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ABSTRACT 

This proposed method is used to optimize the mining 

results and  evaluate Map Reduce using a one-step 

algorithm and three iterative algorithms with diverse 

computation characteristics for efficient mining. Naive-

Bayes Algorithm is used to find the search from the root 

cause and it does a detailed study and produces an accurate 

result. Incremental processing is a promising approach for 

refreshing mining results. It utilizes previously saved states 

to avoid the expense of re-computation from scratch. In this 

paper, we propose Energy Map Reduce Scheduling 

Algorithm, a novel incremental processing extension to 

Map Reduce, the most widely used framework for mining 

big data. Map reduce is a programming model for 

processing and generating large amount of data in parallel 

time. In this paper, EMRSA is algorithm provide more 

energy and less maps. Priority based scheduling is a task 

will allocate the schedules based on necessary and 

utilization of the Jobs. For reducing the maps, it will reduce 

the system work so easily energy has improve. Final results 

show the experimental comparison of the different 

algorithms involved in the paper. 

KEYWORDS: Map Reduce, Support Vector Machine 

(SVM) Algorithm, Naive-Bayes Algorithm. 

1. INTRODUCTION 

Today  huge amount of digital data is being 

accumulated in many important areas, including e-

commerce, social network, finance, health care, 

education, and environment. Big data is constantly 

evolving. As new data and results will become stale 

and obsolete over time updates are being collected, 

the input data of a big data mining algorithm will 

gradually change, and the computed. HIVE  is a data 

warehousing infrastructure based on Hadoop. 

Hadoop provides massive scale out and fault 

tolerance capabilities for data storage and processing 

(using the map-reduce programming paradigm) on 

commodity hardware.HIVE does not support hadoop 

as a batch processing system and Hadoop jobs tend to 

have high latency and incur substantial overheads in 

job submission and scheduling. As a result - latency 

for Hive queries is generally very high (minutes) 

even when data sets involved are very small (say a 

few hundred megabytes). As a result it cannot be 

compared with systems such as Oracle where 

analyses are conducted on a significantly smaller 

amount of data but the analyses proceed much more 

iteratively with the response times between iterations 

being less than a few minutes. Hive aims to provide 

acceptable (but not optimal) latency for interactive 

data browsing, queries over small data sets or test 

queries. Hive is not designed for online transaction 

processing and does not offer real-time queries and 

row level updates. It is best used for batch jobs over 

large sets of immutable data (like web logs). In the 

following sections we provide a tutorial on the 

capabilities of the system. We start by describing the 

concepts of data types, tables and partitions (which 

are very similar to what you would find in a 

traditional relational DBMS) and then illustrate the 

capabilities of the QL language. We focus on 

improving Map Reduce in this paper. The problem 
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with Green Computing is the major challenges recent 

days, due to the size of big data centers it will take 

more computation for Data Accessing Process. It will 

increase the time, also it will consume more energy. 

In this project we are going to solve above mentioned 

issues.  
 

1
Jeffrey Dean Et al discussed about MapReduce is a 

programming model and an associated 

implementation for processing and generating large 

data sets. Users specify a map function that processes 

a key/value pair to generate a set of intermediate 

key/value pairs, and a reduce function that merges all 

intermediate values associated with the same 

intermediate key. Many real world tasks are 

expressible in this model, as shown in the paper. 

Programs written in this functional style are 

automatically parallelized and executed on a large 

cluster of commodity machines. The run-time system 

takes care of the details of partitioning the input data, 

scheduling the program’s execution across a set of 

machines, handling machine failures, and managing 

the required inter-machine communication. This 

allows programmers without any experience with 

parallel and distributed systems to easily utilize the 

resources of a large distributed system. Our 

implementation of MapReduce runs on a large cluster 

of commodity machines and is highly scalable: a 

typical MapReduce computation processes many 

terabytes of data on thousands of machines. 

Programmers find the system easy to use: hundreds 

of MapReduce programs have been implemented and 

upwards of one thousand MapReduce jobs are 

executed on Google’s clusters every day.
  

2
 MateiZahariaMosharaf Chowdhury Et al focussed 

about the present Resilient Distributed Datasets 

(RDDs), a distributed memory abstraction that allows 

programmers to perform in-memory computations on 

large clusters while retaining the fault tolerance of 

data flow models like MapReduce. RDDs are 

motivated by two types of applications that current 

data flow systems handle inefficiently: iterative 

algorithms, which are common in graph applications 

and machine learning, and interactive data mining 

tools. In both cases, keeping data in memory can 

improve performance by an order of magnitude. To 

achieve fault tolerance efficiently, RDDs provide a 

highly restricted form of shared memory: they are 

read-only datasets that can only be constructed 

through bulk operations on other RDDs. However, 

we show that RDDs are expressive enough to capture 

a wide class of computations, including MapReduce 

and specialized programming models for iterative 

jobs such as Pregel. Our implementation of RDDs 

can outperform Hadoop by 20× for iterative jobs and 

can be used interactively to search a 1 TB dataset 

with latencies of 5–7 seconds. 

