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Abstract- This paper investigates the problem of 

exponential stability of impulsive discrete-time stochastic 

neural networks with additive time varying delays.  By 

defining a novel Lyapunov functional an improved delay- 

dependent exponential stability criterion is expressed in 

the form of linear matrix inequality which can be readily 

solved by using standard numerical software. In addition 

to that, an illustrative example is provided to show the 

advantage of our proposed stability condition. 
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I.  INTRODUCTION 

In the past two decades neural network have received 

considerable attention and successfully applied in many areas 

such as combinatorial optimization, signal processing and 

pattern Reorganization [1]. Time delay is one of the major 

sources of instability which is encountered in many 

engineering systems such as chemical process long 

transmission lines in pneumatic systems, networked control 

systems etc.  The study of time delay systems (also called a 

systems with after effect or dead time, hereditary systems, 

equations with deviating argument or differential difference 

equations) has received considerable attention over past years.  

A great number of research results on time delay system exist 

in the literature (see [1-4]).  The stability of time delay 

systems is a fundamental problem because of its importance in 

the analysis and synthesis of such systems. 

        It is well known that stochastic disturbance is probably 

the main resource of the performance degradation of the 

implemented neural networks. Therefore the stability analysis 

problem for stochastic neural networks with the time delay 

becomes increasingly significant. Many important and 

interesting  results have been reported for stochastic  neural 

networks with time delays a delay-dependent stability 

condition was established in [6] where the LMI approach was 

developed a weak assumption on the activation functions was 

considered. 

          On the other hand, an impulsive phenomenon exists 

universally in a wide variety of evolutionary process where the 

state is changed abruptly at certain moment of time, involving 

such field as chemical technology, population dynamics, 

physics and economics [6]. It has also been shown that the 

impulsive phenomenon exists likewise in Neural Networks, 

when a stimulus from body  or electronic networks, when a 

stimulus from body or external environment is received by 

receptors, the electrical impulses will be conveyed to the 

neural net and an impulsive phenomenon which is called 

impulsive perturbation arises naturally[7]. 

         Very recently [8, 9] presented several improved delay 

dependent stability criteria for discrete stochastic neural 

networks with time delays by constructing the never lyapunov 

functional and resorting to the free weight matrices method 

[10, 11]. However, there still exists room for further 

improvement because some useful terms are ignored in the 

Lyapunov functional employed in [8, 9] which may lead to 

conservatism to some extent. The authors [Xian Ming Tang 

Jin Shou yu] described additive time varying delays in [12]. 

         Motivated by the discussions the aim of this paper is to 

study the delay dependent stability analysis of impulsive 

discrete stochastic neural network with additive time varying 

delay is investigated.  In order to obtain large time delay 

bounds, a new Lyapunov functional is proposed and a novel 

delay dependent stability criterion is derived in terms of LMIs. 

It is shown that the newly established result is less 

conservative and less computationally complex than the 

existing ones. Numerical example is given to show the 

effectiveness of our main results. 

Notations 

          ��denotes the  n-dimensional Euclidean space,  ����  

is the set of all � � � real matrices.  �Ω, 
, �
�
���, P� be a 

complete probability space with a filteration,		�
t
; 	t � 0	 
satisfying the usual conditions  ��. 
 denotes the expectations 

operator with respect to some probability measure P.  The 

superscript  “T” represents the transpose and “*” denotes the 
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term that is include by symmetry.   The 

notation � � � (respectively, � � 0) means  that X is real 

symmetric, positive definite (resp, semi definite)  metric, ������� (resp. 	�� !��� represent the smallest (resp, largest) 

eigenvalues of A. 

