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Abstract— In this paper, the problem on asymptotic stability 

analysis of stochastic recurrent neural networks with multiple 

discrete delays and impulses is considered. By employing 

Lyapunov Krasovskii functional and some well-known 

inequalities, sufficient conditions are derived in linear matrix 

inequality form to ensure the asymptotic stability of equilibrium 

point for the considered neural networks. A numerical example 

is given to demonstrate the effectiveness of the obtained result. 
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I. INTRODUCTION 

 

Neural networks have attracted much attention due to their 

applications in many areas of real world problems. In 

particular, recurrent neural networks with delays have found 

many applications in some fields such as signal processing, 

image processing, pattern recognition, associative memory 

and optimization problems [6], [7], [11]. These applications 

heavily depend on the stability of the equilibrium point of 

neural networks. Therefore, the stability analysis is essential 

for the design and applications of neural networks. In the 

application of recurrent neural networks with delays, it is 

often required that the network model has an unique 

equilibrium point which is globally exponentially stable. In 

hardware implementation of recurrent neural networks, time 

delays occur due to finite switching speed of the amplifiers 

and communication time. In recent years, considerable efforts 

have been devoted to study the global asymptotic or 

exponential stability for the neural networks with time delays 

via Lyapunov function method. In particular, there has been a 

growing research interest in the study of neural networks 

with both discrete and distributed delays, see [3], [4], [19]. 

Further, when performing the computation, there are 

many stochastic disturbances that affect the stability of neural 

networks. A neural network could be stabilized or destabilized 

by certain stochastic inputs [1]. It implies that the stability of 

stochastic neural networks also has primary significance in the 

research of neural networks. Hence the stability analysis 

problem for stochastic neural networks becomes increasingly 

significant and some results related to this problem have 

recently been published, see [1], [12], [21]. On the other hand, 

there is a somewhat new category of neural networks, which 

is neither purely continuous-time nor purely discrete-time 

ones; these are called impulsive neural networks. This third 

category of neural networks displays a combination of 

characteristics of both the continuous-time and discrete-time 

systems. However, besides stochastic effects, impulsive 

effects likewise exist in real systems [25]. Therefore, it is 

necessary to consider both impulsive and stochastic effect on 

the dynamical behaviors of recurrent neural networks. 

Motivated by the above discussions, the main 

objective of this paper is to study the global asymptotic 

stability of stochastic recurrent neural networks with multiple 

discrete delays and impulses. We establish new stability 

conditions for the stochastic recurrent neural networks with 

the help of Lyapunov-Krasovskii functional method and some 

well-known inequalities. The proposed stability criteria are 

derived in terms of linear matrix inequalities (LMIs). 

Furthermore, some examples with simulation results are given 

to show the effectiveness of the proposed stability result. 

II. MODEL DESCRIPTION AND PRELIMINARIES 

Consider the following stochastic recurrent neural 

networks with multiple discrete delay and impulses 
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Where ����� is the state of the %&' neuron at time �, 
� ( 0 

denotes the passive decay rate, ��
  and ��
���
 are the synaptic 

connection strengths, �
 denotes the neuron activations, �� is 

the constant input from outside the system, ����� represents 

the discrete transmission delay and satisfies the following 

condition. 
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Assumption I. 0 * +� , ����� ,	+- * ∞, �.���� , /� where +�,  and +- are constants. The stochastic 

disturbance ���� �	 ������, �-���, …, �0����1 is a m-

dimensional Brownian motion defined on a complete 

probability space �2, 3, 4� with a natural filtration 53&6&	78. 
Let ���, �, :�: <= > <� > <� ⟶	<�>0 	 is locally Lipschitz 

continuous and satisfies the linear growth condition. 

