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Abstract— Data security is vital in PDAs and 

Smartphones. There are lots of mobile applications available 

in the market. Every application has its own declassification 

policies for data access and security. Some application may 

violate those policies and users don’t know that their private 

information read by them. The proposed system will ensure 

mobile applications, data access flow to be secured. Static 

analyzers introduced an expression-matching framework that 

defines validity of a program with respect to the expressions 

calculated from it. The framework checks all the expressions 

in a given program can possibly output and checks them 

against a set of expressions which are allowed to be 

declassified (the set of declassifiable expressions). It 

formalized a property that states that the program does not 

reveal any more information than that specified by such 

declassifiable expressions. It named this property Policy 

Controlled Release (PCR).It has also developed a high level 

implementation of the framework, which uses a form of 

graphs to calculate whether a program satisfies PCR or not. 

The PCR property that the framework refers to is undecidable. 

Expressions that may be computed by the program under 

analysis are also represented by a form of an expression graph 

that incorporates representations of variables and I/O 

channels, and captures the dependencies of output expressions 

on values obtained from input channels, runtime components 

to achieve an enforcement mechanism that can be applied to 

current technologies and application examples. In order to 

tackle some aspects of information flow enforcement that 

static analysis does not cover, the implementation with 

runtime enforcement techniques. 

 
Index Terms—Data security, Information Security. 

I. INTRODUCTION  

Computer systems are constantly handling sensitive 

information. As most of such systems are networked and 

often connected to the Internet, sensitive data is also 

regularly transmitted between different devices. 

Smartphones and tablet computers carry private data of 

users in the form of contact lists, photos, messages and 

others. Social network websites not only store such 

information, but also regulate who has access to it. Banking 

systems are responsible for securing and regulating access 

to very sensitive financial information of their customers. 

Wrong handling of sensitive information can cause it to be 

disclosed to unauthorized parties, corrupted or lost. This 

can cause major loss for both companies and individuals. 

The field of computer security can be divided into 3 

main aspects are confidentiality, integrity and availability. 

Confidentiality is related to ensuring that data is only 

accessible by entities authorized to do so. Integrity is about 

preventing that data gets corrupted or modified in 

unauthorized ways. Finally, availability is about 

guaranteeing that computer systems and services are 

available at all times. This thesis tackles the first aspect, 

confidentiality of sensitive data. The aim of the problem is 

ensuring that programs do not leak sensitive information to 

unauthorized entities. 

Software is the fundamental decision-making 

component of a computer system. Every action done with 

data, including modification, copy, delete and transmission 

is done by programs. Thus, in order to regulate actions over 

data, one needs to regulate how computer software operates 

over such data. To make matters more complicated, it is 

common for a computer system to have a multitude of 

different programs, which are in turn also regularly 

updated. Thus, in order to enforce how sensitive 

information is handled by a computer system, one needs to 

regulate what programs do with this information. 

Information can have different degrees of 

confidentiality. In a company, some information might be 

of public domain, e.g. the company’s line of products and 

services, its address, some general numbers about profits. 

However, an employee should not be able to access another 

employee’s salary information, while a manager should be 

able to access this information related to all his/her 

subordinates. Some information might be even more 

sensitive details of unannounced research projects or the 

company’s financial situation should be accessible only by 

some key personnel. With this, there is a need for computer 

systems to regulate “who” (i.e. programs working on behalf 

of users) can access which kind of information. 
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INFORMATION FLOW AND DECLASSIFICATION 

ANALYSIS 

Programs dealing with sensitive data must prevent 

confidential information from flowing to unauthorized 

entities. In order to enforce how programs use data, 

information flow control has become increasingly popular 

within the scientific community. Information flow control 

revolves around a classical security property called non-

interference, which states that the publicly observable 

behaviour of a program is entirely independent of any 

secret input values it has received. Several techniques have 

been proposed to check whether programs satisfy this 

property, within both static analysis and runtime 

enforcement. 

 

Consider a program with two inputs are one which is 

publicly observable labelled low, and therefore not 

confidential, and another which is secret, labelled high, and 

whose contents should be disclosed to unauthorized 

entities. This program has one public output, labelled low. 