 
3 

Russell Power Et al Piccolo is a new data-centric 

programming model for writing parallel in-memory 

applications in data centers. Unlike existing data-flow 

models, Piccolo allows computation running on 

different machines to share distributed, mutable state 

via a key-value table interface. Piccolo enables 

efficient application implementations. In particular, 

applications can specify locality policies to exploit 

the locality of shared state access and Piccolo’s run-

time automatically resolves write-write conflicts 

using user defined accumulation functions. Using 

Piccolo, we have implemented applications for 

several problem domains, including the PageRank 

algorithm, k-means clustering and a distributed 

crawler. Experiments using 100 Amazon EC2 

instances and a 12 machine cluster show Piccolo to 

be faster than existing data flow models for many 

problems, while providing similar fault-tolerance 

guarantees and a convenient programming interface.  

4
GrzegorzMalewicz Et al focused on Many practical 

computing problems concern large graphs. Standard 

examples include the Web graph and various social 

networks. The scale of these graphs—in some cases 

billions of vertices, trillions of edges—poses 

challenges to their efficient processing. In this paper 

we present a computational model suitable for this 

task. Programs are expressed as a sequence of 

iterations, in each of which a vertex can receive 

messages sent in the previous iteration, send 

messages to other vertices, and modify its own state 

and that of its outgoing edges or mutate graph 

topology. This vertex centric approach is flexible 

enough to express a broad set of algorithms. The 

model has been designed for efficient, scalable and 

fault-tolerant implementation on clusters of 
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thousands of commodity computers, and its implied 

synchronicity makes reasoning about programs 

easier. Distribution related details are hidden behind 

an abstract API. The result of a framework for 

processing large graphs that is expressive and easy to 

program. 

 
5
Svilen R Et al discussed about In today’s Web and 

social network environments, query workloads 

include ad hoc and OLAP queries, as well as iterative 

algorithms that analyze data relationships (e.g., link 

analysis, clustering, learning). Modern DBMSs 

support ad hoc and OLAP queries, but most are not 

robust enough to scale to large clusters. Conversely, 

“cloud” platforms like MapReduce execute chains of 

batch tasks across clusters in a fault tolerant way, but 

have too much overhead to support ad hoc queries. 

Moreover, both classes of platform incur significant 

overhead in executing iterative data analysis 

algorithms. Most such iterative algorithms repeatedly 

refine portions of their answers, until some 

convergence criterion is reached. However, general 

cloud platforms typically must reprocess all data in 

each step. DBMSs that support recursive SQL are 

more efficient in that they propagate only the changes 

in each step — but they still accumulate each 

iteration’s state, even if it is no longer useful. User-

defined functions are also typically harder to write 

for DBMSs than for cloud platforms. We seek to 

unify the strengths of both styles of platforms, with a 

focus on supporting iterative computations in which 

changes, in the form of deltas, are propagated from 

iteration to iteration, and state is efficiently updated 

in an extensible way. We present a programming 

model oriented around deltas, describe how we 

execute and optimize such programs in our REX 

runtime system, and validate that our platform also 

handles failures gracefully. We experimentally 

validate our techniques, and show speedups over the 

competing methods ranging from 2.5 to nearly 100 

time. 

2. PROPOSED APPROACH 

Our current proposal provides general purpose 

support, including not only one-to-one, but also 

one-to-many, many-to-one, and many-to-many 

correspondence. For scheduling the task, here we 

will apply priority based task scheduling. It will 

improve the Scheduling Jobs. Lets take 

key/value pairs and added in a list, finally the 

reduce takes the sums into one and produce 

single output. Energy aware scheduling will 

decrease the energy consumption ratio. 

2.1 .Collection of Data 

In this stage, data set consists of large number of 

files 1000 data from geo distributed data out of 

which 100 are from particular location. The fig 

2.1, which certifies the files to be free from 

spyware.  This hosts information about different 

types of persons and their location information 

 

 

  

 

Figure 2.1. representation of data collection 

 

2.2Dataset Creation 

In which byte sequences represent fragments 

of machine code from an executable file. We use xxd, 

which is a UNIX-based utility for generating 

hexadecimal dumps of the binary files. From these 

hexadecimal dumps we may then extract byte 

sequences, in terms of n-grams of different sizes.  

ARFF databases based on frequency and common 

features were generated. All input attributes in the 

data set are represented by Booleans. These ranges 

are represented by either 1 or 0. 

 

 

 

 

 

 

Figure 2.2.Representation of dataset creation 
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2.3 Feature Extraction  

In this stage output from the parsing is 

further subjected to feature extraction. We extract the 

features by using following approaches, the Common 

Feature-based Extraction (CFBE) and Frequency-

based Feature Extraction. The occurrence of a feature 

and the frequency of a feature. Both methods are 

used to obtain Reduced Feature Sets (RFSs) which 

are then used to generate the ARFF files. 

 

 

 

 

Figure 2.3.Representation of Feature Extraction 

2.4. Classification 

 Here we use SVM classifier, support vector 

machine (SVM) is a concept in statistics and 

computer science for a set of related supervised 

learning methods that analyze data and recognize 

patterns, used for classification and regression 

analysis. The standard SVM takes a set of input data 

and predicts, for each given input, which of two 

possible classes comprises the input, making the 

SVM a non-probabilisticbinarylinear classifier. Given 

a set of training examples, each marked as belonging 

to one of two categories, an SVM training algorithm 

builds a model that assigns new examples into one 

category or the other.  

 

 

 

Figure 2,4 Representation of Data Classification 

 

An SVM model is a representation of the examples as 

points in space, mapped so that the examples of the 

separate categories are divided by a clear gap that is 

as wide as possible. New examples are then mapped 

into that same space and predicted to belong to a 

category based on which side of the gap they fall on.  
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