
ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

523
All Rights Reserved © 2016 IJARTET

INFORMATION FLOW CONTROLLER AND SECURITY

POLICIES ENFORCER FOR MOBILE APPLICATIONS

S.N.ANITHA , K. KALYANI

Electronics and Communication Engineering,

Shanmuganathan Engineering College, Pudukkottai, Tamilnadu, India

anithasn15@gmail.com,punikalyani@gmail.com

Abstract— Data security is vital in PDAs and

Smartphones. There are lots of mobile applications available

in the market. Every application has its own declassification

policies for data access and security. Some application may

violate those policies and users don’t know that their private

information read by them. The proposed system will ensure

mobile applications, data access flow to be secured. Static

analyzers introduced an expression-matching framework that

defines validity of a program with respect to the expressions

calculated from it. The framework checks all the expressions

in a given program can possibly output and checks them

against a set of expressions which are allowed to be

declassified (the set of declassifiable expressions). It

formalized a property that states that the program does not

reveal any more information than that specified by such

declassifiable expressions. It named this property Policy

Controlled Release (PCR).It has also developed a high level

implementation of the framework, which uses a form of

graphs to calculate whether a program satisfies PCR or not.

The PCR property that the framework refers to is undecidable.

Expressions that may be computed by the program under

analysis are also represented by a form of an expression graph

that incorporates representations of variables and I/O

channels, and captures the dependencies of output expressions

on values obtained from input channels, runtime components

to achieve an enforcement mechanism that can be applied to

current technologies and application examples. In order to

tackle some aspects of information flow enforcement that

static analysis does not cover, the implementation with

runtime enforcement techniques.

Index Terms—Data security, Information Security.

I. INTRODUCTION

Computer systems are constantly handling sensitive

information. As most of such systems are networked and

often connected to the Internet, sensitive data is also

regularly transmitted between different devices.

Smartphones and tablet computers carry private data of

users in the form of contact lists, photos, messages and

others. Social network websites not only store such

information, but also regulate who has access to it. Banking

systems are responsible for securing and regulating access

to very sensitive financial information of their customers.

Wrong handling of sensitive information can cause it to be

disclosed to unauthorized parties, corrupted or lost. This

can cause major loss for both companies and individuals.

The field of computer security can be divided into 3

main aspects are confidentiality, integrity and availability.

Confidentiality is related to ensuring that data is only

accessible by entities authorized to do so. Integrity is about

preventing that data gets corrupted or modified in

unauthorized ways. Finally, availability is about

guaranteeing that computer systems and services are

available at all times. This thesis tackles the first aspect,

confidentiality of sensitive data. The aim of the problem is

ensuring that programs do not leak sensitive information to

unauthorized entities.

Software is the fundamental decision-making

component of a computer system. Every action done with

data, including modification, copy, delete and transmission

is done by programs. Thus, in order to regulate actions over

data, one needs to regulate how computer software operates

over such data. To make matters more complicated, it is

common for a computer system to have a multitude of

different programs, which are in turn also regularly

updated. Thus, in order to enforce how sensitive

information is handled by a computer system, one needs to

regulate what programs do with this information.

Information can have different degrees of

confidentiality. In a company, some information might be

of public domain, e.g. the company’s line of products and

services, its address, some general numbers about profits.

However, an employee should not be able to access another

employee’s salary information, while a manager should be

able to access this information related to all his/her

subordinates. Some information might be even more

sensitive details of unannounced research projects or the

company’s financial situation should be accessible only by

some key personnel. With this, there is a need for computer

systems to regulate “who” (i.e. programs working on behalf

of users) can access which kind of information.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

524
All Rights Reserved © 2016 IJARTET

INFORMATION FLOW AND DECLASSIFICATION

ANALYSIS

Programs dealing with sensitive data must prevent

confidential information from flowing to unauthorized

entities. In order to enforce how programs use data,

information flow control has become increasingly popular

within the scientific community. Information flow control

revolves around a classical security property called non-

interference, which states that the publicly observable

behaviour of a program is entirely independent of any

secret input values it has received. Several techniques have

been proposed to check whether programs satisfy this

property, within both static analysis and runtime

enforcement.

Consider a program with two inputs are one which is

publicly observable labelled low, and therefore not

confidential, and another which is secret, labelled high, and

whose contents should be disclosed to unauthorized

entities. This program has one public output, labelled low.

It could also have secret (high) outputs, but these are

unnecessary for the sake of this example. Consider that P (l,

h) returns the program’s public output for when it is

executed with the input values l and h, for the low and high

inputs, respectively. User says that this program satisfies

non-interference if, for any two executions differing only in

the value of the high input, the value of the low output does

not change.