It could also have secret (high) outputs, but these are 

unnecessary for the sake of this example. Consider that P (l, 

h) returns the program’s public output for when it is 

executed with the input values l and h, for the low and high 

inputs, respectively. User says that this program satisfies 

non-interference if, for any two executions differing only in 

the value of the high input, the value of the low output does 

not change. 

  In other words, for any l, h and h0, user have that P 

(l, h) = P(l, h0). In this case, user say that the secret input 

does not interfere with the value of the public output, and 

thus this program does not perform any unauthorized 

information flow. Most of the approaches to guarantee 

information flow can be divided into two main categories 

are static analysis and runtime enforcement. Static analysis 

consists of analyzing the program’s code in order to predict 

its behaviour, while runtime enforcement revolves around 

checking, during runtime, every instruction executed by the 

program, and taking action should an unauthorized action 

takes place. These two approaches are complementary 

some aspects of information flow can only be tackled by 

static analysis (e.g. implicit flows) while others only by 

runtime enforcement (e.g. resources with labels only known 

at runtime). Information flow controller and security 

policies enforcer for mobile application has three 

mechanisms, each building upon its predecessor, from 

theory to practice as following  

1. A theoretical framework that defines a policy model and 

the notion of program validity with respect to a policy. 

2. A high level implementation that defines a concrete 

policy language and a tractable validation procedure for 

checking program validity against such policies. 

3. A practical extension of the implementation, that defines 

a framework which combines the previous mechanism with 

a runtime component implemented on a established 

technology, supporting more expressive policies across 

multiple systems, but keeping runtime overhead very low. 

 

II. RELATED WORK 

Various schemes have been proposed for contextual 

property detection. In [2], the Gradual Release (GR) property 

[10] formalized the information revealed by declassification 

policies by stating that the observer’s knowledge increases 

only at declassification points. This property was extended by 

the Conditioned Gradual Release (CGR) property [10], which 

took important steps in decoupling policy from code. It 

requires that the low-security observer of program behavior 

cannot detect differences between runs whose inputs yield the 

same values for declassifiable expressions. Finally, a more 

complete separation between code and policy was achieved by 

the Policy Controlled Release (PCR) property [10] which, 

based on CGR,is able to completely remove security types 

from the program.The PCR approach is the basis of our static 

analyzer.Runtime enforcement mechanisms [8] monitor 

accesses a program does during execution, enforcing access 

control policies. These mechanisms are often useful for 

enforcing access control, but not information flow, since the 

latter requires knowledge of nonexecuted code, in order 

todetect implicit flows. In [8] authors propose a theory for 

runtime enforcement, modelling runtime mechanisms that can 

transform results, and also an analysis of the policies that such 

model can enforce. Their abstract model is simple and 

expressive, and our runtime enforcement step can be fit in the 

model in a straightforward manner. The model, however, 

makes explicit one of the limitations of runtime 

enforcement,as it only considers actions performed by the 

application at runtime, it is unaware of implicit flows of 

information caused by actions that were not performed. A 

recent study on policies enforceable by runtime monitoring is 

presented in [5]. The same authors present a framework for 

composing expressive runtime policies in [3]. However, 

policies are again based on specific security-sensitive actions 

performed by the program.In [6], the authors address the issue 

of the computability constraints of runtime monitoring, giving 

a characterization of those security policies enforceable by 

program rewriting. In [8] the authors propose a purely 

dynamic information flow analysis approach that handles 

implicit flows. However, this is achieved by disallowing, on 

the language semantics, dynamic label updates within high 

conditionals, an unnecessary limitation in our approach. In [9], 

authors study language support for runtime principals that 

specify runtime authority in downgrading mechanisms such as 

declassification. we establish the basic property of 

noninterference for programs written in such language, while 
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an example of a security sublanguage for 

enforcing information-flow policies was proposed in 

[4].Finally, in [2] the authors present a semantic framework 

for expressing security policies for declassification and 

endorsement in a language-based setting. The proposed 

framework specifies how attacker controlled code affects 

program execution and what the attacker is able to learn from 

observable effects of the code.A information controller and 

security policies approach had been proposed  in [1], although 

authors proposed the combination of inline reference monitors 

with static type systems.  

III .MOTIVATING EXAMPLES 

 

We present three examples that will be used 

throughout the paper. The examples are all within the context  

of mobile devices, and present problems which current 

popular mobile platforms (e.g., Android, Apple iOS) cannot 

handle. Indeed,these problems cannot be handled by either 

static or runtime enforcement approaches, emphasizing the 

necessity for a combined approach. 

