
 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 9, March 2016

19

All Rights Reserved © 2016 IJARTET

ENERGY AWARE SCHEDULING OF MAP REDUCE JOBS FOR

BIG DATA APPLICATIONS

G.K.SRIVATSAN
1
,A.ASADULLAH

2
,T.GANESH

3
, K.KATHIRAVAN

4

Department Of Information Technology, Jeppiaar Institute Of Technology,India.
1
srivatsan.g.k@gmail.com,

2
azar.370@gmail.com,

3
geganesh95@gmail.com,

4
kathirkerb2410@gmail.com

ABSTRACT

This proposed method is used to optimize the mining

results and evaluate Map Reduce using a one-step

algorithm and three iterative algorithms with diverse

computation characteristics for efficient mining. Naive-

Bayes Algorithm is used to find the search from the root

cause and it does a detailed study and produces an accurate

result. Incremental processing is a promising approach for

refreshing mining results. It utilizes previously saved states

to avoid the expense of re-computation from scratch. In this

paper, we propose Energy Map Reduce Scheduling

Algorithm, a novel incremental processing extension to

Map Reduce, the most widely used framework for mining

big data. Map reduce is a programming model for

processing and generating large amount of data in parallel

time. In this paper, EMRSA is algorithm provide more

energy and less maps. Priority based scheduling is a task

will allocate the schedules based on necessary and

utilization of the Jobs. For reducing the maps, it will reduce

the system work so easily energy has improve. Final results

show the experimental comparison of the different

algorithms involved in the paper.

KEYWORDS: Map Reduce, Support Vector Machine

(SVM) Algorithm, Naive-Bayes Algorithm.

1. INTRODUCTION

Today huge amount of digital data is being

accumulated in many important areas, including e-

commerce, social network, finance, health care,

education, and environment. Big data is constantly

evolving. As new data and results will become stale

and obsolete over time updates are being collected,

the input data of a big data mining algorithm will

gradually change, and the computed. HIVE is a data

warehousing infrastructure based on Hadoop.

Hadoop provides massive scale out and fault

tolerance capabilities for data storage and processing

(using the map-reduce programming paradigm) on

commodity hardware.HIVE does not support hadoop

as a batch processing system and Hadoop jobs tend to

have high latency and incur substantial overheads in

job submission and scheduling. As a result - latency

for Hive queries is generally very high (minutes)

even when data sets involved are very small (say a

few hundred megabytes). As a result it cannot be

compared with systems such as Oracle where

analyses are conducted on a significantly smaller

amount of data but the analyses proceed much more

iteratively with the response times between iterations

being less than a few minutes. Hive aims to provide

acceptable (but not optimal) latency for interactive

data browsing, queries over small data sets or test

queries. Hive is not designed for online transaction

processing and does not offer real-time queries and

row level updates. It is best used for batch jobs over

large sets of immutable data (like web logs). In the

following sections we provide a tutorial on the

capabilities of the system. We start by describing the

concepts of data types, tables and partitions (which

are very similar to what you would find in a

traditional relational DBMS) and then illustrate the

capabilities of the QL language. We focus on

improving Map Reduce in this paper. The problem

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 9, March 2016

20

All Rights Reserved © 2016 IJARTET

with Green Computing is the major challenges recent

days, due to the size of big data centers it will take

more computation for Data Accessing Process. It will

increase the time, also it will consume more energy.

In this project we are going to solve above mentioned

issues.

1
Jeffrey Dean Et al discussed about MapReduce is a

programming model and an associated

implementation for processing and generating large

data sets. Users specify a map function that processes

a key/value pair to generate a set of intermediate

key/value pairs, and a reduce function that merges all

intermediate values associated with the same

intermediate key. Many real world tasks are

expressible in this model, as shown in the paper.

Programs written in this functional style are

automatically parallelized and executed on a large

cluster of commodity machines. The run-time system

takes care of the details of partitioning the input data,

scheduling the program’s execution across a set of

machines, handling machine failures, and managing

the required inter-machine communication. This

allows programmers without any experience with

parallel and distributed systems to easily utilize the

resources of a large distributed system. Our

implementation of MapReduce runs on a large cluster

of commodity machines and is highly scalable: a

typical MapReduce computation processes many

terabytes of data on thousands of machines.

