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Abstract— This paper investigates the problem of delay
dependent asymptotic stability criteria for impulsive BAM
neural networks with leakage and time varying delays. By
defining a novel Lyapunov functional, an improved delay-
dependent asymptotic stability criterion is established in
terms of LMI approach. Additionally a numerical example
is given to illustrate the effectiveness and benefits of our
proposed method.

Keywords— Asymptotic stable; Impulse; BAM Neural
Networks; Linear Matrix Inequality; Time varying delays;
Leakage delays.

I. INTRODUCTION

During the past few decades, various kinds of recurrent
neural networks have been largely studied including
bidirectional associative memory(BAM) neural networks,
Hopfield neural networks, Cellular neural networks, Cohen-
Grossberg neural networks, neural and social network due to
their potential applications in many areas such as
classification, signal and image processing, parallel
computing, associate memories, optimization, Cryptography
and so on. The bidirectional associative memory (BAM)
neural network models were first introduced by Kosko. The
BAM neural network is composed of neurons arranged in two
layers, the X-layer and Y-layer. The neurons in one layer are
fully interconnected to the neurons in the other layer. Neural
networks have to be designed in such a way that, for a given
external input, they exhibit only one globally asymptotically
stable equilibrium point. Impulsive effect is likely to exist in a
wide variety of evolutionary processes in which states are
changed abruptly at certain moments of time in the fields such
as medicine, biology, economics, electronics and
telecommunications. Moreover, the existence of time delays
may lead to instability (or) bad performance of systems.

However, there has been very little existing work on
neural networks with time delay in leakage term. In fact, time
delays in the leakage term has also great impact on the
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dynamic behavior of neural networks. In [1-4], delay-
independent asymptotic stability problem is studied. Generally
speaking, the delay-dependent stability criteria is less
conservative than delay-independent when the time-delay is
small. Therefore, authors always consider the delay-dependent
type. In [6], a new method has been proposed to obtain delay-
dependent stability criteria by introducing an appropriate
Lyapunov functional. ~ Although delay-dependent stability
criteria for delay NNs were proposed in [6], they have
conservatism to some extent, which leaves open room for
further improvement.

In this paper, our aim is to study the delay-dependent
asymptotic stability problem for a class of Impulsive BAM
neural networks with discrete time varying and leakage delays.
By utilizing the Lyapunov Stability theory and LMI technique,
some novel delay-dependent conditions are obtained. We shall
use not only the u(t— pu(t)), v(t—t(t)) but also the
u(t — h), v(t —m) to exploit all possible information for the
relationship among u(t), v(t),u(t —8), v(t—o0), u(t-
u(), v(—rt())), and u(t),v(t), when constructing
Lyapunov functional. Finally, a numerical example is given to
indicate significant improvements over the existing results.

II.  PROBLEM FORMULATION AND PRELIMINARIES
Nomenclature
R" n-dimensional real space

R™XT set of all real m by n

xT or AT transpose of vector x (or matrix A )

P>0 (respectively P < 0) matrix P is symmetric
positive (respectively negative) definite

* the elements below the main diagonal of
symmetric block matrix

1
lx@I  EE,xF ()2

In this Paper, the impulsive BAM Neural Networks
with leakage and time varying delays is described by the
following integro-differential equation system:

#(t) = —Ax(t = 8) + Wof (y(®)) + Wif (y(t - u(®)))
+1, t>0,t+t,
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Ax(ty) = x(tf) — x(tg) , t =ty , ke Z,.
y(©) = =Cy(t = )+ Vog (x(0)) + Vag (x(t - 7(®)))
+], t>0,t#t,

Ay(ty) = y(t5) — y(t)  t =ty ke Z,. )

Where  x(t) = [x,(2), x5 (t), .., x,(£)]"€ R™* & y(t) =
[y1(6), y2(£), ..., v, (t)]T€ R™ are the neurons state vectors,
f(y(.)) and g(x(.)) denotes the neuron activation functions,

