
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

697

All Rights Reserved © 2016 IJARTET

An In-Memory approach to facilitate Big

Data Processing for Web Search Engine

RagavanN
1
,Athinarayanan S

2

M.Tech Student1,Assistant Professor2

Department of Information Technology, PSN College of Engineering & Technology,

Tirunelveli, India.1,2

Abstract - Crawling, Indexing and Searching are the

important process of Search Engine. Search Engine

crawled data are so large or complex and it may be in

structured or unstructured format. This large data set

becomes Big Data and it is one of the emerging

technologies that have changed the world. Growing main

memory capacity has fueled the development of in-

memory big data management and processing. By

eliminating disk I/O bottleneck, it is now possible to

support interactive data analytics.This paper discusses

about Search Engines and its performance optimization

by storing the data in flat binary files and in In-memory

database.Data gathered from crawling resources are spilt

into Text and Numeric data and link need to be provided

based on Offset Indexing. Frequent access data need to be

loaded into Main memory using cache technologies such

as web-cache in Apache or IIS. Bulk data are stored in In-

memory databases like REDIS. Big Numeric data can be

stored in Flat File Binary Format such that they can be

loaded into RAM in a single read operation. As run time

disc access in flat file binary files are faster than

conventional files, big data are stored in terms of Binary

format which reduces the storage space than other file

formats. Some issues such as fault-tolerance and

consistency are also more challenging to handle in in-

memory environment. This paperalso analyzes the

challenging issues in the data-driven model in the Search

Engine Big Data.

Keywords -Big Data Analytics, In-Memory Analytics, Flat

Binary File, Bin File Processing

1. INTRODUCTION

1.1. GYM (Google, Yahoo, Microsoft)

Normally search engine analyzes the contents of each
page to determine how it should be indexed (for
example, words can be extracted from the titles, page

content, headings, or special fields called meta tags).
The explosion of Big Data has prompted much research
to develop systems to support ultra-low latency
service.In 1995, when the number of“usefully
searchable” Web pageswas a few tens of millions, it
waswidely believed that “indexing thewhole of the
Web” was alreadyimpractical or would soon become
sodue to its exponential growth. The GYMsearch
engines—Google, Yahoo!, andMicrosoft are indexing
almost athousand times as much data andbetween them
providing reliable sub-secondresponses to around a
billionqueries a day in a plethora oflanguages.Now a
day’s many Search Engine providers (Google, Yahoo)
are implementing their own custom file system in order
to store the crawl big data efficiently. Google
developed its own file system called GFS [11] (Google
File System).

1.2. Disc based system

Database systems have been evolving over the last few
decades, mainly driven by advances in hardware,
availability of a large amount of data, emerging
applications and so on. The data management systems
are increasingly fragmented based on application
domains. A major challenge for organizations is quickly
accessing and moving huge quantities of data.
SSDs[12] help with this because they have no moving
parts and thus can access data faster than hard drives,
which must rotate to a given position before being able
to read information. “SSDs[12] will serve as the
working memory for big-data analysis. SSDs[12] are 10
times more expensive per gigabyte of capacity than
hard drives.

1.3 In-Memory Analytics

In-memory analytics is an approach to querying data
when it resides in a computer’s random access memory

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

698

All Rights Reserved © 2016 IJARTET

(RAM)[12], as opposed to querying data that is
stored on physical disks. This results in vastly
shortened query response times, allowing business
intelligence (BI) and analytic applications to support
faster business decisions. As the cost of RAM[12]
declines, in-memory analytics is becoming feasible for
many businesses. BI and analytic applications have
long supported caching data in RAM, but older 32-bit
operating systems provided only 4 GB of addressable
memory. Newer 64-bit operating systems, with up to 1
terabyte (TB) addressable memory (and perhaps more
in thefuture), have made it possible to cache large
volumes of data potentially an entire data warehouse or
data mart in a computer’s RAM.In addition to
providing incredibly fast query response times, in-
memory analytics can reduce or eliminate the need for
data indexing and storing pre-aggregated data in OLAP
cubes or aggregate tables. This reduces IT costs and
allows faster implementation of BI and analytic
applications.