 In other words, for any l, h and h0, user have that P

(l, h) = P(l, h0). In this case, user say that the secret input

does not interfere with the value of the public output, and

thus this program does not perform any unauthorized

information flow. Most of the approaches to guarantee

information flow can be divided into two main categories

are static analysis and runtime enforcement. Static analysis

consists of analyzing the program’s code in order to predict

its behaviour, while runtime enforcement revolves around

checking, during runtime, every instruction executed by the

program, and taking action should an unauthorized action

takes place. These two approaches are complementary

some aspects of information flow can only be tackled by

static analysis (e.g. implicit flows) while others only by

runtime enforcement (e.g. resources with labels only known

at runtime). Information flow controller and security

policies enforcer for mobile application has three

mechanisms, each building upon its predecessor, from

theory to practice as following

1. A theoretical framework that defines a policy model and

the notion of program validity with respect to a policy.

2. A high level implementation that defines a concrete

policy language and a tractable validation procedure for

checking program validity against such policies.

3. A practical extension of the implementation, that defines

a framework which combines the previous mechanism with

a runtime component implemented on a established

technology, supporting more expressive policies across

multiple systems, but keeping runtime overhead very low.

II. RELATED WORK

Various schemes have been proposed for contextual

property detection. In [2], the Gradual Release (GR) property

[10] formalized the information revealed by declassification

policies by stating that the observer’s knowledge increases

only at declassification points. This property was extended by

the Conditioned Gradual Release (CGR) property [10], which

took important steps in decoupling policy from code. It

requires that the low-security observer of program behavior

cannot detect differences between runs whose inputs yield the

same values for declassifiable expressions. Finally, a more

complete separation between code and policy was achieved by

the Policy Controlled Release (PCR) property [10] which,

based on CGR,is able to completely remove security types

from the program.The PCR approach is the basis of our static

analyzer.Runtime enforcement mechanisms [8] monitor

accesses a program does during execution, enforcing access

control policies. These mechanisms are often useful for

enforcing access control, but not information flow, since the

latter requires knowledge of nonexecuted code, in order

todetect implicit flows. In [8] authors propose a theory for

runtime enforcement, modelling runtime mechanisms that can

transform results, and also an analysis of the policies that such

model can enforce. Their abstract model is simple and

expressive, and our runtime enforcement step can be fit in the

model in a straightforward manner. The model, however,

makes explicit one of the limitations of runtime

enforcement,as it only considers actions performed by the

application at runtime, it is unaware of implicit flows of

information caused by actions that were not performed. A

recent study on policies enforceable by runtime monitoring is

presented in [5]. The same authors present a framework for

composing expressive runtime policies in [3]. However,

policies are again based on specific security-sensitive actions

performed by the program.In [6], the authors address the issue

of the computability constraints of runtime monitoring, giving

a characterization of those security policies enforceable by

program rewriting. In [8] the authors propose a purely

dynamic information flow analysis approach that handles

implicit flows. However, this is achieved by disallowing, on

the language semantics, dynamic label updates within high

conditionals, an unnecessary limitation in our approach. In [9],

authors study language support for runtime principals that

specify runtime authority in downgrading mechanisms such as

declassification. we establish the basic property of

noninterference for programs written in such language, while

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

525
All Rights Reserved © 2016 IJARTET

an example of a security sublanguage for

enforcing information-flow policies was proposed in

[4].Finally, in [2] the authors present a semantic framework

for expressing security policies for declassification and

endorsement in a language-based setting. The proposed

framework specifies how attacker controlled code affects

program execution and what the attacker is able to learn from

observable effects of the code.A information controller and

security policies approach had been proposed in [1], although

authors proposed the combination of inline reference monitors

with static type systems.

III .MOTIVATING EXAMPLES

We present three examples that will be used

throughout the paper. The examples are all within the context

of mobile devices, and present problems which current

popular mobile platforms (e.g., Android, Apple iOS) cannot

handle. Indeed,these problems cannot be handled by either

static or runtime enforcement approaches, emphasizing the

necessity for a combined approach.

Example 1 (Classification): Consider a policy that allows

applications to read the contents of the phone’s contact list,

but not send it to low level channels (e.g., an arbitrary Internet

connection).However, assume the user is allowed to mark as

“trusted” certain output locations, such as a network

connection, an SMS or an e-mail address. Thus, information

derived from the contact list can only be sent to trusted output

channels. In this scenario,the static analyzer is needed todetect

the flows of information within a program, while the runtime

enforcer is needed to check the dynamic security label of the

output channel. Algorithm 1 presents an example. In the

following example algorithms we use underlined text to

indicate input and output operations.