where f(y()) = [1(0:()), L(72()), oo, o (] and
9(x()) = [91 (1)), g2(x2()), -, G R (D] A=
dia{a;}, C = dia{cj} are positive diagonal matrices; a;, ¢; >
0,i,j =1,2,..,nare the neural self inhibitions and [ =
Iy o L1"& ] = [J1, )2 s Ju]T  are the constant input
vectors. Wy = (Woﬁ)nxn’vo = (VOU)nxn are the connection
Wy = Wyi) V=) - are the
discretely delayed connection weight matrices; u(t)& 7(t) are
time varying continuous functions that satisfies 0 < u(t) <
h,0 < pu(t) <wand 0<17(t) <m0<1(t) <,
respectively; where h,w,k &l are constants. The leakage
delays 6 > 0, 0 > O are constants. The impulsive times ¢
satisfy 0=ty < t; < <t — oo, (i.e.,limy_,, ty =
+0) and infy.z, {tx —tx—1} > 0. Suppose that the initial
condition of the BAM Neural Network (1) has the form
x(t) = @(t) for t € [~@,0] and y(t) = P(t) for t € [, 0]
Where ¢@(t) and 3(t) are continuous functions, @ =
max (h,8) and & = max (m, 0).

In addition, it is assumed that each neuron activation
functions in (1), f;(.),g;(.),i,j=1,2,..,n satisfies the
following conditions:

0 M) < vxyeR, x#y,i=12..,n

weight matrices;

gj®)-gj(@)
p—q

and 0 < <n,Vp,qeR, p+qj=12..,n(2)

where ki,nj, i,j=1,2,..,nare positive constants. The
equilibrium point, (x*,y*) = [X5, X3, ., X5, V5, V3 ooer Yo |FoOf
(1) is shifted to the origin by the transformation u(.) = x(.) —

*

x*, v(.) =y()—y*, Which converts the system to the
following form:

u(t) = —Au(t — 8) + Wof (v(t)) + W, f (v(t - u(t))),
t>0,t #t,
Au(ty) = u(ti) — ulty) , t =t , keZ,.
v(t) = —Co(t — 0) + Vo g (u(®)) + V19 (u(t — (1)),
t>0,t#ty,
Av(ty) = v(t) — v(tg) , t =ty , ke Z,. 3)
Where u(t) = [u,(t), uz(t) Lun (D)7 & v(t)
= [v,(0), v, (), ..., v(®O)]" (V( )

=MW&DE@Anm%@ADﬂ§@O)
= [3.(ws (), G2 (142 (), e, G (T
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and ﬁ(vj()) fL(V] J+v ) fl(”) 91(“ ( ))
=g;w;() +u)) —g;@W), i j=1, 2,...,n. According to the
inequality (2), one can obtain that

fiwplfi(v) — kiv] < 0,£,(0) =0,

gj(ul)[gA](ul) - njul’] < 0, gj(O) = 0, I,J = 1, 2,
Lemma 2.1 For any constant symmetric matrix @4,
Q12 Q22 € R, Q1 = Q11T >0, Q2 = szT >0,

(Qu Q12 7> 0 and
* Q22 ’

x(t):[-7,0] — R™, such that the integrations are well

defined, then —T tt_% (igg)T (Q:l giz) (igg) dt <

t T t
ft—f x(s)ds (Qu Q12) ft—f x(s)ds (5)
b x 0 t :
S x(s)ds 22/ \ [__x(s)ds
Lemma 2.2 For any constant matrix ¢ € R™", ¢ = ¢ >

0, scalar y > 0, vector function @: [0,y] — R™ such that the
integrations concerned are well defined, then

n.(4)

) > 0, scalar vector function

-y f_oy T (t+s)pa(t+s)ds < (f_oy wT(t+
T
s)ds) 1) (f_oy wT(t+5) ds). 6)
Rearranging the term ( f_oy T (t+ s)) ds with w(t)
—w(t —y), we can yield the following inequality:

—y [, 07 (£ +9)pa(t +5)ds < ((t) — w(t 1))

) Mo @
111 MAIN RESULTS

In this section we investigates the globally asymptotically
stability of the system (3).

Theorem 3.1 For given scalars K = dia(ky, ks, ..., k), N =
dia(ny,ny, ...,n,.),h >0,w =0&m > 0,1l = 0, the origin of
system (3) with (4) and 0 < u(t) <h0<p(t)<w, 0<
T(t) <m,0 < i(t) <1 is globally asymptotically stable if
there exist symmetric positive matrices Pi,N{, Ty,
Ry, Dy, Ey, QM; sz, Ui1, Uz, Ry, Ry, Qi; U, (Lj= 1,23,4)
symmetric and positive definite matrices Dy, D,, G, G5, A
=dia(A, Ay, 0 A) 1T = dia(@q, @2, ..., On) and  any
matrices Tyy, Rz, Q15 Uiz P& N;(i,j =2,3,...,21) with
appropriate dimensions, such that the following LMIs hold:

[Pl T“] [ ]>Ow1thP >0&N; >0, (8

* Ty = * Rzz ! !