 

II. PRELIMINARIES 

Consider the following n-neuron impulsive discrete-

time stochastic neural network with additive time varying 

delays as: "�# $ 1� & �"�#� $ '()"�#�* $ +(�"�# , -.�#� , -/�#�$ 0�#, "�#�, ")# , -.�#� , -/�#�*1�#� "�#2� & "�#23� $ 42"�#23�,			5 & 1,2…,                         (1) 

Where "�#� & 8".�#�, "/�#�, … , "��#�9:  	(�"�#�� & 8(.)".�#�*, (/)"/�#�*, … , (�)"��#�*9: and  ;<�#� is the state of  =�> neuron at time k, 	(<)"<�#�* denotes 

the activation function of the =�> neuron at time k. -.�#� $-/�#�  represents the transmission delay that  satisfies  - and - are prescribed positive integer representing the lower and 

upper bound of time delay respectively.  � & -=?(�@., @/, … , @��  is real  constant diagonal matrix with 

entries  |@<| B 1.  ' & �C<D����  is connection weight matrix 

and + & �@<D���� is time delay connection weight matrix.  The 

condition "�#2� & "�#23� $ 42"�#23�,			5 & 1,2…,are impulse 

dynamical activities caused by abrupt jumps at certain instants 

during evolutionary process.  Where "�#23� & limH→HJK "�#� , 	42: �� → � are contains over �� and the 

impulse instant #2 are assumed  to satisfy that 0 & #� B #. B ⋯#23. B #2 B ⋯?�-	#2 , #23. � 1NO5	5 & 1,2, … 1�#� 
is a scalar weiner process on �Ω, 
, �� with  �81�#�9 &0, �81�#�/9 & 1, �81�=�1�P�9 & 0		�= Q P�. 
Assumption I. [7]   

          For any R., R/	S	�	, R. 	Q R/		    
            TU V WX�YZ�3WX�Y[�\]3\^ 		V 	0U		= & 1,2, … , � where TUand 0U	are known constant scalars.                                              (2) 

Assumption II. 

           0�#, "�#�, ")# , -.�#� , -/�#�*: �� � �� � � → �� 

is the continuous function and is assumed to satisfy 

        0:0	 V _ `�H�`�H3aZ�H�3a[�H��b: 		c	 _ `�H�`�H3aZ�H�3a[�H��b.       (3) 

Assumption III.  

           The time delays -.�#�, -/�#� are assumed to be time 

varying and satisfy -., -/, -.,			-.,	  are constant positive 

scalars representing the lower delay and the upper delay 

respectively. The lower bounds   -., -/ are merged as - to 

represent minimum time delay. Thus it is assumed that - V 	-.�#� $ -/�#� 	V -.                                                    (4) 

Definition 2.1. 

          The discrete stochastic time delay neural network (1) is 

said to be exponentially stable in the mean square if there exist 

two scalars d � 0	?�-	0 B e B 1 such that 

  f gh|"�#�|h/i 			V 	deH	jkl3amnm�f gh|"�j�|h/i.                  (5) 

 
III.   MAIN RESULTS 

In this section we shall establish our main criterion 

based on LMI approach. For presentation convenience, in the 

following we denote     o1 & -=?(pT101, T202, … , T�0�q and 

 o2 & -=?( rT1$012 , T1$012 , … , T1$012 s , Γ1 & -=?(pT1, T2, … , T�q 
and Γ2 & -=?(�01, 02, … , �
 ,  u & ava/ $ ���r�3.�wxw,�s/ ,  y & - , u, � & - , - $ 1. 

 

Theorem 3.1 

For given scalars  - and -. Under assumptions I-III 

the impulsive discrete-time stochastic neural network (1) with 

additive time varying delay is exponentially stable in the mean 

square for any additive time varying delay -1�#� $ -2�#� 
satisfying - V 	-1�#� $ -2�#� V 	 -, if there exist symmetric 

positive definite matrices �, z<�= & 1,2,3,4�, }P�P & 1,2�  
diagonal matrices ~ � 0,� � 0, � � 0, � � 0 and a scalar � � 0 such that following LMI holds. 

(i)	� $ u/}. $ y/}/ 	V �� and �< $ �	 B 0, = & 1,2        (6) 

(ii)	∑ ln	�1 $ #=�2 $ k ln�1 , f� 	 V 	��#��=&1                    (7) 

      for  every # ∈ 	 8#2 �	, #2v.� then lim#→$∞ ��#� & $∞. 