Algorithm 4.1: Classification application

1 clist := getContactList();

2 counter := 0;

3 while hasNext(clist) do

4 contact := next(clist);

5 age := getAge(contact);

6 if age > 45 then counter := counter + 1;

7 text := “I have ” + counter + “ contacts over 45.”;

8 addr := readFromInput();

9 sendSMS(addr, text);

Example 2 (Declassification): Consider a policy for location-

based services. The policy states that a user’s location is

private in general and cannot be output. However, there are

two allowed declassifications: (1) the time zone of a location,

and (2) the result of a function that compares whether two

locations are near to each other. In this scenario, an

application can transmit its location to a different device using

a secure connection.In particular, the application transmits

data along with its corresponding security label to the other

device (assuming that the underlying system platform supports

this). Here, the static analyzer not only detects flows of

information, but also points of the program that match the

expressions allowed by the declassification policy. Again, the

runtime enforcer checks for dynamic labels.

Algorithm 4.2: Declassification application

1 secureConn := secConnect(“otherhost.somewhere.com”);

2 myLoc := getLocation();

3 myTz := timezone(myLoc);

4 otherTz := recv(secureConn);

5 if myTz = otherTz then

6 send(“ACK”, secureConn);

7 otherLoc := recv(secureConn);

8 near := isNear(myLoc, otherLoc);

9 if near then print(“Host is nearby!”);

Example 3 (Iterative declassification): Now, consider a

corporate application (Algorithm 3) in which a device

accesses the records of several products, and it outputs the

average of some property of the products (e.g., price,

nutritional facts, cost, etc.).According to a declassification

policy, the program can only output the average of a property

for a given number of products (and not their single values).

The static analyzer detects that the program conforms with the

declassification policy, but the condition of the minimum

amount of values the average has to contain is only checked

during runtime.

Algorithm 4.3: Iterative declassification application

1 sum := 0;

2 num := 0;

3 db := openDBConnection();

4 while !exitSignal do

5 rec := fetch(db);

6 prop := getProperty(rec);

7 sum := sum + prop;

8 num := num + 1;

9 avg := sum ÷ num;

10 output(avg);

III. APPROACH

SecurityPolicies Enforcer

Our approach consists of a hybrid static-runtime

mechanism organized in three steps: static program analyzer,

preload checker, and runtime enforcer. In practice, the first

two steps perform the most expensive part of the analysis,

leaving the runtime enforcer to perform a few very precise

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

526
All Rights Reserved © 2016 IJARTET

(and thus efficient) checks. Fig. 1 shows how

the three steps interact with each other, while in the following

we give an overview of their role.

1.Static Analyzer 2.Preload checker 3.Runtime

1) Static analyzer: it takes a program and identifies all its

information flows, i.e., for each output operation, it identifies

which input operations its value can potentially depend on

(including implicit flows). Additionally, it takes a set of

declassification policies and identifies which variables of the

program hold expressions on inputs allowed by the policies.

Thus, it downgrades the security level of those variables and

of the corresponding flows of information. The information

flows, combined with the matched declassifications,are

included in a flow report of the program.

2) Preload checker: before the program is run, the checker

takes the flow report from the previous step and checks the

security labels of the system in which the program is about to

run. The information flows with static labels are then validated

at this step (i.e., high cannot flow to low).Flows containing

I/O channels with dynamic security labels can only be

checked at runtime, and thus are marked for checking in a

runtime checklist. Also, declassifications from the previous

step might have constraints associated with them, some of

which may only be checked at runtime.

3) Runtime enforcer: the lightweight enforcer verifies that

the conditions of the runtime checklist are satisfied at certain

points of execution. The conditions may consist of checks of

security labels of channels as they are accessed,and also of

counting the number of times some loops in the program run.

In order to reduce runtime overhead, the calls to the enforcer

are injected in the application bytecode,prior to the program’s

execution, on the specific program.

