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Abstract— In this paper, we establish sufficient 

conditions for the global relative controllability of linear 

and nonlinear fractional dynamical systems with 

distributed delays and ……                                             

impulses in control for finite dimensional spaces. The 

results are obtained by using the Mittag-Leffler functions 

and Schauder –fixed point theorem. A numerical example 

is given to illustrate the obtained main results.    
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I.    INTRODUCTION 

In recent years, development of adequate techniques for 
fractional systems has been in focus of scientific attention 
because of its outstanding importance for a number of physical 
applications such as physics, mechanics, chemistry, 
engineering,etc. Controllability is one of the fundamental 
concepts in mathematical control theory. It means that it is 
possible to steer a dynamical system from an arbitrary initial 
state to an arbitrary final state by using a set of admissible 
controls.  

Time delays are often present in various engineering 
systems such as biological, economical systems, chemical 
processes. For instance, they appear as transportation and 
communication lags and also arise as feedback delay in 
measurement and closed loop systems. Due to the transmission 
of signal, the mechanical transmission needs a length of time. 
Klamka [4,7] studied the controllability of nonlinear dynamical 
systems with distributed delays in control with the Schauder’s 
fixed point theorem, whereas Balachandran  and 
Somasundaram [8]obtained the relative controllability of 
nonlinear systems with distributed delays in control and 
implicit derivative using Darbo fixed point theorem.Impulsive 
control systems with integer derivative have been investigated 
in[6,8-10].  

However, to the best of our knowledge, the relative 
controllability  fractional dynamical systems with distributed  

 

 

delays in control with impulses has not been established yet. In 
order to fill this gap, In this paper, we study the relative 
controllability for both linear and nonlinear fractional 
dynamical systems with distributed delays in control with 
impulses. 

 

II.     PRELIMINARIES 

Let	�, �	 � 0,��	
	� � 1 � � � �, � � 1 � � � � and � ∈ �, D be  the usual differential operator. Let �� be the m-
dimensional Euclidean space, �� � �0,∞�, and suppose  � ∈ ������. 

The Riemann-Liouville fractional operator is defined as 
follows: 

����� ���	� � ��� �! �	 � "��#�$� ��"�%", 
The Caputo fractional derivative is defined as follows 

�&'()* ���	� � ���+#��! �	 � "�+#�#�$� �+�"�%", where the   

Function f(t) has absolutely continuous derivatives upto     
order (n-1). 

The Mittag-Leffler function is defined as follows: 

,�,-�.� � ∑ 01���2�-�324� , for �, � � 0 

The following properties of the previously mentioned 
operators are specially interesting: 

    ���		56'
0
)�
17 � 0. 

   	����		56'
0
)�
17 � $8*

Γ�1#��. 
  	�����		�0�� 	:��	� ; <�	�= � �0�� 	:��	� ; �0�� <�	�=. 
  	��>�		�0�� 	�0�- ��	� � 		 �0���-��	� � �

0�- 	�0�� ��	�. 			�>�		?0�� �0�� � ��	�.  
   �>��	�	0�� 6'

0
)� 	��	� � ��	� � ��0�, 0 � � � 1. 
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			�>���?
0�- 	?0�� ��	� 	@ ?

0���-��	�,	and 

             ?
0�- 	?0�� ��	� 	@ ?0�� 	?0�- ��	�.	 

   �>���� The Laplace Transform of the Caputo fractional       

 derivative is  																AB	?0�� ��	�C�"� � "�D�"� � ∑ �2:0�="�#2#1+#1240 . 

From the aforementioned list, we notice that, in general, both 

the Riemann-Liouville and the Caputo fractional operators 

possess neither semigroup nor commutative properties, which 

are inherent to the derivatives of integer order. However, with 

some restrictions, for example with 0 � � � 1 and f is a 

continuous function in �E, FG, both the properties hold true for 

both of the previously mentioned operators. 

III.     MAIN RESULTS 

Linear Systems 
              Consider the linear fractional dynamical system with 

distributed delays in control and impulses are represented by 

the fractional differential  equation of the form 

&'()* H�	� � IH�	� ; J%K�
#L

M�	, N�O�	 ; N�, 	 ∈ �0, PG ≔ R, 
																																		0 � � � 1 

      ∆y�tU� � y�tU�� � y�tU#� � IU:y�tU��=, i � 1,2, …… , k 

         H�0� � H�                                                       (1) 

Where H ∈ �+ and the integral is in the Lebesgue-Stieltjes 

sense with respect  to N.	 Let  h > 0 be given. For function O: ��
, PG → �� and 	 ∈ R,we use the symbol O$ to denote 

 the function on [-h,0] ,defined by O$�"� � O�	 ; "�		for " ∈ ��
, 0�. A is a � ] � matrix,M�	, N�, is an � ] ^ 

dimensional matrix continuous in t for fixed N and is of     

bounded variation in	N on [-h,0] for each 	 ∈ R and continuous 

from left in N on the interval (-h,0).�_: �+ → �+ is continuous 

for i =1,2,….,k. 