1.4 Big Data and Storage Challenge

Fisher et al. [1] pointed out that big data means that the
data is unable to be handled and processed by most
current information systems.Laney [2] presented a well-
known definition (also called 3Vs) to explain what is
the “big” data: volume, velocity, and variety. Later
studies [3, 4] pointed out that the definition of 3Vs is
insufficient to explain the big data we face now.
Traditional disk storage analytics may not be able to
handle such large quantities of big data.New storage
technologies are not in the near future. For that existing
technologies led by the venerable hard drivewill have to
step up.Now a day’s many Search Engine providers
(Google, Yahoo) are implementing their own custom
file system in order to store the crawl big data
efficiently.Google developed its own file system called
GFS (Google File System). The report of IDC –
International Data Corporation [5] indicates that the
marketing of big data is about $16.1 billion in 2014.
Another report of IDC [6] forecasts that it will grow up
to $32.4 billion by 2017. The reports of [7] and [8]
further pointed out that the marketing of big data will
be $46.34 billion and $114 billion by 2018,
respectively. So there is a great storage challenge of big
data.

Sampling and compression are two representative data
reduction methods for big data analytics because
reducing the size of data makes the data analytics
computationally less expensive, thus faster, especially
for the data coming to the system rapidly. In addition to

making the sampling data represent the original data
effectively [9], how many instances need to be selected
for data mining method is another research issue [10]
because it will affect the performance of the sampling
method in most cases.

1.5In-Memory Database - REDIS

Redis is an open source (BSD licensed), in-memory
data structure store, used as database, cache and
message broker. It supports data structures such as
strings, hashes, lists, sets, with range queries, bitmaps
and geospatial indexes with radius queries. Redis has
built-in replication scripting, and different levels of on-
disk persistence, and provides high availability via
Redis Sentinel and automatic partitioning with Redis
Cluster. Redis is not a plain key-value store, actually it
is a data structures server, supporting different kind of
values. What this means is that, while in traditional
key-value stores you associated string keys to string
values, in Redis the value is not limited to a simple
string, but can also hold more complex data structures.
Redis hashes look exactly how one might expect a
"hash" to look, with field-value pairs.

2.0. SYSTEM IMPLEMENTATION

Our proposed system discusses about Search Engines
and its performance optimization by storing the data in
flat binary files and in In-memory database. Data
gathered from crawling resources are spilt into Text and
Numeric data and link need to be provided based on
Offset Indexing. Frequent access data need to be loaded
into Main. Bulk data are stored in In-memory databases
like REDIS. Big Numeric data can be stored in Flat File
Binary Format such that they can be loaded into RAM
in a single read operation.

2.1 Preparing In-Memory Dataset

Crawling and parsing are the main functionalities of
search engine.Crawl data are parsed using Content
Parsing algorithm and keywords (user search criteria)
are generated and auto ids are assigned to each
keyword. These keywords are stored in RDBMS. The
Crawled Web page URLs are maintained in No SQL
distributed database. The relationship between Web
Page and its parsed keywords are stored as big data flat
binary file format since the run time disc access in flat
file binary files are faster than conventional files, also
Binary format which reduces the storage space up to
35% than other file formats.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

699

All Rights Reserved © 2016 IJARTET

Fig.2.1.a.REDIS Client developed in PHP

Newly generated keywords in RDBMS are and loaded
into In-Memory database with key-value hash structure
in a distributed architecture fashion periodically. In our
proposed system MYSQ is used as RDBMS which
holds the Keyword details. As billons of single
keywords and millions of complex keywords are
needed to be stored, we have maintained 26 keywords
table as per alphabetical order.

For example, if the newly arrived single keyword is
“PSN”, and complex-keyword is “PSN College of
Engineering”, then these keywords will go to the P-
keyword table. A REDIS client service is then to be
implemented in any language (PHP) as shown in
Fig.2.1.a. The REDIS server accepts request from
REDIS client by listening at a specified port 6379. The
REDIS client will look up into MYSQL keywords table
and loaded into the In-Memory database (REDIS) in
specified frequent interval of time.