Contribution. We present a information flow and security

policies mechanism for mobile application approach for

information flow policies, including declassification,which

satisfies the points above. Our mechanism has 3 stages: (1) a

static analyzer that takes a program source and a set of

declassification policies and detects all flows of information

between input and output channels in the program,as well as

detecting points where declassification can happen (generating

constraints that have to be checked at runtime);(2) a preload

checker which, before loading the program for execution,

checks the security labels of I/O operations specific to the

target system against the information obtained in the previous

step; and (3) a runtime enforcer that checks labels which are

only known at runtime, as well as runtime constraints for the

declassification policies. Calls to the enforcer are injected in

the application’s code, prior to its execution, on the specific

points where checks are needed, thus further reducing the

overhead of the enforcer. To the best of our knowledge, our is

the first proposal of such approach.We present three

motivating examples, all within the context of a mobile

device, and show that our hybrid static-runtime enforcement

suffices to:

• support more realistic policies than present approaches—as

policies may need both static (implicit flows, declassification)

and runtime (dynamic labels,execution constraints) knowledge

.• reduce runtime overhead—as most of the analysis

computation is done statically, and the static analyzer is

system independent;

With this, we fill the gap left by existing approaches and

demonstrate that information flow and declassification

analysis can be performed on real-world scenarios (i.e.,

legacy, untrusted and mobile code). We combine the static

analyzer with a runtime component in a nonstandard way, in

the sense that we also include an intermediate step between

both stages and perform runtime enforcement via a code

injection done only in thempoints of the code where

enforcement is necessary. This is opposed to the standard

definition of runtime enforcement[5] ,in which every1 program

instruction needs to be monitored.We show how this

nonstandard approach allows us to have a system independent

static component, while also having an extremely lightweight

runtime component. In particular, we argue that our approach

has the following advantages: (1) it does not require specially

annotated program code, (2) handles information-flow at the

level of program variables, (3) supports declassification

policies which are decoupled from the code, (4) performs a

system-independent static analysis, due to the presence of

system-specific labeling mechanism that is decoupled from

program and policy, (5) supports dynamic (runtime) security

labels,(6) handles runtime declassification constraints, and (7)

its runtime component is lightweight enough to be

implemented on mobile devices.

Overhead. We have implemented our runtime enforcer in java,

and measured both its processing and memory overhead,

running with applications on an Android device. First, we

Declassif

ication

policies

I/O Channel

Program

file

Flow

report

System Security

Labels

Runtime

checklist

Execu

table

code

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

527
All Rights Reserved © 2016 IJARTET

discuss the theoretical limits for this

overhead, and then we proceed to show our experimental

results. For the memoryoverhead, the enforcer keeps two

buffers, and , which map a program point to an integer and a

label,respectively. These buffers can be implemented either

with standard arrays or hash tables. Note that entries on each

of the two buffers point to different types of commands:

entries in point to looping and entries in to input commands.

So, a worst-case scenario happens on a program made entirely

by loops and inputs, all loops being referenced by policies, all

inputs being dynamic, and a single output in the end, with all

inputs flowing to it. In this case, for a program with

commands, exact entries are made on the buffers, each using

one memory word (32 or 64-bit).

 Note that, in practice:

(1) the average case tends to use considerable less emory,e.g.,

in our 3 examples, the ratios of (number entries/number

commands) were 0/9, 1/9 and 1/10, respectively; and

 (2) programs tend to use much more memory for their data

than for their code, meaning that the bound of entries in the

buffers is usually low.As for the processing overhead, note

that each injected code piece is a simple call to one of the

enforcer’s methods. These methods, in turn, are implemented

with the execution and verification of a simple statement, with

no loops. Thus, it is clear that the enforcer methods have, by

themselves, constant complexity,and that the enforcer does not

change the complexity of the monitored program. Once again,

the number of checks added to the program is bounded by the

number of commands.But most practical cases do not reach

the bound , since only operations on dynamic I/O channels

and declassification constraints generate checks. In our 3

examples, the ratios of (number checks/number commands)

were 1/9, 3/9 and 2/10, respectively.It should be noted that, in

the classical definition of a runtime execution monitor [5], the

runtime enforcer monitors every command of the program.

Our enforcer, though, does not necessarily need to monitor

every instruction, since the task of identifying instructions that

need monitoring is performed by the previous stages of our

hybrid approach.We have implemented Android versions of

the three examples of this paper, plus a number of

benchmarking programs meant to stress the runtime enforcer

performance. Unfortunately,there are only a few proposals for

hybrid approaches in literature, and they all differ not only in

how they are measured,but also on their specific goals. Thus,

there is not yet a “standard benchmark” for hybrid static-

runtime information flow and declassification analysis,

making a direct comparison of performance with other

approaches not possible at this moment. Our experiments have

the purpose of showing that the overhead of our runtime

component is negligible for most practical scenarios.

