
ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

605

All Rights Reserved © 2016 IJARTET

Constructing and Maintaining Large Web

Repositories through Continuous Web Crawling
J.Tamilselvan#1, Dr. A.Senthirajan*2

1
Department of Computer Science

2
Director, Computer Centre

1tamilselvan@ymail.com
2agni_senthil@yahoo.com

1
K.S.Rangasamy College of Arts and Science (Autonomous)

Tiruchengode, Tamilnadu, India
2
Alagappa University, Karaikudi, Tamilnadu, India

Abstract— This paper describes a scalable, extensible web

crawler with continuous crawling to build and maintain the

corpora. While crawling web sites, a crawler has to decide an

optimal order in which to crawl and re-crawl web pages. Web

crawlers are used for a variety of purposes. Most prominently,

they are one of the main components of web search engines,

systems that assemble a corpus of web pages, index them, and

allow users to issue queries against the index and find the web

pages and relevant content that match the queries.

Keywords— crawler, corpora, web, frontier, seed, URL.

I. INTRODUCTION

A crawler is a program that retrieves and stores

pages from the Web, commonly for a Web search engine. A

crawler often has to download hundreds of millions of pages

in a short period of time and has to constantly monitor and

refresh the downloaded pages. In addition, the crawler should

avoid putting too much pressure on the visited Web sites and

the crawler’s local network, because they are intrinsically

shared resources.

A Web crawler is a program that downloads Web

pages, commonly for a Web search engine or a Web cache.

Roughly, a crawler starts off with an initial URL S1. It first

places S1 in a queue, where all URLs to be retrieved are kept

and prioritized. Spidering a website, link by link, will work

for most of the websites. However, it can be a kind of tedious

to examine each different kind of page to figure out the link

structure. But when we do a little survey and experimentation,

we may find a pattern in the site's URL that we use to save

ourselves a considerable amount of time.

The most obvious examples are sites that paginate their

information or with numbered URL parameters. The

Judgments Information system consists of the Judgments of

the Supreme Court of India and several High Courts has

30,000+ datasets (Judgments).

http://judis.nic.in/supremecourt/imgst.aspx?filename=1

Gets the page of the judgment S1

http://judis.nic.in/supremecourt/imgst.aspx?filename=2
Gets the judgment of S2 and subsequently when the filename

(URL parameter value) is incremented with the continuous

values for filename it produces the S3, S4, S5 and so on.

A. Crawler

The basic operation of any hypertext crawler is as

follows. The crawler begins with one or more URLs that

constitute a seed set. It picks a URL from this seed set, and

then fetches the web page at that URL. The fetched page is

then parsed, to extract both the text and the links from the

page. The extracted text is fed to a text indexer. The extracted

links (URLs) are then added to a URL frontier, which at all

times consists of URLs whose corresponding pages have yet

to be fetched by the crawler. Initially, the URL frontier

contains the seed set; as pages are fetched, the corresponding

URLs are deleted from the URL frontier. The entire process

may be viewed as traversing the web graph. In continuous

crawling, the URL of a fetched page is added back to the

frontier for fetching again in the future if needed. This is a

simple traversal of the web graph which is complicated by the

many demands on a practical web crawling system, the

crawler has to be distributed, scalable, efficient, polite, robust

and extensible while fetching pages of high quality.

B. Features of Crawler

Distributed: The crawler should have the ability to execute in

a distributed fashion across multiple machines.

Scalable: The crawler architecture should permit scaling up

the crawl rate by adding extra machines and bandwidth.

Performance and efficiency: The crawl system should make

efficient use of various system resources including processor,

storage and network band-width.

Quality: Given that a significant fraction of all web pages are

of poor utility for serving user query needs, the crawler

should be biased towards fetching “useful” pages first.

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

606

All Rights Reserved © 2016 IJARTET

Freshness: In many applications, the crawler should operate

in continuous mode: it should obtain fresh copies of

previously fetched pages. A search engine crawler, for

instance, can thus ensure that the search engine’s index

contains a fairly current representation of each indexed web

page. For such continuous crawling, a crawler should be able

to crawl a page with a frequency that approximates the rate of

change of that page.

Extensible: Crawlers should be designed to be extensible in

many ways to cope with new data formats, new fetch

protocols, and so on. This demands that the crawler

architecture be modular.

C. Crawler Architecture

The simple scheme given for crawling demands

several modules that fit together as shown in Figure 1 and in

Figure 2 the flow of continuous crawler is given.

1. The URL frontier, containing URL to be fetched in the

current crawl (for continuous crawling, a URL have been

fetched previously).

2. A DNS resolution module that determines the web server

from which to fetch the page specified by a URL.

3. A fetch module that uses the http protocol to retrieve the

web page at a URL.

4. A parsing module that extracts the text and stores it as

corpus.