The following definitions of complete state and relative 

controllability f system (1) are assumed [8,10]. 

Definition 3.1.  

               The set  H�	� � BH�	�, O$C is the complete state of the 

system (1) at time t. 

Definition 3.2.  
             System (1) is said to be globally relatively controllable 

on J if for every complete state x(0) and every vector H� ∈ �+ 

there exists a control u(t) defined on J such that the 

corresponding trajectory of the system (1)satisfies  H�P� � H�. 

The solution of the system (1) is given by the following 

expression [29,30] 

H�	� � ,��I	��H� ;J�	 � "��#�$
�

,�,��I�	 � "��� 
`! %KM�", N�O�" ; N��#L a %" ; ∑ �b_b4� �H�	b#��          (2) 

Where ,��I	�� is the Mittag-Leffler matrix function. Now 

using the well known result of unsymmetric Fubini theorem 

[19] and change of order of integration to  before the last term 

,we have    H�	� � ,��I	��H� ; ∑ �b_b4� �H�	b#�� ;! %MK�#L �! �	 �$�																	"��#� ,�,��I�	 � "���O�" ; N�M�", N�G%" 

        =,��I	��H� ; ∑ �b_b4� 5H:	b#=7 ;! %MK�#L `! :	 ��K																�" � N�=�#� ,�,�:I:	 � �" � N�=�=M�" �																	N, N�O��"�%"a ; ! �! :	 � �" � N�=�#��#L$� ,�,� 															:I:	 � �" � N�=�=%KM$�" � N, N�GO�"�%"         (3)                 

Where M$�", N� � cM�", N�,			" d 	0,				" � 	 e 
and %MK denotes the integration of Lebesgue Stieltjes sense 

with respect t the variable N in the function M�	, N�. 
Define f�	, "� � ! �! :	 � �" � N�=�#��#L$� ,�,�:I:	 �																																�" � N�=�=%KM$�" � N, N�                    (4)         

and the controllability Grammian matrix g�0, P� � ! f�P, "�f∗�P, "�%"i�   

where the * indicates the matrix transpose. 

 

Theorem 3.1. The linear control system (1) is relatively 

controllable on [0,T] if and only if the controllability 

Grammian matrix g � ! f�P, "�f∗�P, "�%"i�                    (5)   

is positive definite, for some P � 0.  
Proof. 

      Define the control function		O�	� � f∗�P, 	� g#��H��,��I	��H� � ∑ �b_b4� �H�	b#��  �! %MK�#L �! :P � �" � N�=�#��K ,�,�:I:P � �" �N�=�=M�" � N, N�O��"�%"G�																																																							(6)  

Since W is positive definite,that is ,it is non-singular and so its 

inverse is well-defined. 

Where the complete state x(0) and the vector H� ∈ �+ are 

chosen arbitrarily. Inserting (6) in (3) and using (4), we have H�P� � ,��IP��H� ; ∑ �b_b4� �H�	b#��  
												; J%MK�

#L
�J:P � �" � N�=�#��
K

,�,�:I:P
� �" � N�=�=M�" � N, N�O��"�%"G	 

               			; ! �! :P � �" � N�=�#��#Li� ,�,�:I:P �																																				�" � N�=�=%KMi�" � N, N�G  
                  ]    �! :P � �" � N�=�#��#L ,�,�:I:P �																					�" � N�=�=%KMi�" � N, N�G *    

                   g#��j��,��IP��j� � ∑ �b_b4� �H�	b#�� 
                     –! %MK�#L �! :P � �" � N�=�#��K ,�,�:I:P �																								�" � N�=�=M�" � N, N�O��"�%"G�	%N 

            =	H� . 
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Thus the control u(t) transfers the initial state 

x(0) to the desired vector   H� ∈ �+ at time T .Hence the 

system (1) is controllable . 

    Suppose that the system (1) is controllable on J, but W is 

not positive definite, then there  exists a nonzero x such that j∗gj � 0, that is j∗ ! f�P, "�f∗�P, "�j%"i� � 0, j∗f�P, "�  � 0, on  [0,T]. 