Q1 le] Uiy

>0 &[ ] >0, 9

[ * sz UZZ ( )

[DiQsDx — Q4] <0, [Ef UyE, — U] <0 (a)

N = (*Qij)nxn <0and £ = (Eji)nxn <0, (10)
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Where 2,; = Ty + Q; + Q3 + h2Q, — R;,
Dy = =Py =Ty Qi3 =—PA, Q1= Py — Py, 5=
Wo P, + KDy, 16 = P+ Ry, 7= W, Py, , fDy40 =
— Py, 0 = = P13 — Py — Q3,803 = PigA— P34, (1, =
— Py — P, fdys = Po Wy + Ps Wy, 06 = Pyo+ Py,
57 = Wy Pyo+ P Wy, 055 = — Pig, {2310 = — Py,
N33 = PA, 3, = — Py, Q35= PLW,, 36 = Py, )
3, = Py Wy, 03 = P9AT’ 310 =— Py, D4y = h Q11
— Ps, (45 = h? Q, T PsW,, Qe = Pi5, Q47

= PsW,y, Qg = —Py, f4y0= — P15, s
=—D,+ Q,+ AW, +h?Q,, + P, W,, 5 = Py,
— — T —
07—AW1+ PeWy, 5 = PoWy', 5190 = — Pyg,
6:_(1_W)Q1_R1+P17:-(267:KD2
+ P, Wy, -(269:P19'-(2610:_P17'QT77:_D2
_(1_W)Qz+ PgWq, Q075 = PoWyi", {1739 = P,
— _ Q
8 = @ fg10 = —Pigy 99 = Q23 911 = 212,
__9 _ Q
-0912—_%'-01010—_}?1_1)21; 91111=_%,

Q1112 = =Q11y 1212 = @ ydhg = Qg =01y =

=M =0y11 = (Ip1, = -039 =311 = 0317 = Q4o = Uy
= 41y = 59 = L2517 = Q515 = Oeg = D617 = Loy
=0y =071 = Oy13 = g9 = Qg = g1 = Loy
= 04011 = 4012 = 0and &1y =Ry, + U; + Uz + m?U,
—Ry, E13 = — Niz — Ryp, B3 = —N3C, E134 = Ny — Ny,
Hi5 = VoNa + NGy, Eig = Nip+ Ry, B17 = Vi Ny,

Ei10 = = Nig, &2 = = Niz = Npg — Uz, E33 = Nyl
—N3C, By = = Nyg— N3, Ey5 = Ny Vo + N3 Vo, Eg6
Nyo+ Nyz, &7 = Vi Nyg + N3 Vi, Epg = — Ny,

11l

Hy10 = = Nao, E33 = NuC, Z3y = — Ny, E3s = N, W,
E36 = Nig E37 = Ny Vi, Ezg = N9CT’ E310 = — Nug,
Z4 = MP Uy — N5, 345 = m? Uy, + Ny,
Es6 = Nis, 47 = N5Vy, Eyg = — Ng, Ey9 = — Nys,
S =—G, + Uy, +ITVy+ m? U, + NgV,,
Es = Nis, Es; = IV + NgVy, g5 = Ny VoT:
E510 = = Nigy Eep = -(1- DU, — Ry + Ny,
B = NG, + N, Vi, Egg = Nig, Z10 = — Ny,
By = =G, — (1= DU, + NgVy, 555 = Ny VlT'
E710 _UN18! Zgg = U4—L!,‘-‘810 = —Nyg, Zg9 = Uy,
Eo11 = f: Eo1p = _%' Z1010 = —Ry; — Nay,
__Ull" = —-U =l =E:‘ -
Z1111 2 S1112 1121212 5 7 o118 = 19
=811 = Ei1p = Ey9 = Bo11 = Ep10 = H39 = 311 = 312
=849 = E411 = E41p T Es9 T Es11 = Esip = Eeg = Eenn
Z612 = F79 = F711 = E712 = Zgo = Egnn = e
= Z910 = 1011 = E1012 = 0
Proof.