5. A duplicate elimination module that determines whether an

extracted link is already in the URL frontier or has recently

been fetched.

D. Features Affecting Performance of Web Crawler

A critical look at the available literature [1] [2] [3]

indicates the following issues that need to be addressed:

Issue 1: Overlapping of web documents: Overlap problem

occurs when multiple crawlers running in parallel download

the same web document multiple times.

Issue 2: Quality of downloaded web documents: The quality

of downloaded documents can be ensured only when web

pages of high relevance are downloaded by the crawlers.

Issue 3: Network bandwidth/traffic problem: In order to

maintain the quality, the crawling process is carried out using

either of the following approaches:

• Crawlers can be generously allowed to communicate

among themselves or

• They cannot be allowed to communicate among

themselves at all.

Both approaches put extra burden on network traffic.

Issue 4: Change of web documents: Changing and adding of

web documents is a continuous process. This change must be

reflected at the repository failing which a user may have to

access an obsolete web document.

II. RELATED WORK

Web crawlers also known as robots, spiders, worms,

walkers, and wanderers are almost as old as the web itself.

Lots of previous work has focused on the crawling ordering

strategy so far [5][6].. The first crawler, Matthew Gray's

Figure 2: Flow of Continuous Crawler

Figure 1: Components of Web Crawler

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

607

All Rights Reserved © 2016 IJARTET

i=1

Wanderer, was written in 1993, roughly coinciding with the

first release of NCSA Mosaic [4]. Several papers about web

crawling were presented at the first two World Wide Web

conferences [7,8,9]. However, at the time, the web was two to

three orders of degree smaller than it is today, so those

systems did not address the scaling problems inherent in a

crawl of today's web to improve the performance, but still

these algorithms are computationally expensive.

As an alternative here a new URL numbering algorithm

is proposed. Major advantage is that it will be relatively

inexpensive. Website can process their contents efficiently.

III. PROPOSED ALGORITHM

To achieve better results for above mentioned factors of

web crawler a URL numbering algorithm is proposed. In this

algorithm a new site rank is calculated which covers all three

types of web mining technique i.e. web content mining, web

usage mining and web structure mining.

As a result of using all three web mining technique

covering all issues it is believed to achieve an efficient site

rank and corpora build algorithm.

Algorithm steps are as follows:-

1 Input a URL.

2 Extract whole site.

3 Remove the stop word and suffix.

4 Calculate tern weight using TF-IDF.

5 Now calculate content similarity.

A. Algorithm Explanation

A web crawler’s working start with a seed URL. Every URL

is associated with a web page or site. Then content of page

are downloaded. We know that all content are not important.

To weight the page in accordance to importance its stop word

and suffix are removed. By this content to be used for ranking

and querying it become less in size and more relevant.

1) Stoplisting and Stemming

When parsing a web page to extract content information or in

order to score new URLs suggested by the page, it is often

helpful to remove commonly used words or stopwords. This

process of removing stopwords from text is called stoplisting.

In addition to stoplisting, one may also stem the words found

in the page. The stemming process normalizes words by

conflating a number of morphologically similar words to a

single root form or stem.

2) TF - IDF (Term Frequency – Inverse Document

Frequency)

In information retrieval, the term frequency – inverse

document frequency also called tf-idf, is a well known

method to evaluate how important is a word in a document

(page). tf-idf are also a way to convert the textual

representation of information into a Vector Space Model

(VSM).

The first step in modeling the document into a vector

space is to create a dictionary of terms present in documents.

To do that, all terms from the document are selected and

converted it to a dimension in the vector space.

Term weight wi = tfi * log (D/dfi)

Where

tfi = term frequency (term counts) or number of times a term

i occurs in a document.

dfi = document frequency or number of documents containing

term i.

D = number of documents in a database.

Weights are represented as the normalized product

of Logarithmic Term Frequency and Inverse Document

Frequency (L.T.F.-I.D.F.). The tf-idf weight is a weight often

used in information retrieval and text mining. This weight is a

statistical measure used to evaluate how important a word is

to a document in a collection or corpus. The importance

increases proportionally to the number of times a word

appears in the document. It is a way to score the importance

of words (or "terms") in a document based on how frequently

they appear across multiple documents.

Finding Word Associativity: Word associativity are

measured by the probability of simultaneous occurrences of

words present in the corpora.

P(w1,w2)=1/W ∑
(
P(w1|zi)*(zi|w2))

Given a particular measure of page importance we

can summarize the performance of the crawler with metrics

that are analogous to the information retrieval (IR) measures

of precision and recall. Many authors provide precision-like

measures that are easier to compute in order to evaluate the

crawlers.

Acquisition rate: In cases where we have Boolean relevance

scores we could measure the explicit rate at which “good”

pages are found. Therefore, if 50 relevant pages are found in

the first 500 pages crawled, then we have an acquisition rate

or harvest rate [1] of 10% at 500 pages.

