elicitation,” Proc. Int’l Conf. Innovations in

Applied Artificial Intelligence, pp. 752-761, 2005.

[9] K. Beck, Extreme Programming Explained. Addison-

Wesley, 1999.

[10] P. Berander and A. Andrews, “Requirements

Prioritization,” Eng. and Managing Software Requirements,

A. Aurum and C. Wohlin, eds., Springer, 2005.

[11] P. Berander, K.A. Khan, and L. Lehtola, “Towards a

Research Framework on Requirements Prioritization,” Proc.

Sixth Conf. Software Eng. Research and Practice in Sweden,

Oct. 2006.

[12] M. Daneva and A. Herrmann, “Requirements

Prioritization Based on Benefit and Cost Prediction: A Method

Classification Framework,” Proc. 34th Euromicro Conf.

Software Eng. and Advanced Applications, pp. 240-247, 2008.

[13] A. Davis, Just Enough Requirements Management:

Where Software Development Meets Marketing. Dorset

House, 2005.

[14] A. Finkelstein, M. Harman, S.A. Mansouri, J. Ren, and

Y. Zhang, “A Search Based Approach to Fairness Analysis in

Requirement Assignments to Aid Negotiation, Mediation and

Decision Making,” Requirements Eng., vol. 14, no. 4, pp. 231-

245, 2009.

[15] Y. Freund, R.D. Iyer, R.E. Schapire, and Y. Singer, “An

Efficient Boosting Algorithm for Combining Preferences,”

Proc. 15th Int’l Conf. Machine Learning, pp. 170-178, 1998.

[16] Y. Freund, R.D. Iyer, R.E. Schapire, and Y. Singer, “An

Efficient Boosting Algorithm for Combining Preferences,” J.

Machine Learning Research, vol. 4, pp. 933-969, 2003.

[17] T. Gilb, Competitive Engineering: A Handbook for

Systems Engineering, Requirements Engineering, and

Software Engineering Using Planguage. Elsevier, 2005.