2.2 Preparing In-Memory FileSystem

In our proposed system, the search engine crawled data
are separated into numeric and text. Mostly the text data
are served as master data (ex: resultant page urls) and
the numeric data are served as detail data such as
resultant page_ids after searching from user side. It
seems, detail data are redundant in nature. So numeric
data are redundant which occupy more space than
master data. In Web Search Engine system, text data
are maintained in RDBMS and numeric data are stored

in terms of binary file system. The crawled pages’
master level entries are then saved into database and the
remaining numeric type page details such as page_id,
keyword_ids are stored in binary files. Here the binary
files contain headers, blocks of metadata used by
a computer program (usually in c++) to interpret the
data in the file. The header often contains a signature
or magic number which can identify the format. The
header file which contains metadata is stored in
memory, so that master operations are fast.
Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the
background. This periodic scanning is used to
implement dynamic loading, free-up the files from
memory. The master file size is small and it often
contains the detail file offset details. Detail files on the
other hand grow up to any limit. It can reach up to
Terra size. Since detail files are lookup by means of
hop method during runtime by search routine, it is not
fully loaded into the memory. This requires offset data
(gathered from master file) that are dynamically
retrieved in a single read.
Two types of binary files are created in proposed
system namely PageMaster.bin and PageDetail.bin

A. PageMaster.bin:

There are 5 columnar fields and these data will be

stored in a single column format. That is

KeywordCount column data will be stored first. After

that KeywordIds values will be stored and so on.

Fig.2.2.a. shows the PageMaster.bin prototype.(which

contains 100 keywords from 500 crawled pages).

Fig.2.2.a.
PageMaster.bin
prototype

Fig.2.2.b.PageDetail.bin prototype

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

700

All Rights Reserved © 2016 IJARTET

(i) KeywordCount:- Total Unique

Keywords count. This values is stored as an

unsigned integer 32 bit.

(ii) KeywordIds:- Available KeywordIds that are

generated from the crawled data.

(iii) KeywordPageOffset:- Each keyword may

belong to so many crawled web-pages. Each

keyword Page Index are stored in detail bin

file. The page index offset in PageDetail.bin

per each keyword is called

KeywordPageOffset

(iv) PagesCount:- Total Unique Keywords count.

This values is stored as an unsigned integer 32

bit.

(v) PageIds:- Available Unique PageIds from the

Unique Keywords. Since in big data crawling,

the crawled web page is increasing day by day.

So it is needed to store/assign page Id as an

unsigned long data type (64 bit).

B. PageDetails.bin

This binary file maintains the Page-Indexes found for

each unique keyword from Master file. The size of the

file will be directly proportional to the number of

keywords found in the crawled web pages. So in case of

web page article having more text content (especially

Wikipedia), then the detail file size will grow in TB

range. In such cases, detail files can be split into

reasonable equal size junk files. Based up the

KeywordPageOffset in master file, the corresponding

detail file will be fetched. The reason for using page

index instead of page id is, some keywords belong to

more than one pages, so that duplicate page ids are

required to maintain in detail file. As the data type of

page id is specified as unsigned long type (64 bit),

storing duplicate entries will greatly increasethe bin file

size. So page index (32 bit) is used here. This is shown

in Fig.2.2.b

III. RESULTS AND DISCUSSION

In our proposed system, Search Engine big data are
stored in terms of Binary format which reduces the
storage space up to 35% than other file formatsas
shown in Fig.3.1. REDIS client is developed in PHP.
Redis client can be launched either into the browse or

execute the Redis client in the server terminal and
Redis Server should be started at port no:
6379.Keywords areloaded into In-memory Redis. Flat
master binary files created from search engine crawled
data are loaded into memory using search routine and it
is ready to accept request from user side. Once request
arrived, the keyword id is fetched from in-memory
redis.

Fig.3.1. Big Data File size between Conventional and
Flat binary file system.

Conventional DB lookup timing for 1 million records is
around 20 milliseconds (average) In Redis In-Memory
database, the memory lookup time: 3 to 7 millisecond.
For mass amount of data, DB look is increasing
geometrically (without indexing), whereas for Redis In-
memory database it is constant independent of number
of data. Thus DB logging bottleneck is eliminated in
memory database systems. Speed efficiency increased
to = 285 %. Fig 3.2.shows the DB lookup performance
of conventional vs in-memory method.