∆������ � 	 �������� =  �����=� - �����@� and �� * �- * ⋯ is a 

strictly increasing sequence such that lim�⟶∞ �� �	 �∞. 
        The initial conditions of system (1) are described as 

follows. ����� �	 E����, �	F	 �	max�I	�	I	�5��6, 0�  
       We assume that the neuron activation functions �
, J � 1, 2, … , K	 are bounded and satisfies the following 

Assumptions:    

Assumption II. L
@ , 
MN�OP�@MN�OQ�

OPRSQ , L
=, for all T� ≠ T- 

Assume that �∗ � ���∗, 	�-∗, … , ��∗�1 is an equilibrium point of 

Eq.(1). It can be easily verified that the transformation  :� � �� 	 ��∗ transforms system (1) into the following system: 		�:��� � �	V:��� � WX�:���� � ∑ W������� X�:�� 
																	��������	�� ����, XY:���Z, X �:Y� 	 �����Z�, 
																	…	, X �:Y� 	 �����Z� �����,  � � �� , 
∆:���� � ��:����,	  � � 	 ��,	 � � 1, 2, … , #,	 $ � 1, 2, … 

   :���� � E����,                                                           (2) 

Where : � �:�, :-, … , :��1,	 V � �%
X�
�, 
-, … , 
��, W � \��
], W��� � \��
���], X�:� � �X��:��, X-�:-�, …	, X��:���1  with  X
�:
���� � �
�:
��� � �
∗� 	�
Y�
∗Z. 
Obviously, one can check that the functions X
�. � satisfies L
@ 

, ^N�O�
O 	, L
=, for all α	 � 0. Let `-,��<� > <= ∶ <=� denote 

the family of all non-negative functions b�:, �� on <� > <= 

which are continuously twice differentiable in : and once 

differentiable in �. For each b	F `-,� ��	�∗,∞� > <�, <=�, 
define an operator db associated with stochastic delayed 

impulsive neural networks (2) from <� > <= to < by db�:���, �� � b&�:, �� �be�:, �� �	V:��� � W:��� 
																											� ∑ W�������  X�:�� 	 �������� � �

- �#
fg        

           ��1bee�:, ���  
Here b&�:, �� �	 hi�e,&�h& , be�:, �� �( 

hi�e,&�
heP , hi�e,&�heQ , …,	 hi�e,&�hej � 

and bee�:, �� � �hQi�e,&�hekheN ��>�, where %, J � 1, 2, … , K. 
Moreover, there exists positive diagonal matrices l8 m 0, l� m 0 such that 

Assumption III. �#
fg ��1 �, XY:���Z, X �:Y� 	 �����Z�, …, 
X�:�� 	 �������� , X1�:���� l8 X�+���� � ∑ X1�:�� 	����������� l�X�:�� 	 ������� 
 

Lemma 3.1(Schur complement [2]). For a given matrix � 

no�� o�-o-� o--p ( 0, Where o�� � o��1 , o-- � o--1 , is equivalent 

to any one of the following conditions: 

(i)  o-- ( 0,  o�� 	 o�-o--@�o�-1  ( 0; 
(ii) o�� ( 0,  o-- 	 o�-1 o��@�o�- ( 0; 

Lemma 3.2(Gu et al. [9]). For any positive definite matrix r ( 0, two scalars � ( 
, vector function ω : �
, �� ⟶ <�, 

such that the integrations concerned are well defined, the 

following inequality holds: 

�s t�u��uv
w �1r �s t�u��uv

w � * �� 	 
�s t1�u�rv
w   

	t�u� �u. For presentation convenience, in the following, 

we denote x� � �%
X �L�@L�=, L-@L-=, … , L�@L�=�,                  (3) 

	x- � �%
X �yPR=yPz- , yQR=yQz- , … 
yjR=yjz

- �                                  (4) 

III. MAIN RESULTS 

In this section, we consider the asymptotic stability for 

systems with multiple discrete time delays and impulses. Our 

approach is based on the Lyapunov-Krasovskii stability theory 

and the LMI technique [2]. It should be noted that the 

equilibrium point �∗ of (2) is asymptotically stable if and only 

if the equilibrium point of system (2) is asymptotically stable. 

Thus in the following, we only consider the asymptotic 

stability of the equilibrium point for system (2).  

The following lemma will be essential in establishing the 

desired LMI based stability criteria. 