     Let H� � �,��IP��G#�H. By the assumption, there exists 

an input u such that it steers the complete initial state  j�0� � BH�, O��"�C to the origin to the interval [0,T].It follows 

that H�P� � ,��IP��H� ;∑ �b_b4� 5H:	b#=7 ;! %MK�#L  

                  �! :P � �" � N�=�#��K ,�,�:I:P � �" � N�=�= M�" � N, N�O��"�%"G	 
                  ;! �! :P � �" � N�=�#��#Li� ,�,�:I:P � �" � N�=�= 																											%KMi�" � N, N�GO�"�%"  
       � j ; ! %MK�#L �! :P � �" � N�=�#��K ,�,�:I:��" �													N�=�=M�" � N, N�O��"�%"G	+∑ �b_b4� �H:	b#= ;! �! :P � �" � N�=�#��#Li� ,�,�:I:P � �" � N�=�=%KMi�" �						N, N�GO�"�%"  = 0 

 Thus, 

0 � j∗j ; J j∗i
� f�P, "�O�"�%" ; j∗k�b_

b4� �H:	b#= 
	;j∗ J%MK�

#L
�J:P � �" � N�=�#��
K

,�,�:I:��" � N�=�= 
M�" � N, N�O��"�%"G 

But the second, third and fourth term are leading to the 

conclusion j∗j � 0. This is a contradiction to @ 0 . 

Thus W is positive definite. Hence the proof. 

 

Nonlinear systems 

Consider the nonlinear fractional dynamical system with 

distributed delays in control and impulses are  represented   

 by the fractional differential  equation of the form   &'()* H�	� � IH�	� ; ! %K�#L M�	, N�O�	 ; N� 								;��	, H�	�, O�	��, 	 ∈ �0, PG ≔ R, 0 � � � 1 

    ∆y�tU� � y�tU�� � y�tU#� � IU:y�tU��=, i � 1,2, …… , k 

       y�0� � H�                                                            (7) 

where A and B are as above and �: R ] �+ ] �� → �+ is a 

continuous function. Assume the following space, 

Denote Q as the Banach space of continuous �+ ] �� valued 

functions defined on the interval J with the uniform norm ∥ �., >� ∥�∥ . ∥ ;∥ > ∥  where		∥ . ∥� supB|.�	�|: 	 ∈ RC. q � &+�R� ] &��R�, where &+�R�		is the Banach space of 

continuous �+ valued functions defined n the interval J with 

the sup norm. For each�., >� ∈ q, consider the linear 

fractional dynamical system 

		&'()* H�	� � IH�	� ; J%K�
#L

M�	, N�O�	 ; N� 
											;��	, .�	�, >�	��, 	 ∈ �0, PG ≔ R, 0 � � � 1 

     ∆y�tU� � y�tU�� � y�tU#� � IU:y�tU��=, i � 1,2, …… , k 

        y�0� � H�                                                          (8) 

 Then the solution of the system (8) is given in the following 

expression [29,30] 

H�	� � ,��I	��H� ;J�	 � "��#�$
�

,�,��I�	 � "��� 
             ] `! %KM�", N�O�" ; N��#L a %" ; ∑ �b_b4� �H�	b#��           
													;J�	 � "��#�$

�
,�,��I�	 � "�����", .�"�, >�"��%" 

Using the well known result of unsymmetric Fubini theorem 

[19] and change of order of integration to the second term, we 

have H�	� � ,��I	��H� ; ∑ �b_b4� 5H:	b#=7                                

 ;! �	 � "��#�$� ,�,��I�	 � "����:", .�"�, >�"�=%" 

; J%MK�
#L

�J:	 � �" � N�=�#��
K

,�,�:I:	 � �" � N�=�= 
M�" � N, N�O��"�%"G	 

;J� J:	 � �" � N�=�#��
#L

$
�

,�,�:I:	 � �" � N�=�= 
%KM$�" � N, N�GO�"�%"                                                (9) 

Where M$�", N� � cM�", N�,			" d 	0,				" � 	 e 
and %MK denotes the integration of Lebesgue Stieltjes sense 

with respect to the variable N in the function M�	, N�. Define r�j�0�, H�; ., >� � H��,��IP��H� � ∑ �b_b4� 5H:Pb#=7      

  �! %MK�#L `! :P � �" � N�=�#��K ,�,�:I:P �																																�" � N�=�=M�" � N, N�O��"�%"a �																																! �P � "��#�i�  

                             ,�,��I�P � "����:", .�"�, >�"�=%" 

Define the control function O�	� � f∗�P, 	�g#�	r�j�0�, H�; ., >� 
Where the complete state x(0) and the vector H� ∈ �+ are 

chosen arbitrarily and * denotes the matrix transpose. 

 

Theorem 3.2.  Let the continuous function f satisfies the 

condition 		lim|v,w|→3 |x�$,v,w�||v,w| � 0 uniformly in t∈ R,and 

suppose that the linear fractional system (1) is globally 

relatively controllable. Then the nonlinear system (7) is 

globally relatively controllable on J. 