T

ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

608

All Rights Reserved © 2016 IJARTET

IV. EXPERIMENTS

A. Data Collection

In this section, experimental studies which will be

carried on real data that will be acquired from internet by

proposed crawler and it is the Data set which can be used for

any kind of Information Retrieval. The proposed URL

ordering crawler will be checked with the density of the word

packed by the related documents built text corpora.

Web Crawler is implemented in Python on windows

platform and experiments are done on Intel core2duo series

CPU with 3GB RAM.

B. Evaluation Method

In order to measure the performance of the proposed

ranking algorithm, it can be evaluated in two ways. First, top

100 URLs returned by the above mentioned algorithm will be

used. A criterion is framed such as similarity to descriptions

of relevant pages. This will be indication for site

recommendation. Also, pages of spam sites should be

identified. Minimum number of overlapping document, more

relevant page, less traffic consume less bandwidth and most

updated page storage are to be considered as far as this type

of continuous ordering crawlers produce mere common

contents as the crawler fetches from the same site of different

contents.

The time taken by the crawler is completely based on the

interval of visits to the same server; this interval is the most

effective way of avoiding server overload. Commercial

search engines like Google, Ask Jeeves, MSN and Yahoo!

Search are able to use an extra "Crawl-delay" parameter in

the robots.txt file to indicate the number of seconds to delay

between requests.

V. RESULTS

As all the three web mining technique are employed in

the above algorithm. Using website logs is inexpensive.

Semantic relevance chooses more accurate probability.

According to their relevance a weight factor is multiplied to

obtain more accurate site score. Weight factor also plays an

important role in obtaining more precious results. It is

expected that it will give better result. It is able to fulfill those

above mentioned issues. First is less overlapping, to be

obtained as different content, page popularity and update

frequency give precious score. Secondly, a good score will

help in download a highly relevant page first, so better quality

expected. Thirdly, when sites are carefully prioritized there

are chances of less ambiguousness and frequent unnecessary

traffic can be avoided. Finally, change frequency is also taken

into consideration which helps to retrieve most updated page.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed architecture for the web -

crawling using continuous crawler techniques. This paper

also shows the method to convert unstructured data into

structured data. A new URL continuous ordering algorithm is

proposed based on the content similarity, popularity

information from web logs and site updating frequency. It is

expected to perform well and better than traditional crawlers

which are used to build web corpora. It also has a drawback

that pages of different languages has not been accessed are

dealt severely and also do not have good updating frequency.

Focused crawling, proposed by Chakrabati([10]), is designed

to narrow the acquisition to web segments that represent a

specific topic. Only few approaches are known for language

specific crawling. Our opinion is that focusing on a specific

language and domain area are more specific when the content

of the documents is taken into account.

REFERENCES

[1] Bhaskar Reddy, Kethi Reddy, “Improving efficiency of web crawler
algorithm using parametric variations” Ph.d thesis submitted in June 2010 at

Thapar University India.

[2] Shaojie Qiao, Tianni Li, Jiangtao Qiu, “SimRank: A Page Rank Approach

based on Similarity Measure” 2010 IEEE.

[3] Hongzhi Guo, Qingcai Chen, Xiaolong Wang, Zhiyong Wang, Yonghui

Wu, “STRank: A SiteRank Algorithm using Semantic Relevance and Time
Frequency” Proceedings of the 2009 IEEE International Conference on

Systems, Man, and Cybernetics.

[4] Internet Growth and Statistics: Credits and Background.

http://www.mit.edu/people/mkgray/net/background.html

[5] DilipKumar Sharma, A.K.Sharma “A Comparative Analysis of Web Page

Ranking Algorithms” (IJCSE) International

Journal on Computer Science and Engineering Vol. 02, No. 08, 2010, 2670 -

2676

[6] Neelam Duhan, A. K. Sharma, Komal Kumar Bhatia, “Page Ranking
Algorithms: A Survey”, 2009 IEEE International Advance Computing

Conference (IACC 2009).

[7] David Eichmann, “The RBSE Spider -- Balancing Effective Search

Against Web Load”, In Proceedings of the First International World Wide

Web Conference, pages 113--120, 1994.

[8] Oliver A. McBryan, “GENVL and WWW: Tools for Taming the Web”,
In Proceedings of the First International World Wide Web Conference, pages

79--90, 1994.
[9] Brian Pinkerton, “Finding What People Want: Experiences with the

WebCrawler”, In Proceedings of the Second International World Wide Web

Conference, 1994.

[10] S.Chakrabarti, M.VandenBerg, and B.Dom, “Focused crawling: a new

approach to topic-specific Web resource discovery”, Computer Networks

(Amsterdam, Netherlands:1999), 31(11–16):1623–640,1999.