 

Theorem 3.1 Assume that (I) – (III) hold. For given   

Scalars +- ( +� m 0 , T� 	, {� , /� �� � 1,2,3… , #�, system  

(2) is said to be Globally asymptotically stable in the mean    

square, if there exist Positive definite matrices 4 ( 0, }� ( 	0, }- ( 0,	Positive diagonal matrices <� ( 0, ~� ( 0 and 

a scalar � ( 0 Such that the following LMIs hold: 

                                         4 * 	��                                         (5) 

                                  ��4�� 	 4�� 	 ��4 * 0                       (6)  
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0 0 00���∗∗∗
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0���0����
∗

			

000000�����
��
��
�
 * 0,      

          (7)                   

 Where ��� � 	4V 	 V14 � }� � }- � �+- 	 +��}� 	 x�Γ		��� � 4W � x-Γ	4W���		, ��� � 	x�Ω���,		��� � x-Ω���	,   
��� � ∑ T�����  <� � ∑ �

�@��
���� ~�  ��l8 – �, ���� 

� ∑ �	l�����  	∑ T�����  �1 	 /��<� 	∑ ~����� 	 
	2���, 			��� �		 �

'Q@'P}�	. 
Γ � �%
X5��, �-, … , ��6,			Ω��� � 5�%
X������, �%
X�-���	
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�%
X������, … , �%
X��%
X������, �%
X��-���, … , �%
XY�����Z6	
Proof.  Define new state variables as follows: :���� � 	V:��� � WX�:���� � ∑ W������� X�:�� 	 ������� 
:-��� � ���, XY:���Z, X �:Y� 	 �����Z�, … , X �:Y� 	 �����Z� 

Therefore, Eqn (2) can be rewritten as  

        �	:��� � :���� � :-��������  
Consider the following Lyapunov function defined by  

b�:���, �� � 	:�1���4:���� +s :1�u�}�:�u��u&
&@'P  

																													� s :1�u�}-:�u��u&
&@'Q 	                           

																														� s s :1�u�}�:�u��u&
&=�

@'P@'Q  

																				�∑ T�	 s X1Y:�u�Z<�&
&@���&����� 	XY:�u�Z�u 

																			�∑ �
�@�� s X1Y:�u�Z~�&

&@���&����� 	XY:�u�Z�u  

By Ito’s formula, we can calculate db�:���, �� along the 

trajectories of the system (2) for � � ��, then we have  db�:���, �� , :1����	4V 	 V14 � }� � }- � �+- 	 +��																						> }��	:���	�:1���24W	XY:���Z	
																									� ∑ :1���24W���	���� 	> X �:Y� 	 �����Z�					
	 								– :1�� 	 +��}�:�� 	 +��	– :1�� 	 +-�}-																					> :�� 	 +-�	�X1Y:���Z�∑ T�		���� <�		
																								� ∑ �

�@��
���� ~ � �	l8�XY:���Z		

														�	X1 �:Y� 	 				�����Z� 	X �:Y� 	 �����Z�	
																				> 	 �∑ ����� l� 	 ∑ T�	���� �1 	 /��	<� 		
																					> ∑ ~����� �	– � e�&�

^Ye�&�Z�
1 n x�	Γ 	x-Γ	x-Γ Γ p	

																									>		� e�&�
^Ye�&�Z�	– � eY&@���&�Z

^�eY&@���&�Z��
1	

																									> �x�Ω��� x�Ω���
x�Ω��� x�Ω���� � eY&@���&�Z

^�eY&@���&�Z��	
																										 �

'Q@'P �s :�u��u&@'P&@'Q �	1	}�	�s :�u��u&@'P&@'Q �	
																					� �1���Ξ�����,	Where	Ξ���� � �:1���, :1�� 	 +��, :1�� 	 +-�,					
:1�� 	 ������,			X1Y:���Z, 		X1 �:Y� 	 �����Z�			
	s :�u��u&@'P&@'Q �	1	�1																																																																					�19�	
Thus,	 for	 ensuring	 negativity	 of	 db(:(�), �)	 for	 any	
Possible	 state,	 it	 suffices	 to	 requires	 Ξ�	 be	 a	 negative	definite	matrix.	From	(19),	db(:(�), �) 	, 0	,	db(:(�), �)	
	� 0	,	if	and	only	if		:(�) � 0.		
When	� � ��	,	We	have		
b(:(��=), ��=)		� :�1(��)4	:�(��) 	 :�1(��)4��	:�(��)																														:�1(��)��14	:�(��)		�:�1(��)��14	��:�(��)																																				
																												� s :1(u)}�:(u)�u&±