Fig 3.2.DB lookup performance of conventional vs in-
memory method.

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

701

All Rights Reserved © 2016 IJARTET

IV. CONCLUSION

The important feature of the big data files is that can be
loaded into RAM in a single read operation. This
increases the loading performance. Once the page
master level entries are loaded into the memory
structure, its relevant detail entries are fetched in hop
method from the detail file. Its relevant offset positions
maintained the master files are pre-loaded into the
memory data structure. So the run time disc accesses in
flat file binary files are faster than conventional files.
Also big data are stored in terms of Binary format
which reduces the storage space up to 35% than other
file formats.Since the frequently accessed data such as
user searchable keywords are placed in In-Memory
database, whenever user searches any keywords, the
keyword ids are fetched from REDIS database in less
than 1 milli second. Then by using the keyword id,
required master and detail binary files are selected. The
resultant page-ids are fetched from detail binary file by
using the key-offset from master bin file. As master
binary files are already loaded into RAM during the
startup of search routine, this idea increases the
searching performance of search engine.

ACKNOWLEDGEMENT
The researchers duly acknowledge the support provided
by the Management and Principal of PSN College of
Engineering and Technology -Tirunelveli by means of
providing all the research facilities.

REFERENCES
[1] Fisher D, DeLine R, Czerwinski M, Drucker S. Interactions

with big data analytics. Interactions. 2012;19(3):50–9.

[2] Laney D. 3D data management: controlling data volume,
velocity, and variety, META Group, Tech. Rep. 2001. [Online].
Available: http://blogs.gartner.com/doug-laney/files/2012/01/
ad949-3D-Data-Management-Controlling-Data-Volume-
Velocity-and-Variety.pdf.

[3] van Rijmenam M. Why the 3v’s are not sufficient to describe
big data, BigData Startups, Tech. Rep. 2013. [Online].
Available: http://www.bigdata-startups.com/3vs-sufficient-
describe-big-data/.

[4] Borne K. Top 10 big data challenges a serious look at 10 big
data v’s, Tech. Rep. 2014. [Online]. Available: https://www.
mapr.com/blog/top-10-big-data-challenges-look-10-big-data-v.

[5] Press G. $16.1 billion big data market: 2014 predictions from
IDC and IIA, Forbes, Tech. Rep. 2013. [Online].
Available: http://www.forbes.com/sites/gilpress/2013/12/12/16-
1-billion-big-data-market-2014-predictions-from-idc-and-iia/.

[6] Big data and analytics—an IDC four pillar research area, IDC,
Tech. Rep. 2013. [Online]. Available: http://www.idc.com/
prodserv/FourPillars/bigData/index.jsp.

[7] Taft DK. Big data market to reach $46.34 billion by 2018,
EWEEK, Tech. Rep. 2013. [Online]. Available: http://www.
eweek.com/database/big-data-market-to-reach-46.34-billion-by-
2018.html.

[8] Research A. Big data spending to reach $114 billion in 2018;
look for machine learning to drive analytics, ABI Research,
Tech. Rep. 2013. [Online]. Available: https://www.abiresearch.
com/press/big-data-spending-to-reach-114-billion-in-2018-loo.

[9] Cormode G, Duffield N. Sampling for big data: a tutorial. In:
Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014. pp 1975–1975.

[10] Satyanarayana A. Intelligent sampling for big data using
bootstrap sampling and chebyshev inequality. In: Proceedings
of the IEEE Canadian Conference on Electrical and Computer
Engineering, 2014. pp 1–6.

[11] S. Ghemawat, H. Gobioff, and S.-T.Leung, “The google file
system,” in Proc. 19th ACM Symp. Operating Syst.
Principles, 2003,pp. 29–43.

[12] Hao Zhang, Gang Chen, "In-Memory Big Data Management

and Processing: A Survey", IEEE transactions on knowledge
and data engineering, VOL. 27, NO. 7, JULY 2015

[13] S. Sanfilippo and P. Noordhuis. (2009). Redis [Online].
Available: http://redis.io