Proof. 
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     Define the operator 	y: q → q			by y�., >� � �H, O� 
Where O�	� � f∗�P, 	�g#��j��,��IP��H� � ∑ �b_b4� 5H:Pb#=7 															� ! %MK�#L `! :P � �" � N�=�#��K ,�,�:I:P �															�" � N�=�=M�" � N, N�O��"�%"a � 	! �P � "��#�i�  

             ,�,��I�P � "����:", .�"�, >�"�=%")) 

and  H�	� � ,��I	��H� ;∑ �b_b4� 5H:	b#=7    

;J�	 � "��#�$
�

,�,��I�	 � "����:", .�"�, >�"�=% 

          ;! %MK�#L �! :	 � �" � N�=�#��K ,�,�:I:	 � �" � N�=�= 												] M�" � N, N�O��"�%"G	 
												;J� J:	 � �" � N�=�#��

#L
$
�

,�,�:I:	 � �" � N�=�= 
												] %KM$�" � N, N�GO�"�%"                                                 
Next, we introduce the following notations: E� 		 � "Oz ∥ ,��IP��H� ∥ ;  E{ � "Oz ∥ ,��I�P � "���H� ∥;   
 E| 	� "Oz ∥ ,�:I:P � �" � N�=�= ∥;	
E} 		�		∥ J:P � �" � N�=�#��

K
,�,�:I:P � �" � N�=�= 

M�" � N, N�O��"�%" ∥; E~ � "Oz ∥ f∗�P, 	� ∥;   E� � "Oz ∥ f∗�P, 	� ∥;  E		 � ^EjBE|P ∥ f�P, "� ∥ ,1C	; %� � 4E~|g#�|�#��|H�| 
      ;E� ; E}G ; %{ � 4�E� ; E}G ; 
 6� � 4E{E~ P� │g#�		│ �#�;  6� � 4E{ P� �#�;  

 6	 � maxB6�, 	6{C ;  % � maxB%�, 	%{C ;  
 "Oz	│	�	│ � sup		B	│�:", .�"�, >�"�	│; "	�	R	�.  
Then 	│u�t�	│ d 

�}� �		% ; 6 sup│�	│	�, and │H�	�│ d �E� ; E}� ;E| ! ‖��	, "�‖$�  ‖O�"�‖%" 

 +E{ ! �	 � "��#�$�  "Oz │�│%"  d 	 �{ ; �{ "Oz │	�		│.   

By hypothesis the function � satisfies the following condition 

[20]. For each pair of positive constants 6 and %, there exists a 

positive constant r such that, if │z│	 d �, then 6│��	, z�│ ;%	 d �, for all 		�	R.  Also for given 6 and %, if r is a constant 

such that the inequality (12) is satisfied, then   �� such that � � �� will also satisfy (12). Now, take 6 and % as given 

above, and let � be chosen so that (12) is satisfied.  

        Therefore, if ‖.‖ d 	 �{ and  ‖>‖ d 	 �{, then │	.�"�│ ;│	>�"�│ d �, for all "	�	R. It follows that % ; 6 sup│�	│ d �. 
Therefore,	│O�"�│ d 	 �}�, for all "	�	R,  and hence ‖O‖ d 	 �}�, 
which gives ‖H‖ d 	 �{. Thus, we have proved that, if ��� � B�., >�	�	q:  ‖.‖ d 	 �{ and ‖>‖ d 	 �{C,  then y	maps	q���	into	

itself. Since � is continuous, it implies that the operator is 

continuous, and hence is completely continuous by the 

application of Arzela-Ascoli’s theorem. Since q��� is closed, 

bounded and convex, the schaunder fixed point theorem 

guarantees that y has a fixed point �., >� ∈ q��� such that y�., >� � �., >� ≡ �H, O�. Hence H�	� is the solution of the 

system (7), and it is easy to verify that H�P� � H�.  Further the 

control function O�	� Steers the system (7) from initial 

complete state H�0� to H� on J. Hence the system (7) is 

globally relatively controllable on J.  

 

IV. NUMERICAL EXAMPLE 

          In this section we apply the results obtained in the 

previous section for the following fractional dynamical 

systems with distributed delays in control with impulses. 

Consider the Nonlinear fractional dynamical system 				6'*v��	� � 	H{�	� ; ! �K��#� 6�"	O��	 ; N�  
            ;"��	O{�	 ; N�G%N ; v��$���v���$� 											6'*v��	� � 	�H��	� ; ! �K��#� � "��	O��	 ; N�  																;6�"	O{�	 ; N�G%N ; v��$���v���$�                     																								∆H|$4�� � |v5��87||�|v5��87|    

          For 	 ∈ R	and 0 � � � 1. In matrix form I � 5 0 1�1 07 ,			M�	, N� � � �K6�"	 �K"��	��K"��	 �K6�"	�  

                           and �:	, H�	�= � � ���)���������)������
� 

Here H�	� � 5v��$�v��$�7 with H�	� � H�	�; ?��H��	� � H{�	�. 
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