&±@'P 													
																												� s :1(u)}-:(u)�u&±

&±@'Q 	

																												� s s :1(u)}�:(u)�u&±
&±=�

@'P
@'Q 	

																							� ∑ T�	 s X1Y:(u)Z<�
&±
&±@��(&±)

���� 	XY:(u)Z�u  

																					� ² 1
1 	 {� ³ X1Y:(u)Z~�

&±

&±@��(&±)

�

���
	XY:(u)Z�u																				

                      � b(�(��), ��) � :�1(��)���4�� 	 4�� 																																		��4�:�(��) 
                      , b(:(��), ��) 
Based on the Lyapunov-Krasovskii stability theorem, the 

system (2) is globally asymptotically stable. The Proof is 

Completed. 

 

IV NUMERICAL EXAMPLE 

 

In this section, we provide a numerical example to 

demonstrate the effectiveness of the proposed asymptotic 

stability result. 
Example 4.1 Consider the following two-neuron stochastic 

recurrent neural networks with impulses: 

		�:(�) � �	V:(�) � WX(:(�)) � ∑ W(�)���� X(:(� 
																	��(�)))�	�� ��(�, XY:(�)Z, X �:Y� 	 ��(�)Z�, 
																	…	, X �:Y� 	 ��(�)Z� ��(�),  � � ��, 
∆:(��) � ��:(��),	  � � 	 �� ,	 � � 1, 2, … , #,	 $ � 1, 2, … 

where the activation function is described by X�(�) �tanh(0.7�) 	 0.1	u%K	�, X-(�) � tanh(0.4�) 	 0.2	f¶u	�, 

��(�) � 0.5 � 0.5	u%K	�, �-(�) � 0.5 	 0.5	f¶u	�, T� � T- �0.5. The delayed feedback matrices V, W, W(�), W(-)  are 

V � ¸3 0
0 3¹, W � ¸0.4 0.3

0.5 0.1¹, 
W(�) � ¸ 0.2 	0.4

	0.1 0.5 ¹,W- � ¸0.3 	0.5
0.3 	0.6¹ 

Clearly the activation function satisfies the Assumptions (I)-

(III) with 

l8 � l� � ¸	0.08 0
0 	0.12¹, l- � ¸	0.08 0

0 	0.12¹, 
�� � �- � ¸0.5 0

0 0.5¹. 
Solving the LMIs (5)-(7) in Theorem 3.1, a following feasible 

solution is obtained by using LMI toolbox 

4 � ¸1.9792 0.0941
0.0941 1.8401¹, } � ¸ 1.3455 	0.1864

	0.1864 1.4890 ¹,  
 

Thus the system (2) satisfies all the conditions stated in 

Theorem 3.1. Hence the stochastic recurrent neural network 

(2) with impulsive effect is globally asymptotically stable. 
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TABLE I 

 

COMPARISONS OF UPPER BOUNDS OF TIME DELAYS 

 

 
 

 
 

Fig. 1 State responses of :�(�), :-(�) of the network (2) 

without impulsive effects. 

 

 

 

 

 
Fig. 2 State responses of :�(�), :-(�) of the network (2) with 

impulsive effects. 

In order to show the significant contribution of this 

paper, we summarize the comparisons between the previous 

works and the obtained result. Table.1 gives the comparison 

results on the maximum allowable upper bound h2. Therefore, 

we conclude that the equation (2) is asymptotically stable for 

any constant allowable upper bound h2. Hence the proposed 

method is finer than the previous works based on the upper 

bound techniques. 

V CONCLUSIONS 

In this paper, the problem of stability criterion for 

stochastic recurrent neural networks with multiple discrete 

delays and impulses has been investigated by the use of 

Lyapunov method and LMI framework. By constructing an 

appropriate Lyapunov function and combined with stochastic 

analysis approach, a new set of sufficient conditions have 

been obtained to ensure the global asymptotic stability of the 

addressed neural networks. The methods of this paper can also 

be used to study the global exponential stability of the 

equilibrium point. Finally, a numerical example is given to 

show the effectiveness of our stability result. 
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