Example 1 (Classification): Consider a policy that allows 

applications to read the contents of the phone’s contact list, 

but not send it to low level channels (e.g., an arbitrary Internet 

connection).However, assume the user is allowed to mark as 

“trusted” certain output locations, such as a network 

connection, an SMS  or an e-mail address. Thus, information 

derived from the contact list can only be sent to trusted output 

channels. In this scenario,the static analyzer is needed todetect 

the flows of information within a program, while the runtime 

enforcer is needed to check the dynamic security label of the 

output channel. Algorithm 1 presents an example. In the 

following example algorithms we use underlined text to 

indicate input and output operations. 

 

Algorithm 4.1: Classification application 

 
1 clist := getContactList(); 

2 counter := 0; 

3 while hasNext(clist) do 

4 contact := next(clist); 

5 age := getAge(contact); 

6 if age > 45 then counter := counter + 1; 

7 text := “I have ” + counter + “ contacts over 45.”; 

8 addr := readFromInput(); 

9 sendSMS(addr, text); 

 

Example 2 (Declassification): Consider a policy for location- 

based services. The policy states that a user’s location is 

private in general and cannot be output. However, there are 

two allowed declassifications: (1) the time zone of a location, 

and (2) the result of a function that compares whether two 

locations are near to each other. In this scenario, an 

application can transmit its location to a different device using 

a secure connection.In particular, the application transmits 

data along with its corresponding security label to the other 

device (assuming that the underlying system platform supports 

this). Here, the static analyzer not only detects flows of 

information, but also points of  the program that match the 

expressions allowed by the declassification policy. Again, the 

runtime enforcer checks for dynamic labels. 

 

Algorithm 4.2: Declassification application 

 
1 secureConn := secConnect(“otherhost.somewhere.com”); 

2 myLoc := getLocation(); 

3 myTz := timezone(myLoc); 

4 otherTz := recv(secureConn); 

5 if myTz = otherTz then 

6 send(“ACK”, secureConn); 

7 otherLoc := recv(secureConn); 

8 near := isNear(myLoc, otherLoc); 

9 if near then print(“Host is nearby!”); 

 

Example 3 (Iterative declassification): Now, consider a 

corporate application (Algorithm 3) in which a device 

accesses the records of several products, and it outputs the 

average of some property of the products (e.g., price, 

nutritional facts, cost, etc.).According to a declassification 

policy, the program can only output the average of a property 

for a given number of products (and not their single values). 

The static analyzer detects that the program conforms with the 

declassification policy, but the condition of the minimum 

amount of values the average has to contain is only checked 

during runtime. 

 

Algorithm 4.3: Iterative declassification application 

 
1 sum := 0; 

2 num := 0; 

3 db := openDBConnection(); 

4 while !exitSignal do 

5 rec := fetch(db); 

6 prop := getProperty(rec); 

7 sum := sum + prop; 

8 num := num + 1; 

9 avg := sum ÷ num; 

10 output(avg); 

 

III. APPROACH 

SecurityPolicies Enforcer 

Our approach consists of a hybrid static-runtime 

mechanism organized in three steps: static program analyzer, 

preload checker, and runtime enforcer. In practice, the first 

two steps perform the most expensive part of the analysis, 

leaving the runtime enforcer to perform a few very precise 
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(and thus efficient) checks. Fig. 1 shows how 

the three steps interact with each other, while in the following 

we give an overview of their role. 

 

1.Static Analyzer     2.Preload checker 3.Runtime 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Static analyzer: it takes a program and identifies all its 

information flows, i.e., for each output operation, it identifies 

which input operations its value can potentially depend on  

(including implicit flows). Additionally, it takes a set of  

declassification policies and identifies which variables of the 

program hold expressions on inputs allowed by the policies. 

Thus, it downgrades the security level of those variables and 

of the corresponding flows of information. The information 

flows, combined with the matched declassifications,are 

included in a flow report of the program. 