Consider a class of Lyapunov functional candidate as follows:
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V(u(®),v(®) = XT(t)SPX(t)—f-
[ v(©) ] 0 Ta) [
" f: hv(s)ds [ Ty, ft hv(s)d

u(®) 0 Ry, u®
[ft u(s)ds“ Rzz] [ft u(s)ds]

0 rt u(s) Q11 Q12 u(s)
—h 2, Jeve [f(v(s)) [ * sz] [f(v(s)) ds df
o & [ 96 1" [Uy Upl[ v
o P | P
+h [ [, 0T () Ryv (s)ds d6 +m [ [! 4T (s) Ryt (s)
dsdf +23" 2, fouiﬁ(s)ds +230, 9 fovj g;(s)ds
+ o[V 6)0v() + T (v())Qaf (v(s)]ds
+ [ VT (©)Qav(s)ds+ [, ) [u7(5)Uyu(s)
+97(u(s))U,g(u(s))]ds + f:_muT(s)U3u(s)ds
XT(t) = [VT (&) vT(t — k) uT(t — &)u” (t) fT(v(t))
V(e =k®) 17 (v~ 4®)) (I, v ds)
( | u(t)f(v(s)) ds) ( tt }f(t)i?(s)ds) ul(t)
u"(t=p@®)], Y@ = Ou't-m) v'(t-0)
o7 () g (v() uT(t — (1) g7 (u(t — 2(t)))
(e usyds) (Jreo(v®)ds) (JoQu(s)ds)
v () vT(t—@®)],

] + YT(t)LNY(t)

ds do

I 00 00O0OT OO 0
and5=[0000000000],
00 00O0O0OGO OO 0O

b0 0 0 O 0 0 0 0 O
PZ P3 P4- PS P6 P7 PB P9 P10 Pll]

P12 P13 P14- P15 P16 P17P18 P19 PZO P21
i 00000000 o
andL=[oooooooooo,
000000000 0

N, 0 0 0 0 0 o0 0 0 0
N, N3 N, Ns Ng¢ N; Ng Ny Ny Nypgf.
Ni; Nz Ny Nis Nig Niz Nig Nyg Ny Noy
Using the facts: v(t - (t)) —v(t—h)— ft —r (s)ds =
0,u(t — () —ult —m) — ft 0y (s)ds = 0 and the
Lemmas (1) & (2), the time der1vat1ve of V(u(t), v(t)) along
the trajectory of syste m(3) is given by:
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V(u@®),v(®) = 2X" ()P 2uT(t — 7(t))NG, g (u(t - T(t))) — g7 (u(t -
[ _ w(e) ) ] ()64 (u(t - 7())) = 0.
—Au(t — 8) — () + Wof (v(©)) + Wif (v(t — p(©)))

Finally we obtain, V(u(t), v(t)) < xT()0x(t) +
(t—n(®) = vt =) = [0 0(s) ds T(0)E . -
v u t—h Y'(£)zY(t). If <0 & E<O0, there exist a scalar a>0, such

2 [vT(t) (ft v(s) ds T] [ . T1ov(t) — Tyv(t — h) ] that V(u(t), v(t)) < —all(u(t), v(£))||°, thus according to
th Tizv(6) + Topv(t) = Toav(t — )] et [31], system (3) is globally asymptotically stable.

T t T Ripu(t) Fort = t;, from the L functi btai
+2 [u ® (ft—mu(s? ds) ]T [szu(t) . Rzz.u(t) t}?é‘fonov,;in;om e Lyapunov functions one can obtain
“Ripu(t=m), o () ] [Qu le] [Au(t) ] Vé(tk,u(tk) v(tk)) — Vo(tr, ult), v(ty))
—Ryu(t —m) Tf(V(t)) Qa2l Lf (v(t)) = hf f "o vT(s) Quv(s) ds do
ut) —u(t = uN] 10,, 0,1 [%® —ult —pu()] i T
. - 11 12 . i —h ds do
ft_u(t)f(v(s)) ds | [ sz] i ft_ﬂ(t)f(v(s)) ds | {k+9f 55)Q4 v(s) ds
e [ B(t) ]T [U11 Uy, ] [Aﬁ(t) +m [ ft o U " (s) Uyu(s) ds de
(u(t)) * Uyl lgu(t)) —mf f (s) Uyu(s) ds do
v(t) —v(t— T(t)) Uy U (v (t) — v(t — (t))] —n T DTO.D ds do
e senas) |+ vl |, guesas) Pliia tos o

+mf fk+9 T(S) [Ek U,E, —U, ]u(s)ds do <0.