Programmers find the system easy to use: hundreds

of MapReduce programs have been implemented and

upwards of one thousand MapReduce jobs are

executed on Google’s clusters every day.

2
 MateiZahariaMosharaf Chowdhury Et al focussed

about the present Resilient Distributed Datasets

(RDDs), a distributed memory abstraction that allows

programmers to perform in-memory computations on

large clusters while retaining the fault tolerance of

data flow models like MapReduce. RDDs are

motivated by two types of applications that current

data flow systems handle inefficiently: iterative

algorithms, which are common in graph applications

and machine learning, and interactive data mining

tools. In both cases, keeping data in memory can

improve performance by an order of magnitude. To

achieve fault tolerance efficiently, RDDs provide a

highly restricted form of shared memory: they are

read-only datasets that can only be constructed

through bulk operations on other RDDs. However,

we show that RDDs are expressive enough to capture

a wide class of computations, including MapReduce

and specialized programming models for iterative

jobs such as Pregel. Our implementation of RDDs

can outperform Hadoop by 20× for iterative jobs and

can be used interactively to search a 1 TB dataset

with latencies of 5–7 seconds.

3

Russell Power Et al Piccolo is a new data-centric

programming model for writing parallel in-memory

applications in data centers. Unlike existing data-flow

models, Piccolo allows computation running on

different machines to share distributed, mutable state

via a key-value table interface. Piccolo enables

efficient application implementations. In particular,

applications can specify locality policies to exploit

the locality of shared state access and Piccolo’s run-

time automatically resolves write-write conflicts

using user defined accumulation functions. Using

Piccolo, we have implemented applications for

several problem domains, including the PageRank

algorithm, k-means clustering and a distributed

crawler. Experiments using 100 Amazon EC2

instances and a 12 machine cluster show Piccolo to

be faster than existing data flow models for many

problems, while providing similar fault-tolerance

guarantees and a convenient programming interface.

4
GrzegorzMalewicz Et al focused on Many practical

computing problems concern large graphs. Standard

examples include the Web graph and various social

networks. The scale of these graphs—in some cases

billions of vertices, trillions of edges—poses

challenges to their efficient processing. In this paper

we present a computational model suitable for this

task. Programs are expressed as a sequence of

iterations, in each of which a vertex can receive

messages sent in the previous iteration, send

messages to other vertices, and modify its own state

and that of its outgoing edges or mutate graph

topology. This vertex centric approach is flexible

enough to express a broad set of algorithms. The

model has been designed for efficient, scalable and

fault-tolerant implementation on clusters of

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 9, March 2016

21

All Rights Reserved © 2016 IJARTET

thousands of commodity computers, and its implied

synchronicity makes reasoning about programs

easier. Distribution related details are hidden behind

an abstract API. The result of a framework for

processing large graphs that is expressive and easy to

program.

5
Svilen R Et al discussed about In today’s Web and

social network environments, query workloads

include ad hoc and OLAP queries, as well as iterative

algorithms that analyze data relationships (e.g., link

analysis, clustering, learning). Modern DBMSs

support ad hoc and OLAP queries, but most are not

robust enough to scale to large clusters. Conversely,

“cloud” platforms like MapReduce execute chains of

batch tasks across clusters in a fault tolerant way, but

have too much overhead to support ad hoc queries.

Moreover, both classes of platform incur significant

overhead in executing iterative data analysis

algorithms. Most such iterative algorithms repeatedly

refine portions of their answers, until some

convergence criterion is reached. However, general

cloud platforms typically must reprocess all data in

each step. DBMSs that support recursive SQL are

more efficient in that they propagate only the changes

in each step — but they still accumulate each

iteration’s state, even if it is no longer useful. User-

defined functions are also typically harder to write

for DBMSs than for cloud platforms. We seek to

unify the strengths of both styles of platforms, with a

focus on supporting iterative computations in which

changes, in the form of deltas, are propagated from

iteration to iteration, and state is efficiently updated

in an extensible way. We present a programming

model oriented around deltas, describe how we

execute and optimize such programs in our REX

runtime system, and validate that our platform also

handles failures gracefully. We experimentally

validate our techniques, and show speedups over the

competing methods ranging from 2.5 to nearly 100

time.