2) Preload checker: before the program is run, the checker 

takes the flow report from the previous step and checks the 

security labels of the system in which the program is about to 

run. The information flows with static labels are then validated 

at this step (i.e., high cannot flow to low).Flows containing 

I/O channels with dynamic security labels can only be 

checked at runtime, and thus are marked for checking in a 

runtime checklist. Also, declassifications from the previous 

step might have constraints associated with them, some of 

which may only be checked at runtime. 

3) Runtime enforcer: the lightweight enforcer verifies that 

the conditions of the runtime checklist are satisfied at certain 

points of execution. The conditions may consist of checks of 

security labels of channels as they are accessed,and also of 

counting the number of times some loops in the program run. 

In order to reduce runtime overhead, the calls to the enforcer 

are injected in the application bytecode,prior to the program’s 

execution, on the specific program. 

 

Contribution. We present a information flow and security 

policies mechanism for mobile application approach for 

information flow policies, including declassification,which 

satisfies the points above. Our mechanism has 3 stages: (1) a 

static analyzer that takes a program source and a set of 

declassification policies and detects all flows of information 

between input and output channels in the program,as well as 

detecting points where declassification can happen (generating 

constraints that have to be checked at runtime);(2) a preload 

checker which, before loading the program for execution, 

checks the security labels of I/O operations specific to the 

target system against the information obtained in the previous 

step; and (3) a runtime enforcer that checks labels which are 

only known at runtime, as well as runtime constraints for the 

declassification policies. Calls to the enforcer are injected in 

the application’s code, prior to its execution, on the specific 

points where checks are needed, thus further reducing the 

overhead of the enforcer. To the best of our knowledge, our is 

the first proposal of such approach.We present three 

motivating examples, all within the context of a mobile 

device, and show that our hybrid static-runtime enforcement 

suffices to: 

• support more realistic policies than present approaches—as 

policies may need both static (implicit flows, declassification) 

and runtime (dynamic labels,execution constraints) knowledge 

.• reduce runtime overhead—as most of the analysis 

computation is done statically, and the static analyzer is 

system independent; 

With this, we fill the gap left by existing approaches and 

demonstrate that information flow and declassification 

analysis can be performed on real-world scenarios (i.e., 

legacy, untrusted and mobile code). We combine the static 

analyzer with a runtime component in a nonstandard way, in 

the sense that we also include an intermediate step between 

both stages and perform runtime enforcement via a code 

injection done only in thempoints of the code where 

enforcement is necessary. This is opposed to the standard 

definition of runtime enforcement[5] ,in which every1 program 

instruction needs to be monitored.We show how this 

nonstandard approach allows us to have a system independent 

static component, while also having an extremely lightweight 

runtime component. In particular, we argue that our approach 

has the following advantages: (1) it does not require specially 

annotated program code, (2) handles information-flow at the 

level of program variables, (3) supports declassification 

policies which are decoupled from the code, (4) performs a 

system-independent static analysis, due to the presence of 

system-specific labeling mechanism that is decoupled from 

program and policy, (5) supports dynamic (runtime) security 

labels,(6) handles runtime declassification constraints, and (7) 

its runtime component is lightweight enough to be 

implemented on mobile devices. 

 

Overhead. We have implemented our runtime enforcer in java, 

and measured both its processing and memory overhead, 

running with applications on an Android device. First, we 
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discuss the theoretical limits for this 

overhead, and then we proceed to show our experimental 

results. For the memoryoverhead, the enforcer keeps two 

buffers, and , which map a program point to an integer and a 

label,respectively. These buffers can be implemented either 

with standard arrays or hash tables. Note that entries on each 

of the two buffers point to different types of commands: 

entries in point to looping and entries in to input commands. 

So, a worst-case scenario happens on a program made entirely 

by loops and inputs, all loops being referenced by policies, all 

inputs being dynamic, and a single output in the end, with all 

inputs flowing to it. In this case, for a program with 

commands, exact entries are made on the buffers, each using 

one memory word (32 or 64-bit). 