 

Where    � & 

���
���
�.. �c/ 0∗ �// }/∗ ∗ ���

}. �.. �..}/ 0 �/�0 0 0∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
��� 0 0∗ ��� ���∗ ∗ �����

���
�
, 

�11 & ,� $ z1 $ �z2 $ z3 , }1 , o1~ , 2��Γ1# , Γ2�� 												$��� $ �� , ���u/}. $ y/}/��� , �� $ �c., �15 & ��� , �� $ o2~ $ ��' $ �� , ���u2}1 $ y2}2�', �16 & ��+ $ �� , ���u2}1 $ y2}2�+, �22 & ,z2 , 2}2 , o1� $ 2�Γ1# , Γ2�� $ �c3, �26 & o2� , �# , ��, �33 & ,z3 , }2, �44 & ,z1 , }1 , }2, �55 & ,~ $ �z4 $ ':�' $ '��u2}1 $ y2}2�', �66 & ,� , z4 $ +:�+ $ +��u2}1 $ y2}2�+, ∆.& 80			�		0 , �			0		09 and  ∆/& 80			�	– �			0		0		09, �. & ,Δ.:}/Δ.  and  �/ & ,Δ/:}/Δ/. 

 

Defining ��#� & "�# $ 1� , "�#�.   
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Proof. Consider the following Lyapunov-Krasovskii 

functional for system (1) to prove the exponential stability 

result 																				��#� & �.�#� $ �/�#�,                                      (8) 

Where, 

    �.�#� & ":�#��"�#� $ ∑ ":�=�z."�=�																					H3.<�H3   

   																									$∑ ∑ ":�=�z/"�=�H3.<�H3.vD3av.D�3av.  

                         $∑ ∑ (:�"�=��z�	(�"�=��H3.<�H3.vD3av.D�3av.  

                         $u ∑ ∑ �:�=�}.��=�H3.<�HvD3.D�3   

                         $2∑ ∑ �8()"�=�*,	Γ."�=�9:#.H3.<�H3.vD3av.D�3av.  

                         $¡Γ/"�=� , ()"�=�*9:�q"�=�, 
 

   		�/�#� & 	
¢££
£¤
£££
¥ ∑ ":�=�z�"�=�H3.<�H3a $ )- , u*	� ∑ 	∑ �:�=�}/��=�H3.<�HvD3 3.D�a ,													u V -.�#� $ -/�#� V -	∑ ":�=�z�"�=�H3.<�H3a $ )u , -*�	∑ ∑ �:�=�}/��=�,H3.<�HvD3a3.D�3 																- V -.�#� $ -/�#� V u.		

� 

 Then, along the solution of system (1), we have f8∆�.�#�9 	V f8":�# $ 1��"�# $ 1� ,":�#��"�#� $":�#�z."�#�  ,":�# , u�z."�# , u� $)- , - $ 1*":�#�z/"�#�  ,":)# , -.�#� , -/�#�*z/      � ")# , -.�#� , -/�#�* $)- , - $ 1*(:)"�#�*z�()"�#�* ,(:�")# , -.�#� , -/�#�*�z� (�")# , -.�#� , -/�#�*� $u/�:�#�}.��#� ,u ∑ �:�=�}.��=� $H3.<�H3  2)- , - $ 1* � 8()"�#�* , Γ."�#�9:#	"�#�  ,2(:�"�# , -.�#� , -/�#� � #	"�# , -.�#� , -/�#� $2":�# , -.�#� , -/�#��Γ.# � "�# , -.�#� , -/�#� $2)- , - $ 1*         � 8Γ/"�#� , (�"�#��: 	�	"�#� $2(:�")# , -.�#� , -/�#�*� � �	"�# , -.�#� , -/�#�� ,2":)# , -.�#� , -/�#�* � Γ/�	"�# , -.�#� , -/�#��. 
It is easy to get that  

 ,u ∑ �:�=�}.��=�H3.<�H3  	 & _ `�H�`�H3 �b: 	¦,}. }.∗ ,}.§ _ `�H�`�H3 �b. 