2. PROPOSED APPROACH

Our current proposal provides general purpose

support, including not only one-to-one, but also

one-to-many, many-to-one, and many-to-many

correspondence. For scheduling the task, here we

will apply priority based task scheduling. It will

improve the Scheduling Jobs. Lets take

key/value pairs and added in a list, finally the

reduce takes the sums into one and produce

single output. Energy aware scheduling will

decrease the energy consumption ratio.

2.1 .Collection of Data

In this stage, data set consists of large number of

files 1000 data from geo distributed data out of

which 100 are from particular location. The fig

2.1, which certifies the files to be free from

spyware. This hosts information about different

types of persons and their location information

Figure 2.1. representation of data collection

2.2Dataset Creation

In which byte sequences represent fragments

of machine code from an executable file. We use xxd,

which is a UNIX-based utility for generating

hexadecimal dumps of the binary files. From these

hexadecimal dumps we may then extract byte

sequences, in terms of n-grams of different sizes.

ARFF databases based on frequency and common

features were generated. All input attributes in the

data set are represented by Booleans. These ranges

are represented by either 1 or 0.

Figure 2.2.Representation of dataset creation

Location

Details

Data

Collection

Collection of

information from

different location

 Dataset

Creation

 Dataset

 ISSN 2394-3777 (Print)

 ISSN 2394-3785 (Online)

 Available online at www.ijartet.com

 International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)

 Vol. 3, Special Issue 9, March 2016

22

All Rights Reserved © 2016 IJARTET

2.3 Feature Extraction

In this stage output from the parsing is

further subjected to feature extraction. We extract the

features by using following approaches, the Common

Feature-based Extraction (CFBE) and Frequency-

based Feature Extraction. The occurrence of a feature

and the frequency of a feature. Both methods are

used to obtain Reduced Feature Sets (RFSs) which

are then used to generate the ARFF files.

Figure 2.3.Representation of Feature Extraction

2.4. Classification

 Here we use SVM classifier, support vector

machine (SVM) is a concept in statistics and

computer science for a set of related supervised

learning methods that analyze data and recognize

patterns, used for classification and regression

analysis. The standard SVM takes a set of input data

and predicts, for each given input, which of two

possible classes comprises the input, making the

SVM a non-probabilisticbinarylinear classifier. Given

a set of training examples, each marked as belonging

to one of two categories, an SVM training algorithm

builds a model that assigns new examples into one

category or the other.

Figure 2,4 Representation of Data Classification

An SVM model is a representation of the examples as

points in space, mapped so that the examples of the

separate categories are divided by a clear gap that is

as wide as possible. New examples are then mapped

into that same space and predicted to belong to a

category based on which side of the gap they fall on.

3.REFERENCES

1. Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie,

“Pregelix: Bigger graph analytics on a dataflow engine,” in

Proc. VLDB Endowmen,2015, 8- 2,161–172.

2. Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce:

Incremental mapreduce for mining evolving big data,”

2015, 150-854.

3. D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P.

Barham, and

M. Abadi, “Naiad: A timely dataflow system,” 24th ACM

Symp. Operating. System Principles, 2013, 439–455.

4. Junzhou Luo ,Fang Dong, Runqun Xiong, "SLDP: A

Novel Data Placement Strategy for Large-Scale

Heterogeneous Hadoop Cluster ",Advanced Cloud and Big

Data (CBD), 2014 Second International Conference on

2015,57-10.

5. C. Yan, X. Yang, Z. Yu, M. Li, and X. Li, “IncMR:

Incremental data processing based on mapreduce,”, IEEE

5th Int. Conf. Cloud Computing, 2012, 534–541.

Input file
 Feature

Extraction
ARFF

file

 Data set Classifier

Algorithm

Classification

Results