 Note that, in practice: 

(1) the average case tends to use considerable less emory,e.g., 

in our 3 examples, the ratios of (number entries/number 

commands) were 0/9, 1/9 and 1/10, respectively; and 

  (2) programs tend to use much more memory for their data 

than for  their code, meaning that the bound of entries in the 

buffers is usually low.As for the processing overhead, note 

that each injected code piece is a simple call to one of the 

enforcer’s methods. These methods, in turn, are implemented 

with the execution and verification of a simple statement, with 

no loops. Thus, it is clear that the enforcer methods have, by 

themselves, constant complexity,and that the enforcer does not 

change the complexity of the monitored program. Once again, 

the number of checks added to the program is bounded by the 

number of commands.But most practical cases do not reach 

the bound , since only operations on dynamic I/O channels 

and declassification constraints generate checks. In our 3 

examples, the ratios of (number checks/number commands) 

were 1/9, 3/9 and 2/10, respectively.It should be noted that, in 

the classical definition of a runtime execution monitor [5], the 

runtime enforcer monitors every command of the program. 

Our enforcer, though, does not necessarily need to monitor 

every instruction, since the task of identifying instructions that 

need monitoring is performed by the previous stages of our 

hybrid approach.We have implemented Android versions of 

the three examples of this paper, plus a number of 

benchmarking programs meant to stress the runtime enforcer 

performance. Unfortunately,there are only a few proposals for 

hybrid approaches in literature, and they all differ not only in 

how they are measured,but also on their specific goals. Thus, 

there is not yet a “standard benchmark” for hybrid static-

runtime information flow and declassification analysis, 

making a direct comparison of performance with other 

approaches not possible at this moment. Our experiments have 

the purpose of showing that the overhead of our runtime 

component is negligible for most practical scenarios. 

We recall that the aim of our hybrid-approach is to minimize 

the runtime checks only to methods that are relevant and have 

not been covered by the static analysis phase. Typically these 

represent a fraction of all methods invoked by an application 

at runtime. Thus, running the experiments using legacy 

applications would have shown a smaller overhead than the 

small, security intensive benchmark programs we use here. To 

stress and focus the performance penalties due to our runtime 

check, we decided then to implement our own applications 

representing the three motivating examples shown through the 

paper. Furthermore, in order to also consider worst case 

scenarios, uncommon in real-world applications, we 

implemented the ad-hoc applications FileCopy, FileEncrypt, 

InfGather and Statistics,with the specific purpose of stressing 

the enforcer and computing the overhead in these extreme 

cases. Results show that even in these extreme cases, our 

hybrid technique has limited overhead compared to dynamic 

analyses that intercept and analyze all methods that are 

invoked at run time. 

Each of the benchmarkswe implemented has a different 

“profile”for accessing I/O. FileCopy performs a copy between 

files,reading blocks of 1 KB at a time. However, each block 

has a data security label. Thus, the runtime enforcer has to 

set the label of each write with the label from the previous 

read. This is an example of a program with extreme I/O 

access, all of which checked by the runtime enforcer. 

FileEncrypt is the same as the previous, but each block is 

encrypted before being written.With this, the program incurs a 

considerable processing time between I/O accesses. InfGather 

and Statistics are similar programs, which access inputs from 

10 different sources, and then perform a single output, whose 

value depends on all previous inputs. In the former, all input 

channels have runtime security labels, which have to be 

checked during access, and then compared to the output label. 

In the latter, labels are static,but violate noninterference. 

However, some statistical calculation is done over the data, 

and a declassification policy allows such computation. Thus, 

the runtime enforcer is left to check if the input channels 

accessed by the program match the ones described by the 

policy, and also count the number of input accesses made by 

the main loop. Finally, Loops is a program made by several 

loops, all of which are small in size and have their number of 

iterations counted by the enforcer, presenting an extreme 

example of almost every instruction being checked.For 

completeness, in Table V we report statistics about the size of 

applications used in our evaluation. 
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TABLE V 

 

STATISTICS FOR BENCHMARK APPLICATIONS 

 
 

IV.CONCLUSION AND FUTURE WORK 

 

    Information flow controller and security policies enforcer 

for mobile application designed to support policies that need 

both static and runtime information. It works on minimum 

runtime overhead in smart phones. Additionally, it does not 

require specially annotated code. Static analysis stage supports 

declassification policies which are decoupled from the code. 

In this stage Graph based policy controlled release mechanism 

is introduced. Preload checker stage verifies the flow report 

compare with system security labels. Run time enforcer code 

injection method is used to change unsecure download 

application to secure application, if it’s any unsecure code is 

identified.We are implementing in android based devices.In 

future other type of mobile devices we are considered to 

implement. 
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