When u	 V -.�#� $ -/�#� V - f8∆�/�#�9 & f8":�#�z�"�#� , ":�# , -�z�"�# , -�  
 $�- , u�/	�:�#�}/��#� – �- , u�∑ 	�:�=�}/��=�9H3 3.<�H3a . 

Let  ( & a3aZ�H�3a[�H�a3   then it is easy to get  that 0 V ( V 1, -.�#� $ -/�#� , u & �1 , (�)- , u* and  ),- , u* �																																																																						∑ �:�=�}/H3 3.<�H3a ��=� 
 ¨`)H3aZ�H�3a[�H�*`�H3 �`�H3a� ©: ¨,2}/ }/ }/∗∗ ,}/∗ 0,}/©¨

`)H3aZ�H�3a[�H�*`�H3 �`�H3a� © 

 $( _`)H3aZ�H�3a[�H�*`�H3 � b: ª,}/ }/∗ ,}/« _`)H3aZ�H�3a[�H�*`�H3 � b 

$�1 , (� _`)H3aZ�H�3a[�H�*`�H3a� b: 

ª,}/ }/∗ ,}/« _`)H3aZ�H�3a[�H�*`�H3a� b. 

Similarly, - 	V -.�#� $ -/�#� V u 

¨`)H3aZ�H�3a[�H�*`�H3 �`�H3a� ©: ¨,2}/ }/ }/∗∗ ,}/∗ 0,}/©¨`�H3aZ�H�3a[�H��`�H3 �`�H3a� ©     

		$( _`)H3aZ�H�3a[�H�*`�H3 � b: ª,}/ }/∗ ,}/« _`)H3aZ�H�3a[�H�*`�H3 � b	                                          
           $�1 , (� _`)H3aZ�H�3a[�H�*`�H3a� b: ª,}/ }/∗ ,}/« _`)H3aZ�H�3a[�H�*`�H3a� b. 

We have from (2) and [20] _ `�H�¬�`�H��b: go.~ ,o/~∗ ~ i _ `�H�¬�`�H��b V 0 and 

 ª `�H3aZ�H�3a[�H��¬_`)H3aZ�H�3a[�H�*b«: go.� ,o/�∗ � i ª `�H3aZ�H�3a[�H��¬_`)H3aZ�H�3a[�H�*b«  																																																																V 0. 

We have get from (3) and (6) that 

 0�#, "�#�, "�# , -.�#� , -/�#��	:�� $ u/}. $ y/}/� 
                         � 0	�#, "�#�, "�# , -.�#� , -/�#�� 																	V � _ `�H�`�H3aZ�H�3a[�H��b: ªc. c/∗ c�« _ `�H�`�H3aZ�H�3a[�H��b. 
Thus   

 f8Δ��#�9 V f8­:�#�)()� $ �.� $ �1 , (��� $ �/�*­�#�®,         
Where  

 ­�#� & 8":�#�,			":)# , -.�#� , -/�#�*,			θ:�#�,										":�# , u�,				(:)"�#�*,				(: _")# , -.�#� , -/�#�*b9: 

°�#� & ±")# , -	*, u V -.�#� $ -/�#� V -																																									")# , -	*, - V -.�#� $ -/�#� V u																																									
� 

  			( & ¢¤
¥a3aZ�H�3a[�H�a3  , u V -.�#� $ -/�#� V -																																									aZ�H�va[�H�3a 3a , - V -.�#� $ -/�#� V u.																																									

� 
From the definition of Operator ∆, one can observe that  ∆�)#, "�#�* & ��# $ 1, "�# $ 1�	� , ��#, "�#�	� B 0.         
Then there exist a +ve Constant S V 1 such that 

  �)# $ 1, "�# $ 1�* V �1 , S��)#, "�#�*,			# Q #2. 