We recall that the aim of our hybrid-approach is to minimize

the runtime checks only to methods that are relevant and have

not been covered by the static analysis phase. Typically these

represent a fraction of all methods invoked by an application

at runtime. Thus, running the experiments using legacy

applications would have shown a smaller overhead than the

small, security intensive benchmark programs we use here. To

stress and focus the performance penalties due to our runtime

check, we decided then to implement our own applications

representing the three motivating examples shown through the

paper. Furthermore, in order to also consider worst case

scenarios, uncommon in real-world applications, we

implemented the ad-hoc applications FileCopy, FileEncrypt,

InfGather and Statistics,with the specific purpose of stressing

the enforcer and computing the overhead in these extreme

cases. Results show that even in these extreme cases, our

hybrid technique has limited overhead compared to dynamic

analyses that intercept and analyze all methods that are

invoked at run time.

Each of the benchmarkswe implemented has a different

“profile”for accessing I/O. FileCopy performs a copy between

files,reading blocks of 1 KB at a time. However, each block

has a data security label. Thus, the runtime enforcer has to

set the label of each write with the label from the previous

read. This is an example of a program with extreme I/O

access, all of which checked by the runtime enforcer.

FileEncrypt is the same as the previous, but each block is

encrypted before being written.With this, the program incurs a

considerable processing time between I/O accesses. InfGather

and Statistics are similar programs, which access inputs from

10 different sources, and then perform a single output, whose

value depends on all previous inputs. In the former, all input

channels have runtime security labels, which have to be

checked during access, and then compared to the output label.

In the latter, labels are static,but violate noninterference.

However, some statistical calculation is done over the data,

and a declassification policy allows such computation. Thus,

the runtime enforcer is left to check if the input channels

accessed by the program match the ones described by the

policy, and also count the number of input accesses made by

the main loop. Finally, Loops is a program made by several

loops, all of which are small in size and have their number of

iterations counted by the enforcer, presenting an extreme

example of almost every instruction being checked.For

completeness, in Table V we report statistics about the size of

applications used in our evaluation.

ISSN 2394-3777 (Print)
 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com
 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 20, April 2016

528
All Rights Reserved © 2016 IJARTET

TABLE V

STATISTICS FOR BENCHMARK APPLICATIONS

IV.CONCLUSION AND FUTURE WORK

 Information flow controller and security policies enforcer

for mobile application designed to support policies that need

both static and runtime information. It works on minimum

runtime overhead in smart phones. Additionally, it does not

require specially annotated code. Static analysis stage supports

declassification policies which are decoupled from the code.

In this stage Graph based policy controlled release mechanism

is introduced. Preload checker stage verifies the flow report

compare with system security labels. Run time enforcer code

injection method is used to change unsecure download

application to secure application, if it’s any unsecure code is

identified.We are implementing in android based devices.In

future other type of mobile devices we are considered to

implement.

REFERENCES

[1] Askarov.A and Myers.A, (2010), “A semantic

framework for declassification and endorsement,”

in Proc. ESOP’10, pp. 64–84.

[2] Askarov.A and Sabelfeld.A, (2009), “Tight

enforcement of information-release policiesfor

dynamic languages,” in Proc. CSF’09.

[3] Banerjee.A, Naumann.D.A, and Rosenberg.S,

(2008),“Expressive declassification policies and

modular static enforcement,” in Proc. SP’08, pp.

339–353.

[4] Chong.S and Myers.A.C, (2008),“End-to-end

enforcement of erasure and declassification,” in

Proc. CSF’08, pp. 98–111.

[5] Conti.E, Fernandes.E, Crispo.B, and

Zhauniarovich.Y, “CRePE,(Oct.2012),” A system for

enforcing fine-grained context-related policies on

Android,”IEEE Trans. Inf. Forensics Security, vol. 7,

no. 5, pp. 1426–1438.

[6] Davi.L, Dmitrienko.A, Egele.M, Fischer.T, Holz.T,

Hund.R, Nürnberger.S, and Sadeghi.A.R,(2011),

“Poster: Control-flow integrity for smartphones,” in

Proc. CCS’11, pp. 749–752.

[7] Erlingsson.U and Schneider.F.B, (1999), “SASI

enforcement of security policies:A retrospective,” in

Proc. NSPW’99, pp. 87–95.

[8] Ligatti.J and Reddy.S, (2010), “A theory of runtime

enforcement, with results”, in Proc. ESORICS’10,

pp. 87–100.

[9] Rocha.B.P.S, Bandhakavi.S, Den Hartog.J,

Winsborough.W.H., and Etalle.S, (2010), “Towards

static flow-based declassification for legacy and

untrusted programs,” in Proc. SP’10, 2010, pp. 93–

108.

[10] Tse.S and Zdancewic.S, (Nov.2007), “Run-time

principals in information-flow type systems,” ACM

Trans. Program. Lang. Syst., vol. 30, no. 1.