® ©)
+h2pT (H)Ryv(t) — (ft “O5(s) ds) R, (ft O 5(0s) ds) = V(6o uty), v(te) < Vo(ty,u(ty),v(ty), k € Z,.
v(t) R, —-R, v(t) Which implies that,
B (v(t - ,u(t))) (—R1 ) (v(t - u(t))) V(e ult), v(te) < V(e ulte), v(tp), k € Zy.

Therefore, In both cases the system (3) is globally
® . ® .
+m?u’ (O)Ru(t) — (ft “u(s) dS) R, (ft (s )ds) asymptotically stable.

u(t) o - R, u(t) Hence, this completes the proof.
- <}t(t - T(f))> < g R ) (?(t " T(t))> V. NUMERICAL EXAMPLE
+2f T(v(t))/l [—Au(t = &) + Wof (v(t)) Wy In this section, a numerical example is provided to
f (v(t - u(t))) +2 gT(u(t))H —Cv(t—o0)+V, g(u(t)) illustrate the effectiveness of the proposed method.

A Example 1. Consider the delayed BAM NN (3) with
+V19 (u(t = 1(©))] +v7 (©)Qv(e) —(1 =w)v" (¢ — u(®)) A = diag(1.2679,0.4563,0.9238, 0.4480),
Quv(t —u@®) +fT(v(®)Qf (1) —(1 —w) C = diag(0.6329,0.4328,1.6542,0.4890),
o7 (u(t — u(t &(v(t — ut))) FIPe 5 —0.0326 0.4536 —0.2335 0.2331 7
f (VT( u( ))) Q2f (V( TM( ))) v @Y v(t) w. = |-1.9076 05439 02610 1.2236
—v' (t — W) Qsv(t — h) +u’ (OUyu(t) —(1 = 1) ©~ 103394 -0.0860 -0.9321 -0.5785[
ul (£ — ()0 u(t - 7(0)) +97(w(®) V29(u®) -1 =D 01311 03235 —0.9432 —0.5015]
§" (u(t - 7)) 029 (u(t = 7®)) +u" OVsu(0) Lt 0.0472 —09126 0.0342 09816
—u(t - m)03 v(t —m) +h*v" () Qv (t) 1 = 118495 26117 —0.3788 0.8428 |
+ ([, ds) Qs (fi2 v(s) ds) +m>uT (OU,u(®) 1699 L5987 1adss  —odoets
t t _|-2.2896 —0.3320 —0.7632 —0.8456
+ (o ds) A(SRIOLD)] Yo=111430 00360 12541 -12079|
Furthermore, there exist positive diagonal matrices Dy, D, L 0.0765 1.4065 —2.5420 —2.3652
& G, G, such that the following inequalities hold based on (4) [—1.2540 —0.3642 —2.2551 0.1667 ]
5 5 5 _| 09100 09126 10754 0.1268
2(v" (KD f(v()) = T (v(0)D1f (0()) 2 0 1 =| 11902 —02445 11556 —0.6724]
20T (t — u)KD, f (vt — u@®))) — fT(v(t L 0.5652 —0.1982 —-0.0987 —2.7254
(e =) Zf( ( “f ))) G ky = 0.1156, k, = 0.1652, ks = 0.7231, k, = 0.3162,
— u(®)))Df (V(t - u(t))) =0 n, = 0.3233,n, = 0.0219, ny = 0.5463, n, = 0.5455.
2 (uT(t)NGlg(u(t))) _ gT(u(t))Glg(u(t)) >0 When w = 0, | = 0, Applying the criteria in Refs. [1-6], the

maximum value of h & m for globally asymptotically stable
of system (3) are 1.4244, 1.9321, 3.5824, 4.0120 & 2.6541,
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1.5443, 1.6598, 3.321, respectively, while by
using the Theorem 1 in this paper, we have h = 67:7328, & m
= 54.8796, which shows that our result is less conservative
than those in [4-6]. By solving the LMI in (10) we can obtain
the feasible solution. Here in our paper, we have not provided
such kind of solutions due to the restriction of page limitation.
This ensures that all the conditions in Theorem 3.1 are
satisfied and hence system (3) is globally asymptotic stable.

V. CONCLUSIONS

The problem of delay-dependent globally asymptotic
stability criteria for Impulsive BAM neural networks with
time-varying & leakage delays is investigated. A new class of
Lyapunov functional is constructed to derive some novel
delay-dependent stability criteria. Finally, a numerical
example is given to demonstrate the effectiveness of the
proposed method.
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