Then 				�)#� $ 1, "�#� $ 1�* V �1 , S��)#�, "�#��* 
        ⋮ 
   �)#. $ 1, "�#.�* V �1 , S�HZ3H³�)#�, "�#��* 
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 and  hence                                                                        				�)#, "�#�* V �1 , S�H3HJ�)#2 , "�#2�*, # ∈ 8#2 , #2v.�.  (9) 

Here we note that  # & #23 

        		�)#2 , "�#2�* V �1 $ #2�/	�)#23, "�#23�*.                 (10) 

By applying (9) and (10) successively in each Interval of  8#2, #2v.9 yields the following equations 

For# ∈ 8#., #/�,			 �)#., "�#.�* V �1 $ #.�/�1 , S�H3H³�)#�, "�#��* and   �)#/, "�#/�* V											�1 $ #/�/�1 $ #/�/�1 , S�H[3H³�)#�, "�#��*               

For# ∈ 8#�, #.�,			 �)#, "�#�* V �1 $ #��/�1 , S�HZ3H³�)#�, "�#��*.                 
Therefore by Induction , for any 8#2 , #2v.�, 5 & 0,1,2…we 

obtain 	�)#, "�#�* V �)#�, "�#��* exp�ϑ�k�
.		                (11) 

On the other hand , it is easily to get that 

 ��#� V 	d.f rh|"�#�|h/s $ d/ 	∑ f�h|"�=�|h/
H3.<�H3a .           (12) 

  For any ¸	 � 1, it follows from(12) that ¸nv.f���j $ 1�
 , ¸nf���j�
 V ¸n�,S	¸	f rh|"�j�|h/s  $�¸ , 1�d.	f� h|"�j�|h/
	 $�¸ , 1�d/∑ f�h|"�j�|h/
n3.<�n3a .  

                                                                                             (13)                                                

Summing upon both sides of (13) from 0 to # , 1  we obtain 

that  ¸H	f���#�
 , f���0�
 V ¹.�¸�jkl3amnm�f�||"�j||/
 
                                          $¹/�¸� ∑ ¸Hf rh|"�j�|h/sHn�� .  (14) 

 Since ¹/�1� & ,S¸ B 0	 there must exist a +ve ¸� � 1  

such that  ¹/�¸�� B 0. Then we have  f���#�
 V ¹.�¸��	� 1̧��H		jkl3amnm�	f rh|"�j�|h/s. 																																																										$ _ .º³bH ��0�                   (15) 

It follows that  rh|"�j�|h/s V 	deH 			jkl3amnm�	f rh|"�j�|h/s	 
Where e & �¸��3Z[,  d & »¼Z�º³�v½¾¿XÀ�Á�  . By definition of (2.1) 

the system is globally exponentially stable in the mean square. 

 

IV NUMERICAL EXAMPLE 

          In this section, a numerical example is introduced to 

demonstrate the less conservativeness of the proposed method. 

Example 4.1 
    Consider the impulsive discrete stochastic additive time 

delay neural networks of the system (1) 

 

  � & g0.2 00 0.5i ,	' & g 0.2 ,1,0.8 0.1i , + & g0.2 ,0.91 0.8 i -. & 84�cos�� � 0.5��			09,  -/ & 89�sin�� � 0.5� , 1��,			09 
 42 & ,0.6. 

The activation function is defined by  (�"� & 43Ç`. 

By solving the LMI in (6) we can obtain the feasible solution. 

Here in our paper, we have not provided such kind of 

solutions due to the restriction of page limitation. This ensures 

that all the conditions in Theorem 3.1 are satisfied and hence 

system (1) exponentially stable in the mean square. 

 

Figure 1 42 & ,0.6 and the state response "�#� with impulse 

    

 

 
  Figure 2 The state response "�#� without impulse 

 
Figures 1 and 2 depict the time response of state variables x1 

and x2 with and without impulsive effects. The simulation 

result reveals that by taking external disturbances like 

stochastic and impulsive effects into account our results 

quickly lead to the stable state for the above given parameters. 

 
V.  CONCLUSIONS 

          A new augmented Lyapunov–Krasovskii functional is 

constructed to achieve the delay-dependent stability result of 

the considered discrete–time stochastic impulsive neural 

network with two additive time-varying delays in state and 

some new improved sufficient conditions ensuring globally 

exponentially stable are obtained. The merit of the proposed 

conditions lies in its less conservatives and making full use of 
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the delay information. Finally, an illustrative 

example has been provided to show the advantage of the 

obtained results.  
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